Welcome to visit Communications in Theoretical Physics,
Mathematical Physics

A combined Liouville integrable hierarchy associated with a fourth-order matrix spectral problem

  • Wen-Xiu Ma , 1, 2, 3, 4
Expand
  • 1Department of Mathematics, Zhejiang Normal University, Jinhua 321004, China
  • 2Department of Mathematics, King Abdulaziz University, Jeddah 21589, Saudi Arabia
  • 3Department of Mathematics and Statistics, University of South Florida Tampa, FL 33620-5700, United States of America
  • 4Material Science Innovation and Modelling, Department of Mathematical Sciences, North-West University, Mafikeng Campus, Mmabatho 2735, South Africa

Received date: 2024-01-01

  Revised date: 2024-02-27

  Accepted date: 2024-04-12

  Online published: 2024-06-03

Copyright

© 2024 Institute of Theoretical Physics CAS, Chinese Physical Society and IOP Publishing

Abstract

This paper aims to propose a fourth-order matrix spectral problem involving four potentials and generate an associated Liouville integrable hierarchy via the zero curvature formulation. A bi-Hamiltonian formulation is furnished by applying the trace identity and a recursion operator is explicitly worked out, which exhibits the Liouville integrability of each model in the resulting hierarchy. Two specific examples, consisting of novel generalized combined nonlinear Schrödinger equations and modified Korteweg–de Vries equations, are given.

Cite this article

Wen-Xiu Ma . A combined Liouville integrable hierarchy associated with a fourth-order matrix spectral problem[J]. Communications in Theoretical Physics, 2024 , 76(7) : 075001 . DOI: 10.1088/1572-9494/ad3dd9

1. Introduction

Lax pairs of matrix spectral problems [1] are the key in generating integrable models. Based on matrix spectral problems, ones can explore remarkable integrable properties, for example, infinitely many symmetries and conserved quantities [2, 3]. There are diverse applications of integrable models in physical and engineering sciences, particularly in nonlinear optics, water waves and quantum mechanics.
Among typical examples of integrable models are the Ablowitz–Kaup–Newell–Segur hierarchy [4] and its various hierarchies of integrable couplings [6]. Matrix Lie algebras play a crucial role in formulating meaningful Lax pairs [5, 7], based on which one can identify and classify integrable models into specific categories. There are many examples with one or two components but few examples with multi-components. In this paper, we would like to propose a new matrix spectral problem based on a specific matrix Lie algebra and compute an associated integrable hierarchy.
Let us recall the zero curvature formulation for constructing integrable hierarchies briefly (see [7, 8] for details). In our discussion, we denote a q-dimensional column potential vector by $u={({u}_{1},\cdots ,{u}_{q})}^{T}$ and the spectral parameter by λ. First, take a given loop matrix algebra $\tilde{g}$ with the loop parameter λ, and formulate a spatial spectral matrix:
\begin{eqnarray}{ \mathcal M }={ \mathcal M }(u,\lambda )={u}_{1}{F}_{1}(\lambda )+\cdots +{u}_{q}{F}_{q}(\lambda )+{F}_{0}(\lambda ),\end{eqnarray}
where the elements F 1, ⋯ ,F q are linear independent in $\tilde{g}$ . We assume that the above element F 0 is pseudo-regular:
\begin{eqnarray}{\rm{Im}}\,{{\rm{ad}}}_{{F}_{0}}\oplus {\rm{Ker}}\,{{\rm{ad}}}_{{F}_{0}}=\tilde{g},[{\rm{Ker}}\,{{\rm{ad}}}_{{F}_{0}},{\rm{Ker}}\,{{\rm{ad}}}_{{F}_{0}}]=0,\end{eqnarray}
where ${{\rm{ad}}}_{{F}_{0}}$ denotes the adjoint action of F 0 on the Lie algebra $\tilde{g}$ . Under this condition, there is a Laurent series solution Y = ∑ n≥0 λ n Y [n] to stationary zero curvature equation
\begin{eqnarray}{Y}_{x}=[{ \mathcal M },Y]\end{eqnarray}
in the underlying loop algebra $\tilde{g}$.
Second, we set an infinite sequence of temporal spectral matrices
\begin{eqnarray}{{ \mathcal N }}^{[m]}={({\lambda }^{m}Y)}_{+}+{{\rm{\Delta }}}_{r}=\displaystyle \sum _{n=0}^{m}{\lambda }^{m-n}{Y}^{[n]}+{{\rm{\Delta }}}_{m},m\geqslant 0,\end{eqnarray}
where ${{\rm{\Delta }}}_{m}\in \tilde{g},m\geqslant 0$ , as the other parts of a sequence of Lax pairs, to generate a hierarchy of integrable models:
\begin{eqnarray}{u}_{{t}_{m}}={X}^{[m]}={X}^{[m]}(u),m\geqslant 0,\end{eqnarray}
via the zero curvature equations:
\begin{eqnarray}{{ \mathcal M }}_{{t}_{m}}-{{ \mathcal N }}_{x}^{[m]}+[{ \mathcal M },{{ \mathcal N }}^{[m]}]=0,m\geqslant 0.\end{eqnarray}
These equations represent the solvability conditions of the spatial and temporal matrix spectral problems:
\begin{eqnarray}{\varphi }_{x}={ \mathcal M }\varphi ,{\varphi }_{{t}_{m}}={{ \mathcal N }}^{[m]}\varphi ,m\geqslant 0.\end{eqnarray}
Finally, we construct Hamiltonain formulations by the so-called trace identity:
\begin{eqnarray}\displaystyle \frac{\delta }{\delta u}\int \mathrm{tr}\left(Y\displaystyle \frac{\partial { \mathcal M }}{\partial \lambda }\right)\,{\rm{d}}{x}={\lambda }^{-\kappa }\displaystyle \frac{\partial }{\partial \lambda }{\lambda }^{\kappa }\mathrm{tr}\left(Y\displaystyle \frac{\partial { \mathcal M }}{\partial u}\right),\end{eqnarray}
where $\tfrac{\delta }{\delta u}$ is the variational derivative with respect to u, and κ is a constant, independent of λ, for the hierarchy (1.5). Together with a recursion operator Φ determined by X [m+1] = ΦX [m], this shows the Liouville integrability (see, e.g. [7, 9]) of the hierarchy (1.5).
Many hierarchies of Liouville integrable models have been generated via the zero curvature formulation (see, e.g. [419]). When q = 2, e.g. in the case of two components, we have the Ablowitz–Kaup–Newell–Segur hierarchy [4], the Heisenberg hierarchy [20], the Kaup–Newell hierarchy [21] and the Wadati–Konno–Ichikawa hierarchy [22]. All of the corresponding spectral matrices are 2 × 2 and involve two potentials.
In this paper, we aim to present a hierarchy of four-component Liouville integrable models through the zero curvature formulation. The starting point is a specific matrix spectral problem. The corresponding bi-Hamiltonian formulation is furnished via an application of the trace identity. Two illustrative examples of generalized combined integrable nonlinear Schrödinger and modified Korteweg–de Vries models are worked out. The last section provides a conclusion and a few concluding remarks.

