Welcome to visit Communications in Theoretical Physics,
Mathematical Physics

Decomposition solutions and Bäcklund transformations of the B-type and C-type Kadomtsev–Petviashvili equations

  • Xiazhi Hao 1 ,
  • S Y Lou , 2,
Expand
  • 1College of Science, Zhejiang University of Technology, Hangzhou 310014​, China
  • 2School of Physical Science and Technology, Ningbo University, Ningbo 315211, China

Author to whom any correspondence should be addressed.

Received date: 2024-01-08

  Revised date: 2024-03-08

  Accepted date: 2024-04-07

  Online published: 2024-05-17

Copyright

© 2024 Institute of Theoretical Physics CAS, Chinese Physical Society and IOP Publishing

Abstract

This paper introduces a modified formal variable separation approach, showcasing a systematic and notably straightforward methodology for analyzing the B-type Kadomtsev–Petviashvili (BKP) equation. Through the application of this approach, we successfully ascertain decomposition solutions, Bäcklund transformations, the Lax pair, and the linear superposition solution associated with the aforementioned equation. Furthermore, we expand the utilization of this technique to the C-type Kadomtsev–Petviashvili (CKP) equation, leading to the derivation of decomposition solutions, Bäcklund transformations, and the Lax pair specific to this equation. The results obtained not only underscore the efficacy of the proposed approach, but also highlight its potential in offering a profound comprehension of integrable behaviors in nonlinear systems. Moreover, this approach demonstrates an efficient framework for establishing interrelations between diverse systems.

Cite this article

Xiazhi Hao , S Y Lou . Decomposition solutions and Bäcklund transformations of the B-type and C-type Kadomtsev–Petviashvili equations[J]. Communications in Theoretical Physics, 2024 , 76(6) : 065004 . DOI: 10.1088/1572-9494/ad3b8b

1. Introduction

The pursuit of exact solutions for nonlinear partial differential equations (PDEs) has spurred the development of a multitude of methodologies, each offering unique insights and approaches. From the inverse scattering method [13] to Hirota's method [48], and the group theoretical method [9] to direct methods [1020], researchers have explored diverse avenues to unravel the complexities of nonlinear PDEs. Central to these methodologies is the Bäcklund transformation (BT), a powerful analytical tool that establishes crucial connections between solutions of specific nonlinear PDEs, thereby advancing the field of integrability [21, 22]. The rich tapestry of research surrounding BTs underscores their enduring appeal to mathematicians and physicists alike. With active developments spanning differential geometry, algebra, and nonlinear science, BTs have emerged as a cornerstone in addressing integrability challenges across various disciplines. The wealth of literature dedicated to BTs reflects the profound interest and significance attributed to these transformative tools [2326].
Within this landscape of methodologies, the decomposition method based on the formal variable separation approach (FVSA) emerges as a notable approach for constructing BTs [2729]. In this paper, we introduce a novel decomposition technique in section 2, that not only enables the construction of BTs, but also demonstrates remarkable efficacy in tackling two prominent nonlinear PDEs: the B-type and C-type Kadomtsev–Petviashvili equations (BKP and CKP). Our assertion of the straightforward and natural approach to constructing BTs heralds novel discoveries with potential applications across a spectrum of equations. Sections 3 and 4 of this paper delve into a detailed exploration of the utilization of the decomposition method in analyzing the potential BKP equation and potential CKP equation, respectively. Through a systematic investigation, we unveil BTs and Lax pairs for both equations in a highly intuitive manner, underscoring the coherence and significance of the results. The paper culminates in a comprehensive summary of the findings in section 5, with intricate calculations thoughtfully relocated to the appendix to enhance readability and focus on the key insights derived from the application of the decomposition method.

2. Modified formal variable separation approach

The modified FVSA outlined in this section focuses on deriving the general decomposition solution
$\begin{eqnarray}{w}_{y}=F(x,y,t,w,{w}_{x},{w}_{{xx}},\ldots ,{w}_{{xm}}),\end{eqnarray}$
$\begin{eqnarray}{w}_{t}=G(x,y,t,w,{w}_{x},{w}_{{xx}},\ldots ,{w}_{{xn}})\end{eqnarray}$
for a (2+1)-dimensional PDE. The key objective is to maintain the integrability condition
$\begin{eqnarray}{w}_{{yt}}-{w}_{{ty}}=[F,G]=0,\end{eqnarray}$
while seeking a solution in the form of equations (1) and (2). Here, w is a function of x, y, t, with F and G depending on these variables and derivatives of w with respect to x.
The method involves a systematic procedure:
1.

(1) Determination of admissible values: by analyzing the terms in the (2+1)-dimensional PDE and comparing their magnitudes, suitable values of integers m and n in equations (1) and (2) are identified to prioritize specific terms over others.

2.

(2) Substitution analysis: substituting the decomposed forms into the PDE and the integrability condition (3), expressions for w and its derivatives are derived, leading to an overdetermined system of equations.

3.

(3) Solutions for F and G: by solving the system of equations from step (2), the functions F and G are determined, resulting in the desired decomposition solutions, the corresponding BT and Lax pair.

The systematic methodology not only guarantees the maintenance of integrability, but also establishes a well-defined framework for constructing BTs and Lax pairs. The upcoming application of this technique is primed to shed light on the dynamics of (2+1)-dimensional PDEs, demonstrating the effectiveness and potential of the modified FVSA.

3. The decomposition solutions, Bäcklund transformation, Lax pair and linear superposition solutions of the potential BKP equation

An illustrative starting point often resides in examples. Let us consider the BKP equation
$\begin{eqnarray}\begin{array}{l}{u}_{{xt}}+\left({u}_{x4}+15{{uu}}_{x2}+15{u}^{3}-15{uv}\right.\\ \,{\left.-\,5{u}_{{xy}}\right)}_{{xx}}-5{u}_{{yy}}=0,{v}_{x}={u}_{y},\end{array}\end{eqnarray}$
where ${u}_{x}={\partial }_{x}u,{u}_{x2}={\partial }_{x}^{2}u,{u}_{x3}={\partial }_{x}^{3}u,\ldots ,$ a (2+1)-dimensional extension of the Sawada–Kotera (SK) equation, renowned for its manifestation of elegant integrable properties within the realm of academic discourse [30, 31]. Analytical treatment of a potential function w is advantageous, achieved by defining u = wx within the context of equation (4). Consequently, the equation governing w can be expressed as follows:
$\begin{eqnarray}\begin{array}{l}{w}_{{xt}}=5{w}_{{yy}}-\left({w}_{x5}+15{w}_{x}{w}_{x3}\right.\\ \,{\left.+\,15{w}_{x}^{3}-15{w}_{x}{w}_{y}-5{w}_{{xxy}}\right)}_{x}.\end{array}\end{eqnarray}$
The analysis of the potential BKP equation (5) reveals that for the chosen leading orders m = 3 and n = 5, the expressions of wy and wt can be determined in terms of
$\begin{eqnarray}{w}_{y}=F(x,y,t,w,{w}_{x},{w}_{{xx}},{w}_{{xxx}}),\end{eqnarray}$
$\begin{eqnarray}\begin{array}{l}{w}_{t}=G(x,y,t,w,{w}_{x},{w}_{{xx}},{w}_{{xxx}},{w}_{{xxxx}},{w}_{{xxxxx}}).\end{array}\end{eqnarray}$
Consequently, it becomes necessary to impose the integrability condition
$\begin{eqnarray}\begin{array}{l}{F}_{t}={G}_{y}\end{array}\end{eqnarray}$
on equations (6) and (7) while ensuring the satisfaction of equation (5). The derivation of the functions F and G is straightforward but involves a detailed procedure, which is provided in the appendix for reference. The outcome of the calculations leads directly to the formulation of the following theorems.

If w satisfies the decomposition system of the consistent variable coefficient potential Korteweg–de Vries (KdV) equation

$\begin{eqnarray}{v}_{y}={v}_{{xxx}}-\displaystyle \frac{a}{2}{v}_{x}^{2}+\displaystyle \frac{{m}_{0}}{a}x+{n}_{y},\end{eqnarray}$
$\begin{eqnarray}\begin{array}{l}{v}_{t}=9{v}_{{xxxxx}}-15{{av}}_{x}{v}_{{xxx}}-\displaystyle \frac{15a}{2}{v}_{{xx}}^{2}\\ +\displaystyle \frac{5{a}^{2}}{2}{v}_{x}^{3}+\left[15{m}_{2}+15{m}_{1}y-\left(5{m}_{0}^{2}+\displaystyle \frac{1}{2}{m}_{0t}\right){y}^{2}\right.\\ \left.-5{m}_{0}x\Space{0ex}{3.25ex}{0ex}\right]{v}_{x}-5{m}_{0}v+[(10{m}_{0}^{2}+{m}_{0t})y\\ -15{m}_{1}]\displaystyle \frac{x}{a}+\displaystyle \frac{{y}^{3}}{6a}{m}_{0}(10{m}_{0}^{2}+{m}_{0t})\\ -\displaystyle \frac{15{y}^{2}}{2a}{m}_{0}{m}_{1}-\displaystyle \frac{15y}{a}{m}_{0}{m}_{2}\\ +5{m}_{0}n+{n}_{t}+{m}_{3},\end{array}\end{eqnarray}$
$\begin{eqnarray}\begin{array}{l}{w}_{y}={w}_{{xxx}}+3{w}_{x}^{2}+{{av}}_{x}{w}_{x}\\ +\displaystyle \frac{{a}^{2}}{6}{v}_{x}^{2}-\displaystyle \frac{1}{3}{m}_{0}(x+{m}_{0}{y}^{2})\\ -\displaystyle \frac{{m}_{0t}{y}^{2}}{30}+{m}_{1}y+{m}_{2},\end{array}\end{eqnarray}$
$\begin{eqnarray}\begin{array}{l}{w}_{t}=9{w}_{{xxxxx}}+15{\left({av}+6w\right)}_{x}{w}_{{xxx}}\\ +5a{\left({av}+3w\right)}_{x}{v}_{{xxx}}+15{\left({av}+3w\right)}_{{xx}}{w}_{{xx}}\\ +\displaystyle \frac{15}{2}{w}_{x}[{\left({av}+3w\right)}_{x}^{2}+3{w}_{x}^{2}]\\ +\displaystyle \frac{5{a}^{2}}{2}{v}_{{xx}}^{2}+{w}_{x}(15{m}_{2}+15{m}_{1}y\\ -5{m}_{0}^{2}{y}^{2}-5{m}_{0}x-\displaystyle \frac{1}{2}{m}_{0t}{y}^{2})-5{m}_{0}w\\ -\displaystyle \frac{{xy}}{3}({m}_{0t}+10{m}_{0}^{2})+5{m}_{1}x\\ -\displaystyle \frac{{y}^{3}}{90}({m}_{0{tt}}+30{m}_{0}{m}_{0t}+100{m}_{0}^{3})\\ +\displaystyle \frac{{y}^{2}}{2}({m}_{1t}+10{m}_{0}{m}_{1})\\ +({m}_{2t}+10{m}_{0}{m}_{2})y+{m}_{4},\end{array}\end{eqnarray}$
where ${m}_{i},i=0,1,...,4$ are arbitrary functions of t, n is an arbitrary function of y and t, and a is an arbitrary constant, then w also satisfies the potential BKP equation (5).

The arbitrary parameter a plays a crucial role in determining whether the function v, defined by equations (9)-(10), can serve as a decomposition solution of the potential BKP equation (5). It is of interest to demonstrate that v can indeed be transformed into a solution of the potential BKP equation (5) for specific values of a, namely $a=-3$ and $a=-6$. In a more general sense, we can establish the following corollaries.

Considering the decomposition presented in theorem 1, assuming specific values for the constant a and the function n

$\begin{eqnarray}\begin{array}{l}a=-3,n={m}_{2}y+\displaystyle \frac{1}{2}{m}_{1}{y}^{2}\\ -\displaystyle \frac{1}{90}(10{m}_{0}^{2}+{m}_{0t}){y}^{3}+{n}_{0}(t),\end{array}\end{eqnarray}$
it can be established that both v and w, as defined by equations (9)-(12), satisfy the potential BKP equation (5).

We hereby present an additional corollary stemming from theorem 1.

By considering the functions v and w determined through equations (9)-(12) as prescribed in the statement of theorem 1, subject to the supplementary condition

$\begin{eqnarray}\begin{array}{l}a=-6,n={m}_{2}y+{n}_{0}(t),\,\,{m}_{0}={m}_{1}=0,\end{array}\end{eqnarray}$
it can be concluded that these functions satisfy the potential BKP equation (5).

The implications derived from Corollaries 1 and 2 provide compelling evidence for the existence of variable coefficient KdV decomposition solutions (9)-(10) satisfying the prescribed conditions (13) and/or (14) within the framework of the potential BKP equation (5) [32]. In parallel, the variable coefficient KdV decompositions (11)-(12) subject to (13) and/or (14) engender BTs that establish connections between two distinct solutions, denoted as v and w, of the potential BKP equation (5). An additional significant implication arising from the decomposition analysis is the establishment of a comprehensive BT of the potential BKP equation (5). This consequential result is succinctly formulated as the following theorem.

(Bäcklund Transformation) The decomposition relation

$\begin{eqnarray}\begin{array}{l}{p}_{y}={p}_{{xxx}}+\displaystyle \frac{3}{2}{\left(w+v\right)}_{{xx}}p\\ +\displaystyle \frac{3}{2}({w}_{x}^{2}-{v}_{x}^{2})+\displaystyle \frac{1}{4}{\left({p}^{3}\right)}_{x},p\equiv w-v,\end{array}\end{eqnarray}$
$\begin{eqnarray}\begin{array}{l}{p}_{t}=9{p}_{{xxxxx}}+\displaystyle \frac{9}{16}{\left({p}^{5}\right)}_{x}\\ +\displaystyle \frac{45}{8}{\left(w+v\right)}_{{xx}}{p}^{3}\\ -\displaystyle \frac{45}{8}(3{v}_{x}^{2}-3{w}_{x}^{2}-2{p}_{{xxx}}){p}^{2}\\ +\displaystyle \frac{15}{4}(9{v}_{x}^{2}+9{w}_{x}^{2}-6{v}_{x}{w}_{x}\\ +{\left.4{v}_{{xxx}}+4{w}_{{xxx}}+2{v}_{y}+2{w}_{y}\right)}_{x}p\\ -15{w}_{{xxx}}{\left(v-4w\right)}_{x}-15{v}_{{xxx}}{\left(4v-w\right)}_{x}\\ +45{w}_{{xx}}^{2}-45{v}_{{xx}}^{2}\\ +\displaystyle \frac{45}{2}{p}_{x}({v}_{x}^{2}+{w}_{x}^{2})+\displaystyle \frac{15}{2}{\left(w+v\right)}_{y}{p}_{x},\end{array}\end{eqnarray}$
serves as a BT connecting two solutions, denoted as w and v, of the potential BKP equation (5).

The BT exhibits a distinctive characteristic in the form of a conservation law

$\begin{eqnarray*}\begin{array}{l}{p}_{y}={\left[{p}_{{xx}}+\displaystyle \frac{3}{2}p({w}_{x}+{v}_{x})+\displaystyle \frac{{p}^{3}}{4}\right]}_{x},\\ {p}_{t}=\left[9{p}_{{xxxx}}+\displaystyle \frac{9{p}^{5}}{16}\right.\\ +\displaystyle \frac{45}{8}{\left(w+v\right)}_{x}{p}^{3}+\displaystyle \frac{45}{4}{p}^{2}{p}_{{xx}}\\ +\left(15{\left(w+v\right)}_{{xxx}}+\displaystyle \frac{45}{2}({w}_{x}^{2}+{v}_{x}^{2})\right.\\ \left.+\displaystyle \frac{15}{2}{\left(w+v\right)}_{y}\right)p\\ {\left.+\displaystyle \frac{45}{2}{\left({p}_{x}{\left(w+v\right)}_{x}\right)}_{x}\right]}_{x}.\end{array}\end{eqnarray*}$
The identification of the BT for a PDE is equivalent to the discovery of its corresponding Lax pair, as indicated in the references [33, 34]. Consequently, it is reasonable to explore the BT further to facilitate the construction of the associated Lax pair. Building upon the insights provided by theorem 2, we can derive the widely recognized Lax pair formulation [35]
$\begin{eqnarray}{\psi }_{y}={\psi }_{{xxx}}+3{w}_{x}{\psi }_{x},\end{eqnarray}$
$\begin{eqnarray}\begin{array}{l}{\psi }_{t}=9{\psi }_{{xxxxx}}+45{w}_{x}{\psi }_{{xxx}}\\ +45{w}_{{xx}}{\psi }_{{xx}}+15(2{w}_{{xxx}}-3{w}_{x}^{2}+{w}_{y}){\psi }_{x}\end{array}\end{eqnarray}$
of the potential BKP equation (5) by substitution of the transformation $v=w+\mathrm{ln}{\left({\psi }^{2}\right)}_{x}$ into the BT (15)-(16) as may be verified by direct calculation. The elimination of w is made between the Lax pair, and results in the Schwarzian form of the potential BKP equation (5)
$\begin{eqnarray}\begin{array}{l}{S}_{{xxx}}+{C}_{x}+4{S}_{x}^{2}-5{K}_{x}^{2}\\ +5({S}_{x}K-{S}_{y}-{K}_{y})=0\end{array}\end{eqnarray}$
with Schwarzian derivatives $S=\tfrac{{\psi }_{{xxx}}}{{\psi }_{x}}-\tfrac{3{\psi }_{{xx}}^{2}}{2{\psi }_{x}^{2}},C=\tfrac{{\psi }_{t}}{{\psi }_{x}}$ and $K=\tfrac{{\psi }_{y}}{{\psi }_{x}}$.