2. A matrix spectral problem and its four-component integrable hierarchy

Let δ be an arbitrary number, and T be a square matrix of order r such that
\begin{eqnarray}{T}^{2}=-{I}_{r},\end{eqnarray}
where I r denotes the identity matrix of order r. Let us form a set $\tilde{g}$ of block matrices
\begin{eqnarray}\tilde{g}=\left\{\left.A={\left[\begin{array}{cc}{A}_{1} & {A}_{2}\\ {A}_{3} & {A}_{4}\end{array}\right]}_{2r\times 2r}\right|{A}_{4}={{TA}}_{1}{T}^{-1},{A}_{3}=\delta {{TA}}_{2}{T}^{-1}\right\}.\end{eqnarray}
It is easy to see this forms a matrix Lie algebra under the matrix commutator [A, B] = ABBA. We will use this Lie algebra with r = 2 and
\begin{eqnarray}\begin{array}{c}T=\left[\begin{array}{cc}0 & -1\\ 1 & 0\end{array}\right]\,{\rm{o}}{\rm{r}}\left[\begin{array}{cc}0 & 1\\ -1 & 0\end{array}\right]\end{array}\end{eqnarray}
to formulate a specific spectral matrix below.
Let α 1 and α 2 be two arbitrary constants, and $u=u{(x,t)=({u}_{1},{u}_{2},{u}_{3},{u}_{4})}^{T}$ ( $x,t\in {\mathbb{R}}$ ), a four-component potential vector. Assume that
\begin{eqnarray}\alpha ={\alpha }_{1}+{\alpha }_{2}\ne 0,\delta \ne 0.\end{eqnarray}
Motivated by recent studies on matrix spectral problems with four potentials (see, e.g. [2325] and [26, 27]), let us introduce a matrix spectral problem of the form:
\begin{eqnarray}\begin{array}{l}{\varphi }_{x}={ \mathcal M }\varphi ={ \mathcal M }(u,\lambda )\varphi ,{ \mathcal M }=\left[\begin{array}{cccc}0 & {u}_{1} & {u}_{2} & {\alpha }_{1}\lambda \\ {u}_{3} & 0 & {\alpha }_{2}\lambda & {u}_{4}\\ \delta {u}_{4} & -\delta {\alpha }_{2}\lambda & 0 & -{u}_{3}\\ -\delta {\alpha }_{1}\lambda & \delta {u}_{2} & -{u}_{1} & 0\end{array}\right],\end{array}\end{eqnarray}
where λ is again the spectral parameter. This spectral matrix is from the matrix Lie algebra previously defined, with r = 2 and T by (2.3). The spectral problem is not any reduction of the matrix Ablowitz–Kaup–Newell–Segur spectral problem (see, e.g. [28]), but it still generates an integrable hierarchy, each of which is bi-Hamiltonian and possesses combined structures.
As usual, to generate an associated Liouville integrable hierarchy, we first solve the corresponding stationary zero curvature equation (1.3). The solution Y is assumed to be of the form:
\begin{eqnarray}Y=\left[\begin{array}{cccc}a & b & e & f\\ c & -a & f & g\\ \delta g & -\delta f & -a & -c\\ -\delta f & \delta e & -b & a\end{array}\right]=\displaystyle \sum _{n\geqslant 0}{\lambda }^{-n}{Y}^{[n]},\end{eqnarray}
where all basic objects are assumed to be of Laurent series type:
\begin{eqnarray}\left\{\begin{array}{l}a=\displaystyle \sum _{n\geqslant 0}{\lambda }^{-n}{a}^{[n]},b=\displaystyle \sum _{n\geqslant 0}{\lambda }^{-n}{b}^{[n]},c=\displaystyle \sum _{n\geqslant 0}{\lambda }^{-n}{c}^{[n]},\\ e=\displaystyle \sum _{n\geqslant 0}{\lambda }^{-n}{e}^{[n]},f=\displaystyle \sum _{n\geqslant 0}{\lambda }^{-n}{f}^{[n]},g=\displaystyle \sum _{n\geqslant 0}{\lambda }^{-n}{g}^{[n]}.\end{array}\right.\end{eqnarray}
We take a solution of the above form, because this is the form that the commutator between any matrix in $\tilde{g}$ and the spectral matrix ${ \mathcal M }$ takes. Clearly, the corresponding stationary zero curvature equation (1.3) reads
\begin{eqnarray}\left\{\begin{array}{l}{a}_{x}={{cu}}_{1}+\delta {{gu}}_{2}-{{bu}}_{3}-\delta {{eu}}_{4},\\ {b}_{x}=\alpha \delta \lambda e-2{{au}}_{1}-2\delta {{fu}}_{2},\\ {c}_{x}=\alpha \delta \lambda g+2{{au}}_{3}-2\delta {{fu}}_{4},\end{array}\right.\end{eqnarray}
\begin{eqnarray}\left\{\begin{array}{l}{e}_{x}=-\alpha \lambda b-2{{au}}_{2}+2{{fu}}_{1},\\ {g}_{x}=-\alpha \lambda c+2{{au}}_{4}+2{{fu}}_{3},\\ {f}_{x}={{gu}}_{1}-{{cu}}_{2}+{{eu}}_{3}-{{bu}}_{4}.\end{array}\right.\end{eqnarray}
These equations equivalently yield the initial conditions:
\begin{eqnarray}{a}_{x}^{[0]}=0,{b}^{[0]}={c}^{[0]}={e}^{[0]}={g}^{[0]}=0,{f}_{x}^{[0]}=0,\end{eqnarray}
and the recursion relations to determine the Laurent series solution Y:
\begin{eqnarray}\left\{\begin{array}{l}{b}^{[n+1]}=\displaystyle \frac{1}{\alpha }(-{e}_{x}^{[n]}-2{a}^{[n]}{u}_{2}+2{f}^{[n]}{u}_{1}),\\ {c}^{[n+1]}=\displaystyle \frac{1}{\alpha }(-{g}_{x}^{[n]}+2{a}^{[n]}{u}_{4}+2{f}^{[n]}{u}_{3}),\end{array}\right.\end{eqnarray}
\begin{eqnarray}\left\{\begin{array}{l}{e}^{[n+1]}=\displaystyle \frac{1}{\alpha \delta }({b}_{x}^{[n]}+2\delta {f}^{[n]}{u}_{2}+2{a}^{[n]}{u}_{1}),\\ {g}^{[n+1]}=\displaystyle \frac{1}{\alpha \delta }({c}_{x}^{[n]}+2\delta {f}^{[n]}{u}_{4}-2{a}^{[n]}{u}_{3}),\end{array}\right.\end{eqnarray}