It is notable that each of the two corollaries and theorem 2 exhibit a system of coupled differential equations involving two unknown functions. Moreover, these results collectively imply that if one of the two functions satisfies the potential BKP equation (5), then the second function also serves as a solution to the same equation. Additionally, the BT (15)-(16) not only implies a particular form of the Sharma–Tasso–Olver (STO) decomposition solution for the potential BKP equation (5) when v = 0 [32], but also provides a methodology for identifying the Lax pair and the associated Schwarzian equation.

Let the function w be a solution to the consistent variable coefficient Svinolupov–Sokolov (SS) system

$\begin{eqnarray}\begin{array}{l}{w}_{y}={w}_{{xxx}}+\displaystyle \frac{3{w}_{{xx}}^{2}}{2W}+\displaystyle \frac{3}{2}{w}_{x}^{2}-\displaystyle \frac{27}{4}{M}^{2}\\ +\displaystyle \frac{3}{2}{m}_{1}x+\displaystyle \frac{3y}{20}{\left({m}_{1}y+2{m}_{2}\right)}_{t}+{m}_{3},\end{array}\end{eqnarray}$
$\begin{eqnarray}\begin{array}{l}{w}_{t}=9{w}_{{xxxxx}}+45{w}_{x}{w}_{{xxx}}\\ +\displaystyle \frac{45}{2}{w}_{x}^{3}+\displaystyle \frac{3}{4}[30{m}_{1}x-135{M}^{2}\\ +3y{\left({m}_{1}y+2{m}_{2}\right)}_{t}+20{m}_{3}]{w}_{x}\\ +\displaystyle \frac{45}{2}{m}_{1}w-\displaystyle \frac{3}{2}(45{m}_{1}M-{m}_{1t}y\\ -{m}_{2t})x+\displaystyle \frac{{y}^{2}}{20}{\left({m}_{1}y+3{m}_{2}\right)}_{{tt}}\\ -\displaystyle \frac{27}{4}y{\left({m}_{1}y+2{m}_{2}\right)}_{t}M\\ +y({m}_{3t}-45{m}_{1}{m}_{3})+{m}_{4}\\ +\displaystyle \frac{45}{2W}[2{w}_{{xx}}{w}_{{xxxx}}+{w}_{{xxx}}^{2}\\ +(3M+{w}_{x}){w}_{{xx}}^{2}]+\displaystyle \frac{180}{{W}^{2}}{w}_{{xx}}^{2}{w}_{{xxx}}\\ +\displaystyle \frac{315}{2{W}^{3}}{w}_{{xx}}^{4}+\displaystyle \frac{405}{4}{M}^{3},\end{array}\end{eqnarray}$
where $M\equiv {m}_{1}y+{m}_{2},W\equiv 3M-2{w}_{x}$ and ${m}_{i},i=1,2,3,4$ are arbitrary functions of t, then w is a solution of the potential BKP equation (5).

The potential BKP equation (5) possesses the following variable coefficient KdV decomposition solution

$\begin{eqnarray}\begin{array}{l}{w}_{y}=-\displaystyle \frac{1}{2}{w}_{{xxx}}-\displaystyle \frac{3}{2}{w}_{x}^{2}+6{{Mw}}_{x}\\ +\displaystyle \frac{y}{10}{\left({m}_{1}y+2{m}_{2}\right)}_{t}+{m}_{1}x-6{M}^{2}\\ +{m}_{3},M\equiv {m}_{1}y+{m}_{2},\end{array}\end{eqnarray}$
$\begin{eqnarray}\begin{array}{l}{w}_{t}=-\displaystyle \frac{9}{4}{w}_{{xxxxx}}-\displaystyle \frac{45}{4}(2{w}_{x}{w}_{{xxx}}\\ +{w}_{{xx}}^{2}+2{w}_{x}^{3})+15{m}_{1}w+\displaystyle \frac{3}{2}y\left({m}_{1}y\right.\\ {\left.+2{m}_{2}\right)}_{t}{w}_{x}\\ +15(6{M}^{2}+{m}_{1}x+{m}_{3}){w}_{x}\\ +\displaystyle \frac{{y}^{2}}{30}{\left({m}_{1}y+3{m}_{2}\right)}_{{tt}}-3({y}^{2}{m}_{1t}\\ +10{m}_{1}x+2{{ym}}_{2t})M+{M}_{t}x+({m}_{3t}\\ -30{m}_{1}{m}_{3})y-60{M}^{3}+{m}_{4},\end{array}\end{eqnarray}$
where ${m}_{i},i=1,2,3,4$ are arbitrary functions of t.

The variable coefficient potential SK decomposition solution of the potential BKP equation (5) possesses the form

$\begin{eqnarray}\begin{array}{l}{w}_{y}={{Mw}}_{x}+\displaystyle \frac{y}{30}{\left(M+{m}_{2}\right)}_{t}+\displaystyle \frac{1}{3}{m}_{1}x\\ -\displaystyle \frac{1}{2}{M}^{2}+{m}_{3},M\equiv {m}_{1}y+{m}_{2},\end{array}\end{eqnarray}$
$\begin{eqnarray}\begin{array}{l}{w}_{t}=-{w}_{{xxxxx}}+5(M-3{w}_{x}){w}_{{xxx}}\\ +15(M-{w}_{x}){w}_{x}^{2}\\ +\left(\displaystyle \frac{1}{2}{y}^{2}{m}_{1t}+{{ym}}_{2t}+5{m}_{1}x\right.\\ -\left.\displaystyle \frac{5}{2}{M}^{2}+15{m}_{3}\right){w}_{x}\\ +5{m}_{1}w+\displaystyle \frac{{y}^{2}}{90}{\left({m}_{1}y+3{m}_{2}\right)}_{{tt}}\\ -\displaystyle \frac{y}{3}({My}-x){m}_{1t}+\displaystyle \frac{1}{3}(x-2{M}_{y}){m}_{2t}\\ -\displaystyle \frac{10}{3}{m}_{1}({Mx}+3{m}_{3}y)\\ +{m}_{3t}y+{m}_{4}\end{array}\end{eqnarray}$
with ${m}_{i},i=1,2,...,4$ being arbitrary functions of t.

Suppose that arbitrary functions ${m}_{i}=0,i=1,2,...,4$, then by theorems 3 to 5, three special decompositions correspond to constant coefficient SS, KdV and SK decomposition solutions of potential BKP equation (5), respectively [32].

If a BT represents one of the different aspects of the property of integrability for a PDE, the existence of a linear combination principle further allows explicitly building some classes of solutions depending on the decomposition system (9)-(10). Consequently, a linear combination solution for the potential BKP equation (5) can be established using the outcomes of the decomposition.

If v1 and v2 are solutions of the variable coefficient potential KdV decompositions

$\begin{eqnarray}\begin{array}{l}{v}_{1y}={v}_{1{xxx}}-\displaystyle \frac{1}{2}{a}_{1}{v}_{1x}^{2}+\displaystyle \frac{1}{{a}_{1}}{m}_{0}x\\ +{n}_{y},M\equiv {m}_{1}y+{m}_{2},\end{array}\end{eqnarray}$
$\begin{eqnarray}\begin{array}{l}{v}_{1t}=9{v}_{1{xxxxx}}+\displaystyle \frac{5}{2}{a}_{1}^{2}{v}_{1x}^{3}\\ -\displaystyle \frac{15}{2}{a}_{1}(2{v}_{1x}{v}_{1{xxx}}+{v}_{1{xx}}^{2})\\ +\left[15M-5{m}_{0}x-\displaystyle \frac{1}{2}\left(10{m}_{0}^{2}+{m}_{0t}\right){y}^{2}\right]{v}_{1x}\\ -5{m}_{0}{v}_{1}+5{m}_{0}n+{n}_{t}+{m}_{3}\\ +\displaystyle \frac{1}{{a}_{1}}\{[(10{m}_{0}^{2}+{m}_{0t})y-15{m}_{1}]x\\ +\displaystyle \frac{5}{3}{y}^{3}{m}_{0}^{3}+\displaystyle \frac{1}{6}{m}_{0}{m}_{0t}{y}^{3}\\ -\displaystyle \frac{15}{2}{m}_{0}({m}_{1}y+2{m}_{2})y\},\end{array}\end{eqnarray}$
and
$\begin{eqnarray}\begin{array}{l}{v}_{2y}={v}_{2{xxx}}-\displaystyle \frac{1}{2}{a}_{2}{v}_{2x}^{2}+\displaystyle \frac{1}{{a}_{2}}\\ \times \left(\displaystyle \frac{1}{5}{m}_{0t}{y}^{2}-{a}_{1}{n}_{y}+{m}_{0}x+2{y}^{2}{m}_{0}^{2}-6M\right),\end{array}\end{eqnarray}$
$\begin{eqnarray}\begin{array}{l}{v}_{2t}=9{v}_{2{xxxxx}}+\displaystyle \frac{5}{2}{a}_{2}^{2}{v}_{2x}^{3}\\ -\displaystyle \frac{15}{2}{a}_{2}(2{v}_{2x}{v}_{2{xxx}}+{v}_{2{xx}}^{2})\\ -\displaystyle \frac{1}{2}{y}^{2}{v}_{2x}{m}_{0t}+(15M-5{m}_{0}^{2}{y}^{2}\\ -5{m}_{0}x){v}_{2x}-5{m}_{0}{v}_{2}+{m}_{4}\\ +\displaystyle \frac{1}{{a}_{2}}\left[\displaystyle \frac{1}{15}{m}_{0{tt}}{y}^{3}+\displaystyle \frac{1}{6}(6{xy}+11{m}_{0}{y}^{3}){m}_{0t}\right.\\ -3{m}_{1t}{y}^{2}-6{m}_{2t}y-{a}_{1}{n}_{t}\\ +5(2{m}_{0}^{2}y-3{m}_{1})x\\ +\left.5{y}^{3}{m}_{0}^{3}-\displaystyle \frac{45}{2}{m}_{0}{m}_{1}{y}^{2}-45{m}_{0}{m}_{2}y-5{m}_{0}{a}_{1}n\right],\end{array}\end{eqnarray}$
respectively, then their linear combination
$\begin{eqnarray}\begin{array}{l}w=-\displaystyle \frac{1}{6}({a}_{1}{v}_{1}+{a}_{2}{v}_{2})\end{array}\end{eqnarray}$
is a solution of the potential BKP equation (5).

In general, the functions v1 and v2 presented in theorem 6 do not qualify as solutions to the potential BKP equation (5), except under specific circumstances outlined in corollaries 1 and 2. However, the linear combination (30) of v1 and v2 does provide a solution to the potential BKP equation (5). The linear superposition solutions, characterized by fixed values of a1 and a2, as discussed in [32], can be considered as particular instances of theorem 6.

4. The decomposition solutions, Bäcklund transformation and Lax pair of the potential CKP equation

As a second illustration, we replicate the comprehensive procedure outlined in the preceding section to ascertain the decomposition solutions, Bäcklund transformation, and Lax pair for the potential CKP equation
$\begin{eqnarray}\begin{array}{l}9{u}_{{xt}}+\left({u}_{x4}+15{{uu}}_{x2}+15{u}^{3}\right.\\ {\left.+\displaystyle \frac{45}{4}{u}_{x}^{2}-15{uv}-5{u}_{{xy}}\right)}_{{xx}}\\ -5{u}_{{yy}}=0,{v}_{x}={u}_{y},\end{array}\end{eqnarray}$
$\begin{eqnarray}\begin{array}{l}9{w}_{{xt}}=5{w}_{{yy}}-\left({w}_{x5}+15{w}_{x}{w}_{x3}\right.\\ +15{w}_{x}^{3}+\displaystyle \frac{45{w}_{{xx}}^{2}}{4}\\ {\left.-15{w}_{x}{w}_{y}-5{w}_{{xxy}}\right)}_{x},\end{array}\end{eqnarray}$
in which u denotes the conservative field and w represents the potential one. In the limit where uy approaches zero, the reduced form of the CKP equation (31) corresponds to the widely known Kaup–Kupershmidt (KK) equation [36, 37]. Likewise, a direct calculation establishes the following theorems.

(Bäcklund Transformation) Let v be an arbitrary solution of the potential CKP equation (32), a distinct solution w of equation (32) is subsequently defined through the Bäcklund transformation

$\begin{eqnarray}\begin{array}{l}{p}_{y}={\left[{p}_{{xx}}-\displaystyle \frac{3{p}_{x}^{2}}{4p}+\displaystyle \frac{3}{2}p({w}_{x}+{v}_{x})+\displaystyle \frac{{p}^{3}}{4}\right]}_{x},\\ p=w-v,\end{array}\end{eqnarray}$
$\begin{eqnarray}\begin{array}{l}{p}_{t}=\left[{p}_{{xxxx}}-\displaystyle \frac{5}{2p}{p}_{x}{p}_{{xxx}}+\displaystyle \frac{5p}{3}{\left(w+v\right)}_{{xxx}}\right.\\ -\displaystyle \frac{5}{4p}{p}_{{xx}}^{2}+\left(\displaystyle \frac{5{p}^{2}}{4}\right.\\ \left.+\displaystyle \frac{5{p}_{x}^{2}}{{p}^{2}}+\displaystyle \frac{5}{2}{\left(w+v\right)}_{x}\right){p}_{{xx}}\\ +\displaystyle \frac{5}{4}{p}_{x}{\left(w+v\right)}_{{xx}}\\ -\displaystyle \frac{35{p}_{x}^{4}}{16{p}^{3}}-\displaystyle \frac{15{\left(w+v\right)}_{x}}{8p}{p}_{x}^{2}\\ +\displaystyle \frac{15}{8}p({w}_{x}^{2}+{v}_{x}^{2})+\displaystyle \frac{{p}^{5}}{16}+\displaystyle \frac{5p}{6}{\left(w+v\right)}_{y}\\ {\left.+\displaystyle \frac{5{p}^{3}}{8}{\left(w+v\right)}_{x}+\displaystyle \frac{5}{4}{{pw}}_{x}{v}_{x}\right]}_{x}.\end{array}\end{eqnarray}$
The BT given by equations (33) and (34) appears to be a novel finding and is formulated in a conservation form. The associated Lax pair emerges from this BT, leading to the derivation of two equations
$\begin{eqnarray}\begin{array}{l}{\psi }_{y}={\psi }_{{xxx}}+3{w}_{x}{\psi }_{x}+\displaystyle \frac{3}{2}{w}_{{xx}}\psi ,\end{array}\end{eqnarray}$
$\begin{eqnarray}\begin{array}{l}{\psi }_{t}={\psi }_{{xxxxx}}+5{w}_{x}{\psi }_{{xxx}}\\ +\displaystyle \frac{15}{2}{w}_{{xx}}{\psi }_{{xx}}\\ +5\left(\displaystyle \frac{7}{6}{w}_{{xxx}}+{w}_{x}^{2}+\displaystyle \frac{{w}_{y}}{3}\right){\psi }_{x}\\ +5\left(\displaystyle \frac{{w}_{{xxxx}}}{3}+{w}_{x}{w}_{{xx}}+\displaystyle \frac{{w}_{{xy}}}{6}\right)\psi \end{array}\end{eqnarray}$
followed by a relation $v=w+\mathrm{ln}{\left({\partial }_{x}^{-1}{\psi }^{2}\right)}_{x}$. When v = 0, the BT is reduced to the modified STO decomposition solution
$\begin{eqnarray}\begin{array}{l}{w}_{y}={\left[{w}_{{xx}}-\displaystyle \frac{3{w}_{x}^{2}}{4w}+\displaystyle \frac{3}{2}{{ww}}_{x}+\displaystyle \frac{{w}^{3}}{4}\right]}_{x},\end{array}\end{eqnarray}$
$\begin{eqnarray}\begin{array}{l}{w}_{t}=\left[{w}_{{xxxx}}-\displaystyle \frac{5}{2w}{w}_{x}{w}_{{xxx}}+\displaystyle \frac{5}{3}{{ww}}_{{xxx}}\right.\\ -\displaystyle \frac{5}{4w}{w}_{{xx}}^{2}+5\left(\displaystyle \frac{{w}^{2}}{4}+\displaystyle \frac{{w}_{x}^{2}}{{w}^{2}}+\displaystyle \frac{3}{4}{w}_{x}\right){w}_{{xx}}\\ -\displaystyle \frac{35{w}_{x}^{4}}{16{w}^{3}}-\displaystyle \frac{15{w}_{x}^{3}}{8w}+\displaystyle \frac{15{{ww}}_{x}^{2}}{8}\\ {\left.+\displaystyle \frac{{w}^{5}}{16}+\displaystyle \frac{5{{ww}}_{y}}{6}+\displaystyle \frac{5{w}^{3}{w}_{x}}{8}\right]}_{x}\end{array}\end{eqnarray}$
of the potential CKP equation (32). This remarkable modified STO decomposition is intricately linked to the STO decomposition
$\begin{eqnarray}\begin{array}{l}{f}_{y}={\left[{f}_{{xx}}+\displaystyle \frac{1}{4}{f}^{3}+\displaystyle \frac{3}{2}({f}_{x}f)\right]}_{x},\end{array}\end{eqnarray}$
$\begin{eqnarray}\begin{array}{l}{f}_{t}=\left[{f}_{{xxxx}}+5{f}_{x}{f}_{{xx}}+5\left(\displaystyle \frac{{{ff}}_{{xxx}}}{2}\right.\right.\\ +\displaystyle \frac{{f}^{2}{f}_{{xx}}}{2}+\displaystyle \frac{{f}^{3}{f}_{x}}{4}\\ {\left.\left.+\displaystyle \frac{3{{ff}}_{x}^{2}}{4}\right)+\displaystyle \frac{{f}^{5}}{16}\right]}_{x}\end{array}\end{eqnarray}$
through the relationship ${w}_{x}={fw}-{w}^{2}$, which precisely mirrors the STO decomposition observed in the potential BKP equation (5).