\begin{eqnarray}\left\{\begin{array}{l}{a}_{x}^{[n+1]}={c}^{[n+1]}{u}_{1}+\delta {g}^{[n+1]}{u}_{2}-{b}^{[n+1]}{u}_{3}-\delta {e}^{[n+1]}{u}_{4},\\ \ {f}_{x}^{[n+1]}={g}^{[n+1]}{u}_{1}-{c}^{[n+1]}{u}_{2}+{e}^{[n+1]}{u}_{3}-{b}^{[n+1]}{u}_{4},\end{array}\right.\end{eqnarray}
where n ≥ 0. To achieve the uniqueness of Laurent series solutions, we take the initial data,
\begin{eqnarray}{a}^{[0]}=\displaystyle \frac{1}{2}\beta ,{f}^{[0]}=\displaystyle \frac{1}{2}\gamma ,\end{eqnarray}
where β and γ are two arbitrary constants, and assume the constants of integration to be zero,
\begin{eqnarray}{a}^{[n]}{| }_{u=0}=0,{f}^{[n]}{| }_{u=0}=0,n\geqslant 1.\end{eqnarray}
In this way, one can work out that
\begin{eqnarray*}\left\{\begin{array}{l}{b}^{[1]}=\displaystyle \frac{1}{\alpha }(\gamma {u}_{1}-\beta {u}_{2}),{c}^{[1]}=\displaystyle \frac{1}{\alpha }(\gamma {u}_{3}+\beta {u}_{4}),\\ {e}^{[1]}=\displaystyle \frac{1}{\alpha \delta }(\beta {u}_{1}+\delta \gamma {u}_{2}),{g}^{[1]}=\displaystyle \frac{1}{\alpha \delta }(-\beta {u}_{3}+\delta \gamma {u}_{4}),\\ {a}^{[1]}={f}^{[1]}=0;\end{array}\right.\end{eqnarray*}
\begin{eqnarray*}\left\{\begin{array}{l}{b}^{[2]}=-\displaystyle \frac{1}{{\alpha }^{2}\delta }(\beta {u}_{1,x}+\delta \gamma {u}_{2,x}),{c}^{[2]}=\displaystyle \frac{1}{{\alpha }^{2}\delta }(\beta {u}_{3,x}-\delta \gamma {u}_{4,x}),\\ {e}^{[2]}=\displaystyle \frac{1}{{\alpha }^{2}\delta }(\gamma {u}_{1,x}-\beta {u}_{2,x}),{g}^{[2]}=\displaystyle \frac{1}{{\alpha }^{2}\delta }(\gamma {u}_{3,x}+\beta {u}_{4,x}),\end{array}\right.\end{eqnarray*}
\begin{eqnarray*}\left\{\begin{array}{l}{a}^{[2]}=\displaystyle \frac{1}{{\alpha }^{2}\delta }[(\beta {u}_{3}-\delta \gamma {u}_{4}){u}_{1}+\delta (\gamma {u}_{3}+\beta {u}_{4}){u}_{2}],\\ {f}^{[2]}=\displaystyle \frac{1}{{\alpha }^{2}\delta }[(\gamma {u}_{1}-\beta {u}_{2}){u}_{3}+(\beta {u}_{1}+\delta \gamma {u}_{2}){u}_{4}];\end{array}\right.\end{eqnarray*}
\begin{eqnarray*}\left\{\begin{array}{l}{b}^{[3]}=\displaystyle \frac{1}{{\alpha }^{3}\delta }[-\gamma {u}_{1,{xx}}+\beta {u}_{2,{xx}}+2(\gamma {u}_{3}+\beta {u}_{4})({u}_{1}^{2}-\delta {u}_{2}^{2})-4(\beta {u}_{3}-\delta \gamma {u}_{4}){u}_{1}{u}_{2}],\\ {c}^{[3]}=\displaystyle \frac{1}{{\alpha }^{3}\delta }[-\gamma {u}_{3,{xx}}-\beta {u}_{4,{xx}}+2(\gamma {u}_{1}-\beta {u}_{2})({u}_{3}^{2}-\delta {u}_{4}^{2})+4(\beta {u}_{1}+\delta \gamma {u}_{2}){u}_{3}{u}_{4}],\end{array}\right.\end{eqnarray*}
\begin{eqnarray*}\left\{\begin{array}{l}{e}^{[3]}=\displaystyle \frac{1}{{\alpha }^{3}{\delta }^{2}}[-\beta {u}_{1,{xx}}-\delta \gamma {u}_{2,{xx}}+2(\beta {u}_{3}-\delta \gamma {u}_{4})({u}_{1}^{2}-\delta {u}_{2}^{2})+4\delta (\gamma {u}_{3}+\beta {u}_{4}){u}_{1}{u}_{2}],\\ {g}^{[3]}=\displaystyle \frac{1}{{\alpha }^{3}{\delta }^{2}}[\beta {u}_{3,{xx}}-\delta \gamma {u}_{4,{xx}}-2(\beta {u}_{1}+\delta \gamma {u}_{2})({u}_{3}^{2}-\delta {u}_{4}^{2})+4\delta (\gamma {u}_{1}-\beta {u}_{2}){u}_{3}{u}_{4}],\end{array}\right.\end{eqnarray*}
\begin{eqnarray*}\left\{\begin{array}{l}{a}^{[3]}=\displaystyle \frac{1}{{\alpha }^{3}\delta }[(\gamma {u}_{3}+\beta {u}_{4}){u}_{1,x}-(\beta {u}_{3}-\delta \gamma {u}_{4}){u}_{2,x}-(\gamma {u}_{1}-\beta {u}_{2}){u}_{3,x}-(\beta {u}_{1}+\delta \gamma {u}_{2}){u}_{4,x}],\\ {f}^{[3]}=\displaystyle \frac{1}{{\alpha }^{3}{\delta }^{2}}[-(\beta {u}_{3}-\delta \gamma {u}_{4}){u}_{1,x}-\delta (\gamma {u}_{3}+\beta {u}_{4}){u}_{2,x}+(\beta {u}_{1}+\delta \gamma {u}_{2}){u}_{3,x}-\delta (\gamma {u}_{1}-\beta {u}_{2}){u}_{4,x}];\end{array}\right.\end{eqnarray*}
and
\begin{eqnarray*}\left\{\begin{array}{l}{b}^{[4]}=\displaystyle \frac{1}{{\alpha }^{4}{\delta }^{2}}\left\{\beta {u}_{1,{xxx}}+\delta \gamma {u}_{2,{xxx}}-6[(\beta {u}_{3}-\delta \gamma {u}_{4}){u}_{1}+\delta (\gamma {u}_{3}+\beta {u}_{4}){u}_{2}]{u}_{1,x}\right.\\ \qquad \ \ \left.-6\delta [(\gamma {u}_{3}+\beta {u}_{4}){u}_{1}-(\beta {u}_{3}-\delta \gamma {u}_{4}){u}_{2}]{u}_{2,x}\right\},\\ {c}^{[4]}=\displaystyle \frac{1}{{\alpha }^{4}{\delta }^{2}}\left\{-\beta {u}_{3,{xxx}}+\delta \gamma {u}_{4,{xxx}}+6[(\beta {u}_{3}-\delta \gamma {u}_{4}){u}_{1}+\delta (\gamma {u}_{3}+\beta {u}_{4}){u}_{2}]{u}_{3,x}\right.\\ \qquad \ \ \left.-6\delta [(\gamma {u}_{3}+\beta {u}_{4}){u}_{1}-(\beta {u}_{3}-\delta \gamma {u}_{4}){u}_{2}]{u}_{4,x}\right\},\end{array}\right.\end{eqnarray*}