The function w is a solution of the potential CKP equation (32) provided that w satisfies the consistent variable coefficient SS system

$\begin{eqnarray}\begin{array}{l}{w}_{y}={w}_{{xxx}}+\displaystyle \frac{3{w}_{{xx}}^{2}}{2W}+3{w}_{x}^{2}-\displaystyle \frac{9{{Mw}}_{x}}{2}\\ -\displaystyle \frac{27}{8}{M}^{2}+\displaystyle \frac{3}{2}{m}_{1}x\\ +\displaystyle \frac{27y}{20}{\left({m}_{1}y+2{m}_{2}\right)}_{t}+\displaystyle \frac{27{m}_{2}^{2}}{8}+{m}_{3},\end{array}\end{eqnarray}$
$\begin{eqnarray}\begin{array}{l}{w}_{t}={w}_{{xxxxx}}+\displaystyle \frac{5{w}_{{xx}}{w}_{{xxxx}}}{W}+\displaystyle \frac{5{w}_{{xxx}}^{2}}{2W}\\ +\left(\displaystyle \frac{20{w}_{{xx}}^{2}}{{W}^{2}}+10{w}_{x}-\displaystyle \frac{15M}{2}\right){w}_{{xxx}}\\ +\displaystyle \frac{35{w}_{{xx}}^{4}}{2{W}^{3}}+\displaystyle \frac{5(3M+4{w}_{x}){w}_{{xx}}^{2}}{4W}\\ +10{w}_{x}^{3}-\displaystyle \frac{45M}{2}{w}_{x}^{2}\\ +\left(\displaystyle \frac{45}{8}{M}^{2}+\displaystyle \frac{45{m}_{2}^{2}}{8}+\displaystyle \frac{5{m}_{1}x}{2}+\displaystyle \frac{5{m}_{3}}{3}\right){w}_{x}\\ +\displaystyle \frac{(9{w}_{x}{y}^{2}+6{xy}-27{y}^{2}M){m}_{1t}}{4}\\ +\displaystyle \frac{(18{w}_{x}y+6x-27y(2{m}_{1}y+{m}_{2})){m}_{2t}}{4}\\ +\displaystyle \frac{9{y}^{2}{\left({m}_{1}y+3{m}_{2}\right)}_{{tt}}}{20}-\displaystyle \frac{15{m}_{1}{Mx}}{2}\\ +\displaystyle \frac{45{M}^{3}}{4}-\displaystyle \frac{135{m}_{1}{m}_{2}^{2}y}{8}\\ +\displaystyle \frac{5{m}_{1}w}{2}-5{m}_{1}{m}_{3}y+{m}_{3t}y+{m}_{4},\end{array}\end{eqnarray}$
where $M\equiv {m}_{1}y+{m}_{2},W\equiv 3M-2{w}_{x}$ and ${m}_{i},i=1,2,3,4$ are arbitrary functions of t.

The potential CKP equation (32) possesses the following variable coefficient KdV decomposition solution

$\begin{eqnarray}\begin{array}{l}{w}_{y}=\displaystyle \frac{1}{4}{w}_{{xxx}}+\displaystyle \frac{3}{2}{w}_{x}^{2}+\displaystyle \frac{3{m}_{0}x}{5}\\ +\displaystyle \frac{27{y}^{2}({m}_{0t}-2{m}_{0}^{2})}{50}+M,M\\ \equiv {m}_{1}y+{m}_{2},\end{array}\end{eqnarray}$
$\begin{eqnarray}\begin{array}{l}{w}_{t}=\displaystyle \frac{1}{16}{w}_{{xxxxx}}+\displaystyle \frac{5}{8}(2{w}_{x}{w}_{{xxx}}+{w}_{{xx}}^{2}+4{w}_{x}^{3})\\ +\left({m}_{0}x-\displaystyle \frac{9{m}_{0}^{2}{y}^{2}}{5}+\displaystyle \frac{5}{3}M+\displaystyle \frac{9{m}_{0t}{y}^{2}}{10}\right){w}_{x}\\ +{m}_{0}w+\left(\left(\displaystyle \frac{3{m}_{0t}}{5}-\displaystyle \frac{6{m}_{0}^{2}}{5}\right)y+\displaystyle \frac{5{m}_{1}}{9}\right)x\\ +\left(\displaystyle \frac{18{m}_{0}^{3}}{25}-\displaystyle \frac{27{m}_{0}{m}_{0t}}{25}+\displaystyle \frac{9{m}_{0{tt}}}{50}\right){y}^{3}\\ +\left(\displaystyle \frac{{m}_{1t}}{2}-{m}_{0}{m}_{1}\right){y}^{2}\\ +({m}_{2t}-2{m}_{0}{m}_{2})y+{m}_{3},\end{array}\end{eqnarray}$
where ${m}_{i},i=1,2,3,4$ are arbitrary functions of t.

The variable coefficient potential KK decomposition solution of the potential CKP equation (32) possesses the form

$\begin{eqnarray}\begin{array}{l}{w}_{y}={{Mw}}_{x}+\displaystyle \frac{3y}{10}{\left(M+{m}_{2}\right)}_{t}+\displaystyle \frac{1}{3}{m}_{1}x\\ -\displaystyle \frac{1}{2}{M}^{2}+\displaystyle \frac{{m}_{2}^{2}}{2}+{m}_{3},M\equiv {m}_{1}y+{m}_{2},\end{array}\end{eqnarray}$
$\begin{eqnarray}\begin{array}{l}{w}_{t}=-\displaystyle \frac{{w}_{{xxxxx}}}{9}+\displaystyle \frac{5}{9}(M-3{w}_{x}){w}_{{xxx}}\\ -\displaystyle \frac{5{w}_{{xx}}^{2}}{4}-\displaystyle \frac{5{w}_{x}^{3}}{3}+\displaystyle \frac{5M}{3}{w}_{x}^{2}\\ +\left(\displaystyle \frac{5{m}_{1}x}{9}-\displaystyle \frac{5{M}^{2}}{18}+\displaystyle \frac{5{m}_{2}^{2}}{6}+\displaystyle \frac{5{m}_{3}}{3}\right.\\ \left.+\displaystyle \frac{{m}_{1t}{y}^{2}}{2}+{m}_{2t}y\right){w}_{x}+\displaystyle \frac{5{m}_{1}w}{9}\\ +\displaystyle \frac{{y}^{2}}{10}{\left({m}_{1}y+3{m}_{2}\right)}_{{tt}}-\displaystyle \frac{{m}_{1t}{y}^{2}M}{3}\\ +\displaystyle \frac{{{xM}}_{t}}{3}+\displaystyle \frac{{m}_{2t}y({m}_{2}-2{m}_{1}y)}{3}\\ +{m}_{3t}y-\displaystyle \frac{10{m}_{1}{xM}}{27}-\displaystyle \frac{5{m}_{1}y({m}_{2}^{2}+2{m}_{3})}{9}+{m}_{4}\end{array}\end{eqnarray}$
with ${m}_{i},i=1,2,...,4$ being arbitrary functions of t.

The proof of theorems 7-10 follows a similar structure to that presented in the appendix for the potential BKP equation (5). However, for brevity, the detailed calculations are omitted in this context. We have attempted but failed to provide the linear superposition solution of the potential CKP equation (32) from the decomposition solutions.

Overall, the decomposition technology offers advantages in:

1.

(1) Simplifying analysis: by decomposing the higher-dimensional equation into a lower-dimensional system, the analysis becomes more manageable and can be tackled using techniques specifically designed for lower-dimensional systems. This simplification aids in understanding the behavior and properties of the system under consideration.

2.

(2) Enhancing solvability: variable coefficient potential decompositions can lead to equations with more structured forms, making them potentially easier to solve. This can facilitate the study of the system's solutions, stability, and other important characteristics.

3.

(3) Providing insights into system dynamics: by breaking down the original equation into two separate equations, each focusing on different aspects of the system, this separation can help in identifying and understanding the individual contributions of different factors affecting the system's behavior.

4.

(4) Allowing for flexible parameter analysis: variable coefficient decompositions allow for a more flexible analysis of the system's behavior under varying conditions. By studying how the coefficients affect the solutions, researchers can gain a deeper understanding of the system's response to different parameters and external influences.

5.

(5) Finding practical applications in the study of physical systems: this decomposition technique finds applications in various physical systems where the higher-dimensional equation arises, such as in the study of wave propagation, fluid dynamics, and quantum mechanics. The insights gained from the variable coefficient decompositions can be applied to understand and predict the behavior of these systems in real-world scenarios.