\begin{eqnarray*}\left\{\begin{array}{l}{e}^{[4]}=\displaystyle \frac{1}{{\alpha }^{4}{\delta }^{2}}\left\{-\gamma {u}_{1,{xxx}}+\beta {u}_{2,{xxx}}+6[(\gamma {u}_{3}+\beta {u}_{4}){u}_{1}-(\beta {u}_{3}-\delta \gamma {u}_{4}){u}_{2}]{u}_{1,x}\right.\\ \qquad \ \ \left.-6[(\beta {u}_{3}-\delta \gamma {u}_{4}){u}_{1}+\delta (\gamma {u}_{3}+\beta {u}_{4}){u}_{2}]{u}_{2,x}\right\},\\ {g}^{[4]}=\displaystyle \frac{1}{{\alpha }^{4}{\delta }^{2}}\left\{-\gamma {u}_{3,{xxx}}-\beta {u}_{4,{xxx}}+6[(\gamma {u}_{3}+\beta {u}_{4}){u}_{1}-(\beta {u}_{3}-\delta \gamma {u}_{4}){u}_{2}]{u}_{3,x}\right.\\ \qquad \ \ \left.+6[(\beta {u}_{3}-\delta \gamma {u}_{4}){u}_{1}+\delta (\gamma {u}_{3}+\beta {u}_{4}){u}_{2}]{u}_{4,x}\right\},\end{array}\right.\end{eqnarray*}
\begin{eqnarray*}\begin{array}{l}{a}^{[4]}=\displaystyle \frac{1}{{\alpha }^{4}{\delta }^{2}}[-(\beta {u}_{3}-\delta \gamma {u}_{4}){u}_{1,{xx}}-\delta (\gamma {u}_{3}+\beta {u}_{4}){u}_{2,{xx}}-(\beta {u}_{1}+\delta \gamma {u}_{2}){u}_{3,{xx}}+\delta (\gamma {u}_{1}-\beta {u}_{2}){u}_{4,{xx}}\\ \qquad \ \ +(\beta {u}_{3,x}-\delta \gamma {u}_{4,x}){u}_{1,x}+\delta (\gamma {u}_{3,x}+\beta {u}_{4,x)}){u}_{2,x}+3(\beta {u}_{3}^{2}-2\delta \gamma {u}_{3}{u}_{4}-\delta \beta {u}_{4}^{2}){u}_{1}^{2}\\ \qquad \ \ +6\delta (\gamma {u}_{3}^{2}+2\beta {u}_{3}{u}_{4}-\delta \gamma {u}_{4}^{2}){u}_{1}{u}_{2}-3\delta (\beta {u}_{3}^{2}-2\delta \gamma {u}_{3}{u}_{4}-\delta \beta {u}_{4}^{2}){u}_{2}^{2}],\end{array}\end{eqnarray*}
\begin{eqnarray*}\begin{array}{l}{f}^{[4]}=\displaystyle \frac{1}{{\alpha }^{4}{\delta }^{2}}[-(\gamma {u}_{3}+\beta {u}_{4}){u}_{1,{xx}}+(\beta {u}_{3}-\delta \gamma {u}_{4}){u}_{2,{xx}}-(\gamma {u}_{1}-\beta {u}_{2}){u}_{3,{xx}}-(\beta {u}_{1}+\delta \gamma {u}_{2}){u}_{4,{xx}}\\ \qquad \ \ +(\gamma {u}_{3,x}+\beta {u}_{4,x}){u}_{1,x}-(\beta {u}_{3,x}-\delta \gamma {u}_{4,x)}){u}_{2,x}+3(\gamma {u}_{3}^{2}+2\beta {u}_{3}{u}_{4}-\delta \gamma {u}_{4}^{2}){u}_{1}^{2}\\ \qquad \ \ -6(\beta {u}_{3}^{2}-2\delta \gamma {u}_{3}{u}_{4}-\delta \beta {u}_{4}^{2}){u}_{1}{u}_{2}-3\delta (\gamma {u}_{3}^{2}-2\beta {u}_{3}{u}_{4}-\delta \gamma {u}_{4}^{2}){u}_{2}^{2}].\end{array}\end{eqnarray*}
Based on these results, we can impose Δ r = 0, m ≥ 0, to introduce
\begin{eqnarray}{\varphi }_{{t}_{m}}={{ \mathcal N }}^{[m]}\varphi ={{ \mathcal N }}^{[m]}{(u,\lambda )\varphi ,{{ \mathcal N }}^{[m]}=({\lambda }^{m}Y)}_{+}=\displaystyle \sum _{n=0}^{m}{\lambda }^{n}{Y}^{[m-n]},m\geqslant 0,\end{eqnarray}
which are the temporal matrix spectral problems within the zero curvature formulation. The conditions that guarantee the solvability of the spatial and temporal matrix spectral problems in (2.5) and (2.16) are the zero curvature equations in (1.6). They lead to a hierarchy of integrable models with four potentials:
\begin{eqnarray}\begin{array}{l}{u}_{{t}_{m}}={X}^{[m]}={X}^{[m]}(u)\\ \,={\left(\alpha \delta {e}^{[m+1]},-\alpha {b}^{[m+1]},\alpha \delta {g}^{[m+1]},-\alpha {c}^{[m+1]}\right)}^{{\rm{T}}},m\geqslant 0,\end{array}\end{eqnarray}
or more concretely,
\begin{eqnarray}\begin{array}{l}{u}_{1,{t}_{m}}=\alpha \delta {e}^{[m+1]},{u}_{2,{t}_{m}}=-\alpha {b}^{[m+1]},\\ {u}_{3,{t}_{m}}=\alpha \delta {g}^{[m+1]},{u}_{4,{t}_{m}}=-\alpha {c}^{[m+1]},m\geqslant 0.\end{array}\end{eqnarray}
We can compute some particular examples. The first nonlinear example is the model of combined integrable nonlinear Schrödinger equations:
\begin{eqnarray}\left\{\begin{array}{l}{u}_{1,{t}_{2}}=\displaystyle \frac{1}{{\alpha }^{2}\delta }[-\beta {u}_{1,{xx}}-\delta \gamma {u}_{2,{xx}}+2(\beta {u}_{3}-\delta \gamma {u}_{4})({u}_{1}^{2}-\delta {u}_{2}^{2})+4\delta (\gamma {u}_{3}+\beta {u}_{4}){u}_{1}{u}_{2}],\\ {u}_{2,{t}_{2}}=\displaystyle \frac{1}{{\alpha }^{2}\delta }[\gamma {u}_{1,{xx}}+\beta {u}_{2,{xx}}-2(\gamma {u}_{3}+\beta {u}_{4})({u}_{1}^{2}-\delta {u}_{2}^{2})+4(\beta {u}_{3}-\delta \gamma {u}_{4}){u}_{1}{u}_{2}],\\ {u}_{3,{t}_{2}}=\displaystyle \frac{1}{{\alpha }^{2}\delta }[\beta {u}_{3,{xx}}-\delta \gamma {u}_{4,{xx}}-2(\beta {u}_{1}+\delta \gamma {u}_{2})({u}_{3}^{2}-\delta {u}_{4}^{2})+4\delta (\gamma {u}_{1}-\beta {u}_{2}){u}_{3}{u}_{4}],\\ {u}_{4,{t}_{2}}=\displaystyle \frac{1}{{\alpha }^{2}\delta }[\gamma {u}_{3,{xx}}+\beta {u}_{4,{xx}}-2(\gamma {u}_{1}-\beta {u}_{2})({u}_{3}^{2}-\delta {u}_{4}^{2})+4(\beta {u}_{1}+\delta \gamma {u}_{2}){u}_{3}{u}_{4}],\end{array}\right.\end{eqnarray}
and the second one is the model of combined integrable modified Korteweg–de Vries equations:
\begin{eqnarray}\left\{\begin{array}{l}{u}_{1,{t}_{3}}=\displaystyle \frac{1}{{\alpha }^{3}\delta }\left\{-\gamma {u}_{1,{xxx}}+\beta {u}_{2,{xxx}}+6[(\gamma {u}_{3}+\beta {u}_{4}){u}_{1}-(\beta {u}_{3}-\delta \gamma {u}_{4}){u}_{2}]{u}_{1,x}\right.\\ \qquad \ \ \left.-6[(\beta {u}_{3}-\delta \gamma {u}_{4}){u}_{1}+\delta (\gamma {u}_{3}+\beta {u}_{4}){u}_{2}]{u}_{2,x}\right\},\\ {u}_{2,{t}_{3}}=\displaystyle \frac{1}{{\alpha }^{3}{\delta }^{2}}\left\{-\beta {u}_{1,{xxx}}-\delta \gamma {u}_{2,{xxx}}+6[(\beta {u}_{3}-\delta \gamma {u}_{4}){u}_{1}+\delta (\gamma {u}_{3}+\beta {u}_{4}){u}_{2}]{u}_{1,x}\right.\\ \qquad \ \ \left.+6\delta [(\gamma {u}_{3}+\beta {u}_{4}){u}_{1}-(\beta {u}_{3}-\delta \gamma {u}_{4}){u}_{2}]{u}_{2,x}\right\},\\ {u}_{3,{t}_{3}}=-\displaystyle \frac{1}{{\alpha }^{3}\delta }\left\{-\gamma {u}_{3,{xxx}}-\beta {u}_{4,{xxx}}+6[(\gamma {u}_{3}+\beta {u}_{4}){u}_{1}-(\beta {u}_{3}-\delta \gamma {u}_{4}){u}_{2}]{u}_{3,x}\right.\\ \qquad \ \ \left.+6[(\beta {u}_{3}-\delta \gamma {u}_{4}){u}_{1}+\delta (\gamma {u}_{3}+\beta {u}_{4}){u}_{2}]{u}_{4,x}\right\},\\ {u}_{4,{t}_{3}}=\displaystyle \frac{1}{{\alpha }^{3}{\delta }^{2}}\left\{\beta {u}_{3,{xxx}}-\delta \gamma {u}_{4,{xxx}}-6[(\beta {u}_{3}-\delta \gamma {u}_{4}){u}_{1}+\delta (\gamma {u}_{3}+\beta {u}_{4}){u}_{2}]{u}_{3,x}\right.\\ \qquad \ \ \left.+6\delta [(\gamma {u}_{3}+\beta {u}_{4}){u}_{1}-(\beta {u}_{3}-\delta \gamma {u}_{4}){u}_{2}]{u}_{4,x}\right\}.\end{array}\right.\end{eqnarray}
These provide two typical coupled integrable models, which extend the category of coupled integrable models of nonlinear Schrödinger equations and modified Korteweg–de Vries equations presented recently (see, e.g. [24, 2931]). One interesting character is that every equation contains two derivative terms of the highest order, and so, we call them combined models.
Two special cases of β = 1, γ = 0 and β = 0, γ = 1 in the obtained hierarchy are interesting and produce reduced hierarchies of uncombined integrable models.
If we take α = δ = 1, β = 1 and γ = 0 in the model (2.19), we obtain a coupled integrable nonlinear Schrödinger type model:
\begin{eqnarray}\left\{\begin{array}{l}{u}_{1,{t}_{2}}=-{u}_{1,{xx}}+2{u}_{3}({u}_{1}^{2}-{u}_{2}^{2})+4{u}_{1}{u}_{2}{u}_{4},\\ {u}_{2,{t}_{2}}=-{u}_{2,{xx}}-2{u}_{4}({u}_{1}^{2}-{u}_{2}^{2})+4{u}_{1}{u}_{2}{u}_{3},\\ {u}_{3,{t}_{2}}={u}_{3,{xx}}-2{u}_{1}({u}_{3}^{2}-{u}_{4}^{2})-4{u}_{2}{u}_{3}{u}_{4},\\ {u}_{4,{t}_{2}}={u}_{4,{xx}}+2{u}_{2}({u}_{3}^{2}-{u}_{4}^{2})-4{u}_{1}{u}_{3}{u}_{4}.\end{array}\right.\end{eqnarray}
If we take α = δ = 1, β = 0 and γ = 1 in the model (2.19), we obtain another coupled integrable nonlinear Schrödinger type model:
\begin{eqnarray}\left\{\begin{array}{l}{u}_{1,{t}_{2}}=-{u}_{2,{xx}}-2{u}_{4}({u}_{1}^{2}-{u}_{2}^{2})+4{u}_{1}{u}_{2}{u}_{3},\\ {u}_{2,{t}_{2}}={u}_{1,{xx}}-2{u}_{3}({u}_{1}^{2}-{u}_{2}^{2})-4{u}_{1}{u}_{2}{u}_{4},\\ {u}_{3,{t}_{2}}=-{u}_{4,{xx}}-2{u}_{2}({u}_{3}^{2}-{u}_{4}^{2})+4{u}_{1}{u}_{3}{u}_{4},\\ {u}_{4,{t}_{2}}={u}_{3,{xx}}-2{u}_{1}({u}_{3}^{2}-{u}_{4}^{2})-4{u}_{2}{u}_{3}{u}_{4}.\end{array}\right.\end{eqnarray}
If we take α = δ = 1, β = 1 and γ = 0 in the model (2.20), we obtain a coupled integrable modified Korteweg–de Vries type model:
\begin{eqnarray}\left\{\begin{array}{l}{u}_{1,{t}_{3}}={u}_{2,{xxx}}+6({u}_{1}{u}_{4}-{u}_{2}{u}_{3}){u}_{1,x}-6({u}_{1}{u}_{3}+{u}_{2}{u}_{4}){u}_{2,x},\\ {u}_{2,{t}_{3}}=-{u}_{1,{xxx}}+6({u}_{1}{u}_{3}+{u}_{2}{u}_{4}){u}_{1,x}+6({u}_{1}{u}_{4}-{u}_{2}{u}_{3}){u}_{2,x},\\ {u}_{3,{t}_{3}}=-{u}_{4,{xxx}}+6({u}_{1}{u}_{4}-{u}_{2}{u}_{3}){u}_{3,x}+6({u}_{1}{u}_{3}+{u}_{2}{u}_{4}){u}_{4,x},\\ {u}_{4,{t}_{3}}={u}_{3,{xxx}}-6({u}_{1}{u}_{3}+{u}_{2}{u}_{4}){u}_{3,x}+6({u}_{1}{u}_{4}-{u}_{2}{u}_{3}){u}_{4,x}.\end{array}\right.\end{eqnarray}
If we take α = δ = 1, β = 0 and γ = 1 in the model (2.20), we obtain another coupled integrable modified Korteweg–de Vries type model:
\begin{eqnarray}\left\{\begin{array}{l}{u}_{1,{t}_{3}}=-{u}_{1,{xxx}}+6({u}_{1}{u}_{3}+{u}_{2}{u}_{4}){u}_{1,x}+6({u}_{1}{u}_{4}-{u}_{2}{u}_{3}){u}_{2,x},\\ {u}_{2,{t}_{3}}=-{u}_{2,{xxx}}-6({u}_{1}{u}_{4}-{u}_{2}{u}_{3}){u}_{1,x}+6({u}_{1}{u}_{3}+{u}_{2}{u}_{4}){u}_{2,x},\\ {u}_{3,{t}_{3}}=-{u}_{3,{xxx}}+6({u}_{1}{u}_{3}+{u}_{2}{u}_{4}){u}_{3,x}-6({u}_{1}{u}_{4}-{u}_{2}{u}_{3}){u}_{4,x},\\ {u}_{4,{t}_{3}}=-{u}_{4,{xxx}}+6({u}_{1}{u}_{4}-{u}_{2}{u}_{3}){u}_{3,x}+6({u}_{1}{u}_{3}+{u}_{2}{u}_{4}){u}_{4,x}.\end{array}\right.\end{eqnarray}
These models are different from the vector AKNS integrable models [28]. In each pair, the two models just exchange the first component with the second component and the third component with the fourth component, plus a sign change for one of the two components, in the vector fields on the right hand sides. Moreover, all those four models still commute with each other.