5. Conclusions

In this research endeavor, we have extended the findings elucidated in a preceding scholarly publication [32] by introducing a modified formal variable separation approach to derive decomposition solutions for the potential BKP and CKP equations. This heuristic method provides a unified framework for obtaining decomposition solutions of the (2+1)-dimensional PDEs. The result makes clear that we establish the connection between the potential BKP and CKP equations with several classical integrable systems. Consequently, one might therefore hope to deduce the solutions of the potential BKP and CKP equations from solutions of the classical integrable systems.
Notably, we have effectively constructed the BTs through the decomposition process. It is widely accepted that the existence of a BT serves as a sign to the integrability of a PDE. While the BTs for the (1+1)-dimensional SK and KK equations have been previously known [33], the BTs for the (2+1)-dimensional SK (4) and KK (31) equations have not been reported before. In this study, we present the explicit forms of the BTs for the potential BKP and CKP equations. Although other standard analytic techniques exist for obtaining BTs of nonlinear PDEs, the construction of BTs through decomposition proves to be an exceptionally straightforward approach.
For the potential BKP and CKP equations, the system defining the identified BTs exhibits two pivotal characteristics. Firstly, it is linearizable, culminating in the establishment of a Lax pair. Secondly, it showcases a conservation form. Furthermore, it is noteworthy that the solution to the potential BKP equation in theorem 6 possesses a distinctive trait: it adheres to the renowned linear superposition principle under specific parameter values. It is imperative to underscore that despite the apparent resemblance between the potential BKP and CKP equations, they are fundamentally disparate. No scaling transformation exists that can convert one equation into the other. Nevertheless, upon scrutiny of the system (39)-(40), the STO decomposition elucidates a connection between the potential BKP and CKP equations.
Decomposition, as a fundamental tool for formulating solutions of PDEs, proves to be as accessible to apply as we contend. We look forward to delving into additional theoretical facets associated with this approach in forthcoming research pursuits.