3. Recursion operator and bi-Hamiltonian formulation

To present a bi-Hamiltonian formulation and show the Liouville integrability for the soliton hierarchy (2.18), one can make use of the so-called trace identity (1.8) associated with the spatial matrix spectral problem (2.5). Plugging the spectral matrix ${ \mathcal M }$ by (2.5) and the Laurent series solution Y determined by (2.6) into the trace identity leads to
\begin{eqnarray}-\displaystyle \frac{\delta }{\delta u}\int {\lambda }^{-\left(n+1\right)}\alpha \delta {f}^{\left[n+1\right]}\,{\rm{d}}x={\lambda }^{-\kappa }\displaystyle \frac{\partial }{\partial \lambda }{\lambda }^{\kappa -n}{\left({c}^{[n]},\delta {g}^{[n]},{b}^{[n]},\delta {e}^{[n]}\right)}^{{\rm{T}}},n\geqslant 0,\end{eqnarray}
where we have used
\begin{eqnarray}{\rm{tr}}\left(Y\displaystyle \frac{\partial { \mathcal M }}{\partial \lambda }\right)=-2\alpha \delta f,{\rm{tr}}\left(Y\displaystyle \frac{\partial { \mathcal M }}{\partial u}\right)={\left(2c,2\delta g,2b,2\delta e\right)}^{{\rm{T}}}.\end{eqnarray}
Checking with n = 2 leads to κ = 0, and accordingly, one arrives at
\begin{eqnarray}\displaystyle \frac{\delta }{\delta u}{{ \mathcal H }}^{[n]}={\left({c}^{[n+1]},\delta {g}^{[n+1]},{b}^{[n+1]},\delta {e}^{[n+1]}\right)}^{{\rm{T}}},n\geqslant 0,\end{eqnarray}
where the Hamiltonian functionals are computed as follows:
\begin{eqnarray}{{ \mathcal H }}^{[n]}=\int \displaystyle \frac{\alpha \delta }{n+1}{f}^{[n+2]}\,{\rm{d}}x,n\geqslant 0.\end{eqnarray}
This enables us to get a Hamiltonian formulation for the hierarchy (2.18):
\begin{eqnarray}{u}_{{t}_{m}}={X}^{[m]}={J}_{1}\displaystyle \frac{\delta {{ \mathcal H }}^{[m]}}{\delta u},m\geqslant 0,\end{eqnarray}
where J 1 is the Hamiltonian operator:
\begin{eqnarray}{J}_{1}=\left[\begin{array}{cc}0 & \begin{array}{cc}0 & \alpha \\ -\alpha & 0\end{array}\\ \begin{array}{cc}0 & \alpha \\ -\alpha & 0\end{array} & 0\end{array}\right],\end{eqnarray}
and ${{ \mathcal H }}^{[m]}$ are the functionals defined by (3.4). Now from the Hamiltonian theory, we see that there exists an interrelation $S={J}_{1}\tfrac{\delta { \mathcal H }}{\delta u}$ between a symmetry S and a conserved functional ${ \mathcal H }$ of the same model.
It is a common fact that these vector fields X [n] consitutes an Abelian algebra:
\begin{eqnarray}\begin{array}{l}[[{X}^{[{n}_{1}]},{X}^{[{n}_{2}]}]]={X}^{[{n}_{1}]}{\prime} (u)[{X}^{[{n}_{2}]}]-{X}^{[{n}_{2}]}{\prime} (u)[{X}^{[{n}_{1}]}]\\ \,=0,{n}_{1},{n}_{2}\geqslant 0,\end{array}\end{eqnarray}
which is a consequence of an Abelian algebra of Lax operators:
\begin{eqnarray}\begin{array}{l}[[{{ \mathcal N }}^{[{n}_{1}]},{{ \mathcal N }}^{[{n}_{2}]}]]\\ \,={{ \mathcal N }}^{[{n}_{1}]}{\prime} (u)[{X}^{[{n}_{2}]}]-{{ \mathcal N }}^{[{n}_{2}]}{\prime} (u)[{X}^{[{n}_{1}]}]+[{{ \mathcal N }}^{[{n}_{1}]},{{ \mathcal N }}^{[{n}_{2}]}]=0,{n}_{1},{n}_{2}\geqslant 0.\end{array}\end{eqnarray}
More discussions about the isospectral zero curvature equations is given in [34].
On the other hand. directly from the recursion relation X [m+1] = ΦX [m], we can compute a hereditary recursion operator ${\rm{\Phi }}={({{\rm{\Phi }}}_{{jk}})}_{4\times 4}$ [32] for the hierarchy (2.18) as follows:
\begin{eqnarray}\left\{\begin{array}{l}{{\rm{\Phi }}}_{11}=\displaystyle \frac{1}{\alpha }(-2{u}_{1}{\partial }^{-1}{u}_{4}+2{u}_{2}{\partial }^{-1}{u}_{3}),{{\rm{\Phi }}}_{12}=\displaystyle \frac{1}{\alpha }(-{\partial }_{x}+2{u}_{1}{\partial }^{-1}{u}_{3}+2\delta {u}_{2}{\partial }^{-1}{u}_{4},\\ {{\rm{\Phi }}}_{13}=\displaystyle \frac{1}{\alpha }(2{u}_{1}{\partial }^{-1}{u}_{2}+2{u}_{2}{\partial }^{-1}{u}_{1}),{{\rm{\Phi }}}_{14}=\displaystyle \frac{1}{\alpha }(-2{u}_{1}{\partial }^{-1}{u}_{1}+2\delta {u}_{2}{\partial }^{-1}{u}_{2});\end{array}\right.\end{eqnarray}
\begin{eqnarray}\left\{\begin{array}{l}{{\rm{\Phi }}}_{21}=\displaystyle \frac{1}{\alpha }(\displaystyle \frac{1}{\delta }{\partial }_{x}-\displaystyle \frac{2}{\delta }{u}_{1}{\partial }^{-1}{u}_{3}-2{u}_{2}{\partial }^{-1}{u}_{4}),{{\rm{\Phi }}}_{22}=\displaystyle \frac{1}{\alpha }(-2{u}_{1}{\partial }^{-1}{u}_{4}+2{u}_{2}{\partial }^{-1}{u}_{3}),\\ {{\rm{\Phi }}}_{23}=\displaystyle \frac{1}{\alpha }(-\displaystyle \frac{2}{\delta }{u}_{1}{\partial }^{-1}{u}_{1}+2{u}_{2}{\partial }^{-1}{u}_{2}),{{\rm{\Phi }}}_{24}=\displaystyle \frac{1}{\alpha }(-2{u}_{1}{\partial }^{-1}{u}_{2}-2{u}_{2}{\partial }^{-1}{u}_{1});\end{array}\right.\end{eqnarray}
\begin{eqnarray}\left\{\begin{array}{l}{{\rm{\Phi }}}_{31}=\displaystyle \frac{1}{\alpha }(2{u}_{3}{\partial }^{-1}{u}_{4}+2{u}_{4}{\partial }^{-1}{u}_{3}),{{\rm{\Phi }}}_{32}=\displaystyle \frac{1}{\alpha }(-2{u}_{3}{\partial }^{-1}{u}_{3}+2\delta {u}_{4}{\partial }^{-1}{u}_{4}),\\ {{\rm{\Phi }}}_{33}=\displaystyle \frac{1}{\alpha }(-2{u}_{3}{\partial }^{-1}{u}_{2}+2{u}_{4}{\partial }^{-1}{u}_{1}),{{\rm{\Phi }}}_{34}=\displaystyle \frac{1}{\alpha }(-{\partial }_{x}+2{u}_{3}{\partial }^{-1}{u}_{1}+2\delta {u}_{4}{\partial }^{-1}{u}_{2});\end{array}\right.\end{eqnarray}
\begin{eqnarray}\left\{\begin{array}{l}{{\rm{\Phi }}}_{41}=\displaystyle \frac{1}{\alpha }(-\displaystyle \frac{2}{\delta }{u}_{3}{\partial }^{-1}{u}_{3}+2{u}_{4}{\partial }^{-1}{u}_{4}),{{\rm{\Phi }}}_{42}=\displaystyle \frac{1}{\alpha }(-2{u}_{3}{\partial }^{-1}{u}_{4}-2{u}_{4}{\partial }^{-1}{u}_{3}),\\ {{\rm{\Phi }}}_{43}=\displaystyle \frac{1}{\alpha }(\displaystyle \frac{1}{\delta }{\partial }_{x}-\displaystyle \frac{2}{\delta }{u}_{3}{\partial }^{-1}{u}_{1}-2{u}_{4}{\partial }^{-1}{u}_{2}),{{\rm{\Phi }}}_{44}=\displaystyle \frac{1}{\alpha }(-2{u}_{3}{\partial }^{-1}{u}_{2}+2{u}_{4}{\partial }^{-1}{u}_{1}).\end{array}\right.\end{eqnarray}
With some analysis, we can see that J 1 and J 2 = ΦJ 1 constitute a Hamiltonian pair. This means that an arbitrary linear combination of J 1 and J 2 is again Hamiltonian, and thus the hierarchy (2.18) possesses a bi-Hamiltonian formulation [33]:
\begin{eqnarray}{u}_{{t}_{m}}={X}^{[m]}={J}_{1}\displaystyle \frac{\delta {{ \mathcal H }}^{[m]}}{\delta u}={J}_{2}\displaystyle \frac{\delta {{ \mathcal H }}^{[m-1]}}{\delta u},\ m\geqslant 1.\end{eqnarray}
Moreover, we can observe that the associated Hamiltonian functionals commute with each other under the corresponding two Poisson brackets [7]:
\begin{eqnarray}\{{{ \mathcal H }}^{[{n}_{1}]},{{ \mathcal H }}^{[{n}_{2}]}\}{}_{{J}_{1}}=\int {\left(\displaystyle \frac{\delta {{ \mathcal H }}^{[{n}_{1}]}}{\delta u}\right)}^{{\rm{T}}}{J}_{1}\displaystyle \frac{\delta {{ \mathcal H }}^{[{n}_{2}]}}{\delta u}\,{\rm{d}}{x}=0,{n}_{1},{n}_{2}\geqslant 0,\end{eqnarray}
and
\begin{eqnarray}\{{{ \mathcal H }}^{[{n}_{1}]},{{ \mathcal H }}^{[{n}_{2}]}\}{}_{{J}_{2}}=\int {\left(\displaystyle \frac{\delta {{ \mathcal H }}^{[{n}_{1}]}}{\delta p}\right)}^{{\rm{T}}}{J}_{2}\displaystyle \frac{\delta {{ \mathcal H }}^{[{n}_{2}]}}{\delta u}\,{\rm{d}}{x}=0,{n}_{1},{n}_{2}\geqslant 0.\end{eqnarray}
To summarize, each model in the hierarchy (2.18) is Liouville integrable and possesses infinitely many commuting symmetries ${\{{X}^{[n]}\}}_{n=0}^{\infty }$ and conserved functionals ${\{{{ \mathcal H }}^{[n]}\}}_{n=0}^{\infty }$ . Two specific examples of such nonlinear combined Liouville integrable Hamiltonian models are the two models in (2.19) and (2.20)