Appendix

We elucidate the decomposition methodology by considering the case of the potential BKP equation (5).
By substituting (6) and (7), where $m\gt 3$, into the potential BKP equation (5), along with the decomposition compatibility condition (8), it is observed that the decomposition does not generally hold for $m\gt 3$. Consequently, we consider the specific case of m = 3 and subsequently set n = 5 in the decomposition relations (6) and (7). Then substituting (6) and (7) into (5) yields:
$\begin{eqnarray}\begin{array}{l}{w}_{x6}(1-5{F}_{{x}_{3}}^{2}-5{F}_{{x}_{3}}+{G}_{{x}_{5}})+W=0,\end{array}\end{eqnarray}$
where $F=F(x,y,t,w,{w}_{x},{w}_{x2},{w}_{x3})\equiv F(x,y,t,{x}_{0},{x}_{1},{x}_{2},{x}_{3}),$ $G=G(x,y,t,w,{w}_{x},{w}_{x2},{w}_{x3},{w}_{x4},{w}_{x5})\equiv G(x,y,t,{x}_{0},{x}_{1},{x}_{2},{x}_{3},{x}_{4},{x}_{5}),$ and $W=W(x,y,t,{x}_{0},{x}_{1},\ldots ,{x}_{5})$ is a complicated expression of $x,y,t,{x}_{0},{x}_{1},\ldots ,{x}_{5}$. With the coefficient of wx6 vanishing, we can deduce the following result:
$\begin{eqnarray}\begin{array}{l}G=(5{F}_{{x}_{3}}+5{F}_{{x}_{3}}^{2}-1){x}_{5}+{G}_{1},\end{array}\end{eqnarray}$
where ${G}_{1}={G}_{1}(x,y,t,{x}_{0},{x}_{1},\ldots ,{x}_{4})$ is a function of $\{x,y,t,{x}_{0},{x}_{1},\ldots ,{x}_{4}\}$. By employing the relation (A2), (A1) undergoes a transformation, yielding the following expression:
$\begin{eqnarray}\begin{array}{l}{w}_{x5}[{G}_{1{x}_{4}}-5({F}_{{x}_{3}}+2)({x}_{1}{F}_{{x}_{0}{x}_{3}}\\ +{x}_{2}{F}_{{x}_{1}{x}_{3}}+{x}_{3}{F}_{{x}_{2}{x}_{3}}+{x}_{4}{F}_{{x}_{3}{x}_{3}})\\ -5{F}_{{x}_{2}}(1+2{F}_{{x}_{3}})-5{F}_{{{xx}}_{3}}(2+{F}_{{x}_{3}})]\\ +{W}_{1}=0,\end{array}\end{eqnarray}$
where ${W}_{1}={W}_{1}(x,y,t,{x}_{0},{x}_{1},\ldots ,{x}_{4})$ is wx5 independent. Eliminating the coefficient of wx5 yields
$\begin{eqnarray}\begin{array}{l}{G}_{1}=5({F}_{{x}_{3}}+2)\left(\displaystyle \frac{1}{2}{x}_{4}{F}_{{x}_{3}{x}_{3}}+{x}_{3}{F}_{{x}_{2}{x}_{3}}\right.\\ \left.+{x}_{2}{F}_{{x}_{1}{x}_{3}}+{x}_{1}{F}_{{x}_{0}{x}_{3}}\right){x}_{4}\\ +5{x}_{4}{F}_{{x}_{2}}(1+2{F}_{{x}_{3}})\\ +5{x}_{4}{F}_{{{xx}}_{3}}(2+{F}_{{x}_{3}})+{G}_{2},\end{array}\end{eqnarray}$
with ${G}_{2}\equiv {G}_{2}(x,y,t,{x}_{0},{x}_{1},{x}_{2},{x}_{3})$ being a function of $\{x,y,t,{x}_{0},{x}_{1},{x}_{2},{x}_{3}\}$.
Similarly, by substituting the decomposition (6) and (7) with m = 3 and n = 5, along with the results (A2) and (A4), into the compatibility condition (8), we obtain the following expression:
$\begin{eqnarray}\begin{array}{l}5{w}_{x7}{\left(1-{F}_{{x}_{3}}\right)}^{2}({x}_{1}{F}_{{x}_{0}{x}_{3}}\\ +{x}_{2}{F}_{{x}_{1}{x}_{3}}+{x}_{3}{F}_{{x}_{2}{x}_{3}}+{x}_{4}{F}_{{x}_{3}{x}_{3}}+{F}_{{{xx}}_{3}})\\ +{\rm{\Gamma }}=0,\end{array}\end{eqnarray}$
where ${\rm{\Gamma }}={\rm{\Gamma }}(x,y,t,{x}_{0},\ldots ,{x}_{6})$ is a wx7 independent function of the lower-order differentiations of w with respect to x. By setting the coefficient of ${w}_{x7}{w}_{x4}$ in (A5) to zero, we obtain the following result:
$\begin{eqnarray}\begin{array}{l}F={F}_{1}(x,y,t,{x}_{0},{x}_{1},{x}_{2}){x}_{3}+H(x,y,t,{x}_{0},{x}_{1},{x}_{2}).\end{array}\end{eqnarray}$
Substituting (A6) into (A5) and requiring the coefficient of wx7 being zero result ${F}_{1}(x,y,t,{x}_{0},{x}_{1},{x}_{2})={H}_{1}(y,t)$. Thus, we have
$\begin{eqnarray}\begin{array}{l}F={H}_{1}(y,t){x}_{3}+H(x,y,t,{x}_{0},{x}_{1},{x}_{2}).\end{array}\end{eqnarray}$
Taking account of (A7), (A3) becomes
$\begin{eqnarray}\begin{array}{l}{w}_{x4}\left[{G}_{2{x}_{3}}-5({H}_{1}+2){x}_{3}{H}_{{x}_{2}{x}_{2}}\right.\\ -5({H}_{1}+2){x}_{2}{H}_{{x}_{1}{x}_{2}}\\ +5{x}_{1}(3-{H}_{1}{H}_{{x}_{0}{x}_{2}}-3{H}_{1}-2{H}_{{x}_{0}{x}_{2}})\\ -10{H}_{1}{H}_{{x}_{1}}-5{H}_{{x}_{2}}^{2}-5{H}_{{x}_{1}}\\ \left.-5{H}_{1}{H}_{{{xx}}_{2}}-10{H}_{{{xx}}_{2}}\right]+{W}_{2}=0\end{array}\end{eqnarray}$
with ${W}_{2}={W}_{2}(x,y,t,{x}_{0},{x}_{1},{x}_{2},{x}_{3})$. Vanishing the coefficient of wx4 in (A8) leads to
$\begin{eqnarray}\begin{array}{l}{G}_{2}=5\left[\displaystyle \frac{{H}_{1}+2}{2}{x}_{3}{H}_{{x}_{2}{x}_{2}}+({H}_{1}+2){x}_{2}{H}_{{x}_{1}{x}_{2}}\right.\\ -{x}_{1}(3-{H}_{1}{H}_{{x}_{0}{x}_{2}}-3{H}_{1}-2{H}_{{x}_{0}{x}_{2}})\\ +2{H}_{1}{H}_{{x}_{1}}+{H}_{{x}_{2}}^{2}+{H}_{{x}_{1}}\\ \left.+{H}_{1}{H}_{{{xx}}_{2}}+2{H}_{{{xx}}_{2}}\right]{x}_{3}+J,\end{array}\end{eqnarray}$
where $J=J(x,y,t,{x}_{0},{x}_{1},{x}_{2})$. Up to now, the decomposition relation is simplified to
$\begin{eqnarray}{w}_{y}={H}_{1}{w}_{x3}+H,\end{eqnarray}$
$\begin{eqnarray}\begin{array}{l}{w}_{t}=(5{H}_{1}+5{H}_{1}^{2}-1){w}_{{x}_{5}}+5{H}_{{x}_{2}}(1+2{H}_{1}){w}_{{x}_{4}}\\ +5\left[\displaystyle \frac{{H}_{1}+2}{2}{w}_{{x}_{3}}{H}_{{x}_{2}{x}_{2}}+({H}_{1}+2){w}_{{x}_{2}}{H}_{{x}_{1}{x}_{2}}\right.\\ -{w}_{{x}_{1}}(3-{H}_{1}{H}_{{x}_{0}{x}_{2}}-3{H}_{1}-2{H}_{{x}_{0}{x}_{2}})\\ +2{H}_{1}{H}_{{x}_{1}}+{H}_{{x}_{2}}^{2}+{H}_{{x}_{1}}+{H}_{1}{H}_{{{xx}}_{2}}\\ \left.+2{H}_{{{xx}}_{2}}\right]{w}_{{x}_{3}}+J\end{array}\end{eqnarray}$
with three undetermined functions ${H}_{1}={H}_{1}(y,t),H\,=H(x,y,t,{x}_{0},{x}_{1},{x}_{2})$ and $J=J(x,y,t,{x}_{0},{x}_{1},{x}_{2})$.
Inserting (A10) and (A11) into the potential BKP equation (5) and the compatibility condition (8), subsequently, vanishing the coefficients of wxk for $k\geqslant 3$ leave the set of determining equations on $\{H,{H}_{1},J\}$. Solving this set of equations, we can identify several cases that correspond to nontrivial solutions for the unknowns.
Case 1. When ${H}_{1}=0$, further calculation then leads to the expression
$\begin{eqnarray}\begin{array}{l}\left\{\begin{array}{l}H={{Mw}}_{x}+\displaystyle \frac{y}{30}{\left(M+{m}_{2}\right)}_{t}+\displaystyle \frac{1}{3}{m}_{1}x-\displaystyle \frac{1}{2}{M}^{2}+{m}_{3},M\equiv {m}_{1}y+{m}_{2},\\ J=15(M-{w}_{x}){w}_{x}^{2}+(\displaystyle \frac{1}{2}{y}^{2}{m}_{1t}+{{ym}}_{2t}+5{m}_{1}x-\displaystyle \frac{5}{2}{M}^{2}+15{m}_{3}){w}_{x}+5{m}_{1}w+\displaystyle \frac{{y}^{2}}{90}{\left({m}_{1}y+3{m}_{2}\right)}_{{tt}}\\ -\displaystyle \frac{y}{3}({My}-x){m}_{1t}+\displaystyle \frac{1}{3}(x-2{M}_{y}){m}_{2t}-\displaystyle \frac{10}{3}{m}_{1}({Mx}+3{m}_{3}y)+{m}_{3t}y+{m}_{4}\end{array}\right.\end{array}\end{eqnarray}$
with ${m}_{i},i=1,2,...,4$ being arbitrary functions of t.
Case 2. Taking ${H}_{1}=1$ in the result of this case, we can identify three distinct solutions.
The first one is as follows:
$\begin{eqnarray}\begin{array}{l}\left\{\begin{array}{l}H=\displaystyle \frac{3{w}_{{xx}}^{2}}{2W}+\displaystyle \frac{3}{2}{w}_{x}^{2}-\displaystyle \frac{27}{4}{M}^{2}+\displaystyle \frac{3}{2}{m}_{1}x+\displaystyle \frac{3y}{20}{\left({m}_{1}y+2{m}_{2}\right)}_{t}+{m}_{3},\\ J=\displaystyle \frac{45}{2}{w}_{x}^{3}+\displaystyle \frac{3}{4}[30{m}_{1}x-135{M}^{2}+3y{\left({m}_{1}y+2{m}_{2}\right)}_{t}+20{m}_{3}]{w}_{x}+\displaystyle \frac{45}{2}{m}_{1}w-\displaystyle \frac{3}{2}(45{m}_{1}M-{m}_{1t}y\\ -{m}_{2t})x+\displaystyle \frac{{y}^{2}}{20}{\left({m}_{1}y+3{m}_{2}\right)}_{{tt}}-\displaystyle \frac{27}{4}y{\left({m}_{1}y+2{m}_{2}\right)}_{t}M+y({m}_{3t}-45{m}_{1}{m}_{3})+{m}_{4}\\ +\displaystyle \frac{45}{2W}[(3M+{w}_{x}){w}_{{xx}}^{2}]+\displaystyle \frac{315}{2{W}^{3}}{w}_{{xx}}^{4}+\displaystyle \frac{405}{4}{M}^{3},\end{array}\right.\end{array}\end{eqnarray}$
where $M\equiv {m}_{1}y+{m}_{2},W\equiv 3M-2{w}_{x}$ and ${m}_{i},i=1,2,3,4$ are arbitrary functions of t.
The second solution is given by:
$\begin{eqnarray}\left\{\begin{array}{l}H=3{w}_{x}^{2}+{{av}}_{x}{w}_{x}+\displaystyle \frac{{a}^{2}}{6}{v}_{x}^{2}-\displaystyle \frac{1}{3}{m}_{0}(x+{m}_{0}{y}^{2})-\displaystyle \frac{{m}_{0t}{y}^{2}}{30}+{m}_{1}y+{m}_{2},\\ J=5a{\left({av}+3w\right)}_{x}{v}_{{xxx}}+15{\left({av}+3w\right)}_{{xx}}{w}_{{xx}}+\displaystyle \frac{15}{2}{w}_{x}[{\left({av}+3w\right)}_{x}^{2}+3{w}_{x}^{2}]+\displaystyle \frac{5{a}^{2}}{2}{v}_{{xx}}^{2}+{w}_{x}(15{m}_{2}\\ +15{m}_{1}y-5{m}_{0}^{2}{y}^{2}-5{m}_{0}x-\displaystyle \frac{1}{2}{m}_{0t}{y}^{2})-5{m}_{0}w-\displaystyle \frac{{xy}}{3}({m}_{0t}+10{m}_{0}^{2})+5{m}_{1}x-\displaystyle \frac{{y}^{3}}{90}({m}_{0{tt}}\\ +30{m}_{0}{m}_{0t}+100{m}_{0}^{3})+\displaystyle \frac{{y}^{2}}{2}({m}_{1t}+10{m}_{0}{m}_{1})+{\left({m}_{2t}+10{m}_{0}{m}_{2}\right)}_{y}+{m}_{4}\end{array}\right.\end{eqnarray}$
with v satisfying
$\begin{eqnarray}\left\{\begin{array}{l}{v}_{y}={v}_{{xxx}}-\displaystyle \frac{a}{2}{v}_{x}^{2}+\displaystyle \frac{{m}_{0}}{a}x+{n}_{y},\\ {v}_{t}=9{v}_{{xxxxx}}-15{{av}}_{x}{v}_{{xxx}}-\displaystyle \frac{15a}{2}{v}_{{xx}}^{2}+\displaystyle \frac{5{a}^{2}}{2}{v}_{x}^{3}+[15{m}_{2}+15{m}_{1}y-(5{m}_{0}^{2}+\displaystyle \frac{1}{2}{m}_{0t}){y}^{2}-5{m}_{0}x]{v}_{x}\\ -5{m}_{0}v+[(10{m}_{0}^{2}+{m}_{0t})y-15{m}_{1}]\displaystyle \frac{x}{a}+\displaystyle \frac{{y}^{3}}{6a}{m}_{0}(10{m}_{0}^{2}+{m}_{0t})-\displaystyle \frac{15{y}^{2}}{2a}{m}_{0}{m}_{1}-\displaystyle \frac{15y}{a}{m}_{0}{m}_{2}\\ +5{m}_{0}n+{n}_{t}+{m}_{3}.\end{array}\right.\end{eqnarray}$
The third solution can be expressed as:
$\begin{eqnarray}\left\{\begin{array}{l}H=-{v}_{{xxx}}+{v}_{y}+\displaystyle \frac{3}{2}{\left(w+v\right)}_{{xx}}(w-v)+\displaystyle \frac{3}{2}({w}_{x}^{2}-{v}_{x}^{2})+\displaystyle \frac{1}{4}{\left[{\left(w-v\right)}^{3}\right]}_{x},p\equiv w-v,\\ J={v}_{t}-9{v}_{{xxxxx}}+\displaystyle \frac{15}{2}{{pv}}_{{xxxx}}+(\displaystyle \frac{15}{2}{w}_{x}-\displaystyle \frac{105}{2}{v}_{x}){v}_{{xxx}}-45{v}_{{xx}}^{2}+\displaystyle \frac{45}{2}{{pv}}_{x}{v}_{{xx}}+15{{pv}}_{{xy}}+45{w}_{{xx}}^{2}\\ +(\displaystyle \frac{225}{2}{{pw}}_{x}-45{{pv}}_{x}+\displaystyle \frac{45}{4}{p}^{3}){w}_{{xx}}+\displaystyle \frac{45}{4}{v}_{x}^{2}{p}_{x}+\displaystyle \frac{135}{4}{p}^{2}{w}_{x}{p}_{x}+15{p}_{x}{v}_{y}+\displaystyle \frac{135}{4}{w}_{x}^{2}{p}_{x}+\displaystyle \frac{45}{16}{p}^{4}{p}_{x},\end{array}\right.\end{eqnarray}$
in which case, the decomposition solution depends on another solution v of the potential BKP equation (5).
Case 3. ${H}_{1}=-\tfrac{1}{2}$. In this particular case, the functions H and J are determined as follows:
$\begin{eqnarray}\left\{\begin{array}{l}H=-\displaystyle \frac{3}{2}{w}_{x}^{2}+6{{Mw}}_{x}+\displaystyle \frac{y}{10}{\left({m}_{1}y+2{m}_{2}\right)}_{t}+{m}_{1}x-6{M}^{2}+{m}_{3},M\equiv {m}_{1}y+{m}_{2},\\ J=-\displaystyle \frac{45}{4}({w}_{{xx}}^{2}+2{w}_{x}^{3})+15{m}_{1}w+\displaystyle \frac{3}{2}y{\left({m}_{1}y+2{m}_{2}\right)}_{t}{w}_{x}+15(6{M}^{2}+{m}_{1}x+{m}_{3}){w}_{x}+\displaystyle \frac{{y}^{2}}{30}\left({m}_{1}y\right.\\ {\left.+3{m}_{2}\right)}_{{tt}}-3({y}^{2}{m}_{1t}+10{m}_{1}x+2{{ym}}_{2t})M+{M}_{t}x+({m}_{3t}-30{m}_{1}{m}_{3})y-60{M}^{3}+{m}_{4},\end{array}\right.\end{eqnarray}$
where ${m}_{i},i=1,2,3,4$ are arbitrary functions of t. By substituting the obtained solutions (A12)–(A17) into the decomposition relations (A10) and (A11), the validity of theorems 15 is established.