4. Concluding remarks

A Liouville integrable hierarchy with four potentials has been generated from a newly introduced specific special matrix spectral problem, along with their bi-Hamiltonian formulations. The success comes from the existence of a particular Laurent series solution of the corresponding stationary zero curvature equation. The resulting integrable models involve two arbitrary constants, β and γ, and one arbitrary nonzero constant, δ, and thus, they contain diverse specific four-component examples of integable models.
It should be particularly interesting to study algebraic or geometric structures of soliton solutions to the obtained integrable models. One can try to use different powerful and effective approaches, such as the Riemann-Hilbert technique [35], the Darboux transformation [3639], the Zakharov–Shabat dressing method [40], the algebrao-geometric method [4145], the decomposition method [4649], and the determinant approach [50]. Besides solitons, lump, kink, breather and rogue wave solutions, including their interaction solutions (see, e.g. [5159]), are also of interest, and one can compute them from solitons by taking wave number reductions. Additionally, conducting nonlocal group reductions or similarity transformations for matrix spectral problems, one can get nonlocal reduced integrable models as well as study their soliton solutions (see, e.g. [6062]).
Integrable models are of great interest. There is a huge diversity of multi-component integrable models, which have close connections to various areas of mathematics, including algebraic geometry, Lie theory, and the theory of special functions. Studies on structures of multi-component integrable models will advance our understanding of complex nonlinear mathematical and physical problems.

The work was supported in part by NSFC under Grants 12271488, 11975145 and 11972291, the Ministry of Science and Technology of China (G2021016032L and G2023016011L), and the Natural Science Foundation for Colleges and Universities in Jiangsu Province (17 KJB 110020).

[1]
Lax P D 1968 Integrals of nonlinear equations of evolution and solitary waves Comm Pure Appl. Math. 21 467

DOI

[2]
Ablowitz M J, Segur H 1981 Solitons and the Inverse Scattering Transform Philadelphia, PA SIAM

[3]
Das A 1989 Integrable Models Singapore World Scientific

[4]
Ablowitz M J, Kaup D J, Newell A C, Segur H 1974 The inverse scattering transform-Fourier analysis for nonlinear problems Stud. Appl. Math. 53 249

DOI

[5]
Drinfel'd V, Sokolov V V 1985 Lie algebras and equations of Korteweg-de Vries type Sov. J. Math. 30 1975

[6]
Ma W X 2013 Integrable couplings and matrix loop algebras Nonlinear and Modern Mathematical Physics, AIP Conf. Proc. vol 1562 Ma W X, Kaup D College Park, MD American Institute of Physics 105 122

[7]
Tu G Z 1989 On Liouville integrability of zero-curvature equations and the Yang hierarchy J. Phys. A: Math. Gen. 22 2375

[8]
Ma W X 1992 A new hierarchy of Liouville integrable generalized Hamiltonian equations and its reduction Chin. Ann. Math. Ser. A 13 115

[9]
Liu C S 2011 How many first integrals imply integrability in infinite-dimensional Hamilton system Rep. Math. Phys. 67 109

DOI

[10]
Antonowicz M, Fordy A P 1987 Coupled KdV equations with multi-Hamiltonian structures Physica D 28 345

DOI

[11]
Xia T C, Yu F J, Zhang Y 2004 The multi-component coupled Burgers hierarchy of soliton equations and its multi-corponent integrable couplings system with two arbitrary functions Physica A 343 238

DOI

[12]
Ma W X 2009 Multi-component bi-Hamiltonian Dirac integrable equations Chaos Solitons Fractals 39 282

DOI

[13]
Ma W X 2013 A soliton hierarchy associated with so(3, $\mathbb{R}$) Appl. Math. Comput. 220 117

DOI

[14]
Manukure S 2018 Finite-dimensional Liouville integrable Hamiltonian systems generated from Lax pairs of a bi-Hamiltonian soliton hierarchy by symmetry constraints Commun. Nonlinear Sci. Numer. Simul. 57 125

DOI

[15]
Liu T S, Xia T C 2022 Multi-component generalized Gerdjikov-Ivanov integrable hierarchy and its Riemann–Hilbert problem Nonlinear Anal. Real World Appl. 68 103667

DOI

[16]
Wang H F, Zhang Y F 2023 Application of Riemann–Hilbert method to an extended coupled nonlinear Schrödinger equations J. Comput. Appl. Math. 420 114812

DOI

[17]
Gerdjikov V S 2022 Nonlinear evolution equations related to Kac–Moody algebras ${A}_{r}^{(1)}$: spectral aspects Turkish J. Math. 46 1828

[18]
Ma W X 2023 AKNS type reduced integrable bi-Hamiltonian hierarchies with four potentials Appl. Math. Lett. 145 108775

DOI

[19]
Ma W X 2023 AKNS type reduced integrable hierarchies with Hamiltonian formulations Rom. J. Phys. 68 116