The work was sponsored by the National Natural Science Foundations of China (Nos. 12301315, 12235007, 11975131), and the Natural Science Foundation of Zhejiang Province (No. LQ20A010009).

1
Fokas A S, Ablowitz M J 1984 On the inverse scattering transform of multidimensional nonlinear equations related to first order systems in the plane J. Math. Phys. 25 2494 2505

DOI

2
Hirota R 1974 A new form of Bäcklund transformations and its relation to the inverse scattering problem Prog. Theor. Phys. 52 1498 1512

DOI

3
Vakhnenko V O, Parkes E J, Morrison A J, Bäcklund A 2003 Transformation and the inverse scattering transform method for the generalised Vakhnenko equation Chaos, Solitons & Fractals 17 683 692

DOI

4
Kaur L, Wazwaz A M 2019 Lump, breather and solitary wave solutions to new reduced form of the generalized BKP equation Int. J. Numer. Method Heat Fluid Flow 29 569 579

DOI

5
Singh S, Kaur L, Sakkaravarthi K, Sakthivel R, Murugesan K 2020 Dynamics of higher-order bright and dark rogue waves in a new (2+1)-dimensional integrable Boussinesq model Phys. Scr. 95 115213

DOI

6
Wazwaz A M 2022 Derivation of lump solutions to a variety of Boussinesq equations with distinct dimensions Int. J. Numer. Method Heat Fluid Flow 32 3072 3082

DOI

7
Wazwaz A M 2023 Painlevé integrability and lump solutions for two extended (3 + 1)- and (2 + 1)-dimensional Kadomtsev-Petviashvili equations Nonlinear Dyn. 111 3623 3632

DOI

8
Wazwaz A M, Kaur L 2019 New integrable Boussinesq equations of distinct dimensions with diverse variety of soliton solutions Nonlinear Dyn. 97 83 94

DOI

9
Fokas A S, Anderson R L 1979 Group theoretical nature of Bäcklund transformations Lett. Math. Phys. 3 117 126

DOI

10
Conte R, Musette M 1989 Painlevé analysis and Bäcklund transformation in the Kuramoto-Sivashinsky equation J. Phys. A 22 169 177

DOI

11
Fan E G 2000 Two new applications of the homogeneous balance method Phys. Lett. A 265 353 357

DOI

12
Gao X N, Lou S Y, Tang X Y 2013 Bosonization, singularity analysis, nonlocal symmetry reductions and exact solutions of supersymmetric KdV equation J. High Energy Phys. 05 29

DOI

13
Jin Y, Jia M, Lou S Y 2013 Bäcklund transformations and interaction solutions of the Burgers equation Chin. Phys. Lett. 30 020203

DOI

14
Lou S Y 1993 Painlevé test for the integrable dispersive long wave equations in two space dimensions Phys. Lett. A 176 96 100

DOI

15
Ma W X, Abdeljabbar A 2012 A bilinear Bäcklund transformation of a (3+1)-dimensional generalized KP equation Appl. Math. Lett. 25 1500 1504

DOI

16
Wazwaz A M, Kaur L 2019 Optical solitons and Peregrine solitons for nonlinear Schrödinger equation by variational iteration method Optik 179 804 809

DOI

17
Weiss J 1983 The Painlevé property for partial differential equations. II: Bäcklund transformation, Lax pair, and the Schwarzian derivative J. Math. Phys. 24 1405 1413

DOI

18
Weiss J, Tabor M, Carnevale G 1983 The Painlevé property for partial differential equations J. Math. Phys. 24 522 526

DOI

19
Xu G Q, Liu Y P, Cui W Y 2022 Painlevé analysis, integrability property and multiwave interaction solutions for a new (4+1)-dimensional KdV-Calogero-Bogoyavlenkskii-Schiff equation Appl. Math. Lett. 132 108184

DOI

20
Zhang R F, Li M C, Yin H M 2021 Rogue wave solutions and the bright and dark solitons of the (3.1)-dimensional Jimbo-Miwa equation Nonlinear Dyn. 103 1071 1079

DOI

21
Liu X Z 2020 A nonlocal variable coefficient KdV equation: Bäcklund transformation and nonlinear waves Eur. Phys. J. Plus 135 113

DOI

22
Xue M, Liu Q P, Mao H 2022 Bäcklund transformations for the modified short pulse equation and complex modified short pulse equation Eur. Phys. J. Plus 137 500

DOI

23
Lamb G L 1974 Bäcklund transformations for certain nonlinear evolution equations J. Math. Phys. 15 2157 2165

DOI

24
Nucci M C 1988 Pseudopotentials, Lax equations and Bäcklund transformations for nonlinear evolution equations J. Phys. A 21 73 79

DOI

25
Satsuma J, Kaup D J, Bäcklund A 1977 Transformation for a higher order Korteweg-de Vries equation J. Phys. Soc. Jpn. 43 692 697

DOI

26
Wadati M, Sanuki H, Konno K 1975 Relationships among inverse method, Bäcklund transformation and an infinite number of conservation laws Prog. Theor. Phys. 53 419 436

DOI

27
Lou S Y, Chen L L 1999 Formal variable separation approach for nonintegrable models J. Math. Phys. 40 6491 6500

DOI

28
Lou S Y, Tang X Y, Lin J 2001 Exact solutions of the coupled KdV system via a formally variable separation approach Commun. Theor. Phys. 36 145 148

DOI

29
Tang X Y, Lou S Y 2002 A variable separation approach to solve the integrable and nonintegrable models: coherent structures of the (2+1)-dimensional KdV equation Commun. Theor. Phys. 38 1 8

DOI

30
Li Y, Yao R X, Xia Y R, Lou S Y 2021 Plenty of novel interaction structures of soliton molecules and asymmetric solitons to (2.1)-dimensional Sawada-Kotera equation Commun. Nonlinear Sci. Numer. Simul. 100 105843

DOI

31
Yao R X, Li Y, Lou S Y 2021 A new set and new relations of multiple soliton solutions of (2.1)-dimensional Sawada-Kotera equation Commun. Nonlinear Sci. Numer. Simul. 99 105820

DOI

32
Hao X Z, Lou S Y 2022 Decompositions and linear superpositions of B-type Kadomtsev-Petviashvili equations Math. Meth. Appl. Sci. 45 5774 5796

DOI

33
Musette M, Conte R 1998 Bäcklund transformation of partial differential equations from the Painlevé-Gambier classification. I. Kaup-Kupershmidt equation J. Math. Phys. 39 5617 5630

DOI

34
Musette M, Verhoeven C 2000 Nonlinear superposition formula for the Kaup-Kupershmidt partial differential equation Physica D 144 211 220

DOI

35
Konopelchenko B G, Dubrovsky V G 1984 Some new integrable nonlinear evolution equations in 2 + 1 dimensions Phys. Lett. A 102 15 17

DOI

36
Loris I 1999 On reduced CKP equations Inverse Probl. 15 1099 1109

DOI

37
Weiss J 1984 On class of integrable systems and the Painlevé property J. Math. Phys. 25 13 24

DOI

Outlines

/