DOI

[20]
Takhtajan L A 1977 Integration of the continuous Heisenberg spin chain through the inverse scattering method Phys. Lett. A 64 235

DOI

[21]
Kaup D J, Newell A C 1978 An exact solution for a derivative nonlinear Schrödinger equation J. Math. Phys. 19 798

DOI

[22]
Wadati M, Konno K, Ichikawa Y H 1979 New integrable nonlinear evolution equations J. Phys. Soc. Jpn. 47 1698

DOI

[23]
Ma W X 2023 A Liouville integrable hierarchy with four potentials and its bi-Hamiltonian structure Rom. Rep. Phys. 75 115

DOI

[24]
Ma W X 2023 Four-component integrable hierarchies of Hamiltonian equations with (m + n + 2)th-order Lax pairs Theoret. Math. Phys. 216 1180

DOI

[25]
Ma W X 2023 Four-component integrable hierarchies and their Hamiltonian structures Commun. Nonlinear Sci. Numer. Simul. 126 107460

DOI

[26]
Zhang Y F 2011 A few expanding integrable models, Hamiltonian structures and constrained flows Commun. Theor. Phys. 55 273

DOI

[27]
Zhaqilao 2012 A generalized AKNS hierarchy, bi-Hamiltonian structure, and Darboux transformation Commun. Nonlinear Sci. Numer. Simul. 17 2319

DOI

[28]
Ma W X 2023 Reduced AKNS spectral problems and associated complex matrix integrable models Acta Appl. Math. 187 17

DOI

[29]
Ma W X 2023 A six-component integrable hierarchy and its Hamiltonian formulation Mod. Phys. Lett. B 37 2350143

DOI

[30]
Ma W X 2023 Novel Liouville integrable Hamiltonian models with six components and three signs Chin. J. Phys. 86 292

DOI

[31]
Ma W X 2024 A four-component hierarchy of combined integrable equations with bi-Hamiltonian formulations Appl. Math. Lett. 153 109025

DOI

[32]
Fuchssteiner B, Fokas A S 1981/82 Symplectic structures, their Bäcklund transformations and hereditary symmetries Physica D 4 47

[33]
Magri F 1978 A simple model of the integrable Hamiltonian equation J. Math. Phys. 19 1156

DOI

[34]
Ma W X 1993 The algebraic structure of zero curvature representationn and application to coupled KdV systems J. Phys. A: Math. Gen. 26 2573

DOI

[35]
Novikov S P, Manakov S V, Pitaevskii L P, Zakharov V E 1984 Theory of Solitons: The Inverse Scattering Method Berlin Springer

[36]
Matveev V B, Salle M A 1991 Darboux Transformations and Solitons Berlin Springer

[37]
Geng X G, Li m M, Xue B 2020 A vector general nonlinear Schrödinger equation with (m + n) components J. Nonlinear Sci. 30 991

DOI

[38]
Ye R S, Zhang Y 2023 A vectorial Darboux transformation for the Fokas-Lenells system Chaos Solitons Fractals 169 113233

DOI

[39]
Ma W X 2024 Binary Darboux transformation of vector nonlocal reverse-time integrable NLS equations Chaos Solitons Fractals 180 114539

DOI

[40]
Doktorov E V, Leble S B 2007 A Dressing Method in Mathematical Physics Berlin Springer

[41]
Belokolon E D, Bobenko A I, Enol'skii V Z, Its A R, Matveev V B 1994 Algebro-Geometric Approach to Nonlinear Integrable Equations Berlin Springer

[42]
Geng X G 2003 Algebraic-geometrical solutions of some multidimensional nonlinear evolution equations J. Phys. A: Math. Theoret. 36 2289

DOI

[43]
Ma W X 2017 Trigonal curven and algebro-geometric solutions to soliton hierarchies I Proc. Roy. Soc. A 473 20170232

[44]
Gao H, Wang D S 2023 Optical undular bores in Riemann problem of photon fluid with quintic nonlinearity Phys. Rev. E 108 024222

DOI

[45]
Gao H, Wang D S, Zhao P 2024 Algebro-geometric solutions of the modified Jaulent–Miodek hierarchy Int. J. Geom. Methods Mod. Phys. 21

DOI

[46]
Cao C W, Geng X G 1990 Classical integrable systems generated through nonlineariztion of eigenvalue problems Nonlinear Physics, Research Reports in Physics Gu C H Berlin Springer p 68

[47]
Ma W X, Strampp W 1994 An explicit symmetry constraint for the Lax pairs and the adjoint Lax pairs of AKNS systems Phys. Lett. A 185 277

DOI

[48]
Ma W X, Zhou Z X 2001 Binary symmetry constraints of N-wave interaction equations in 1.1 and 2.1 dimensions J. Math. Phys. 42 4345

DOI

[49]
Ma W X, Zhou R G 2002 Adjoint symmetry constraints of multicomponent AKNS equations Chin. Ann. Math. Ser. B 23 373

DOI

[50]
Aktosun T, Busse T, Demontin F, van der Mee C 2010 Symmetries for exact solutions to the nonlinear Schrödinger equation J. Phys. A: Math. Theoret. 43 025202

DOI

[51]
Zhang Y, Dong H H, Zhang X E, Yang H W 2017 Rational solutions and lump solutions to the generalized (3 +1)-dimensional shallow water-like equation Comput. Math. Appl. 73 246

DOI

[52]
Cheng L, Zhang Y, Lin M J 2019 Lax pair and lump solutions for the (2.1)-dimensional DJKM equation associated with bilinear Bäcklund transformations Anal. Math. Phys. 9 1741

DOI

[53]
Sulaiman T A, Yusuf A, Abdeljabbam A, Alquran M 2021 Dynamics of lump collision phenomena to the (3.1)-dimensional nonlinear evolution equation J. Geom. Phys. 169 104347

DOI

[54]
Yusuf A, Sulaiman T A, Abdeljabbar A, Alquran M 2023 Breathem waves, analytical solutions and conservation lawn using Lie-Bäcklund symmetries to the (2.1)-dimensional Chaffee-Infante equation J. Ocean Eng. Sci. 8 145

DOI

[55]
Manukure S, Chowdhury A, Zhou Y 2019 Complexiton solutions to the asymmetric Nizhnik–Novikov–Veselov equation Int. J. Modern Phys. B 33 1950098

DOI

[56]
Zhou Y, Manukure S, McAnally M 2021 Lump and rogue wave solutions to a (2.1)-dimensional Boussinesq type equation J. Geom. Phys. 167 104275

DOI

[57]
Ma W X 2023 Lump waves in a spatial symmetric nonlinear dispersive wave model in (2+1)-dimensions Mathematics 11 4664

DOI

[58]
Manukure S, Zhou Y 2021 A study of lump and line rogue wave solutions to a (2.1)-dimensional nonlinear equation J. Geom. Phys. 167 104274

DOI

[59]
Yang S X, Wang Y F, Zhang X 2023 Conservation laws, Darboux transformation and localized waves for the N-coupled nonautonomous Gross-Pitaevskii equations in the Bose-Einstein condensates Chaos Solitons Fractals 169 113272

DOI

[60]
Ma W X 2022 Reduced nonlocal integrable mKdV equations of type (−λ, λ) and their exact soliton solutions Commun. Theoret. Phys. 74 065002

DOI

[61]
Ma W X 2023 Soliton solutions to constrained nonlocal integrable nonlinear Schrödinger hierarchies of type (−λ, λ) Int. J. Geom. Methods Mod. Phys. 20 2350098

DOI

[62]
Ma W X 2023 Integrable non-local nonlinear Schrödinger hierarchies of type (−λ *, λ) and soliton solutions Rep. Math. Phys. 92 19

DOI

Outlines

/