Welcome to visit Communications in Theoretical Physics,
Gravitation Theory, Astrophysics and Cosmology

Constant-roll inflation with non-minimally derivative coupling

  • Jie Liu , 1 ,
  • Yungui Gong , 2, 3 ,
  • Zhu Yi , 4, 5,
Expand
  • 1School of Physics and Electronic Engineering, Hainan Normal University, Haikou 571158, China
  • 2Department of Physics, School of Physical Science and Technology, Ningbo University, Ningbo, Zhejiang 315211, China
  • 3School of Physics, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
  • 4Faculty of Arts and Sciences, Beijing Normal University, Zhuhai 519087, China
  • 5Advanced Institute of Natural Sciences, Beijing Normal University, Zhuhai 519087, China

Author to whom any correspondence should be addressed.

Received date: 2024-04-09

  Revised date: 2024-05-13

  Accepted date: 2024-05-30

  Online published: 2024-07-17

Copyright

© 2024 Institute of Theoretical Physics CAS, Chinese Physical Society and IOP Publishing

Abstract

We investigate the constant-roll inflation with non-minimally kinetic coupling to the Einstein tensor. With the slow-roll parameter ${\eta }_{\phi }=-\ddot{\phi }/(H\dot{\phi })$ being a constant, we calculate the power spectra for scalar and tensor perturbations, and derive the expressions for the scalar spectral tilt ns, the tensor spectral tilt nT, and the tensor-to-scalar ratio r. We find that the expressions for ns are different with different ordering of taking the derivative of the scalar power spectrum with respect to the scale k and the horizon crossing condition csk = aH in the constant-roll inflation, the consistency relation r = − 8nT does not hold if ∣ηφ∣ is not small, and the duality of the tensor-to-scalar ratio between the slow-roll inflation and ultra-slow-roll inflation does not exist in inflationary models with non-minimally derivative coupling. The result offers a fresh perspective on the understanding of the inflationary models with non-minimally derivative coupling and is helpful for the production of scalar induced gravitational waves in the framework of ultra-slow-roll inflation with non-minimally derivative coupling.

Cite this article

Jie Liu , Yungui Gong , Zhu Yi . Constant-roll inflation with non-minimally derivative coupling[J]. Communications in Theoretical Physics, 2024 , 76(9) : 095401 . DOI: 10.1088/1572-9494/ad51ef

1. Introduction

Inflation, characterized by an exponential expansion of the Universe during its early stages, was proposed to address issues in standard Big Bang cosmology, including the horizon, flatness, and monopole problems [15]. This expansion is typically driven by a scalar field known as the inflaton, where the simplest model is the canonical inflaton field with a flat potential. Utilizing the Higgs field, the only detected scalar field in the Standard Model of particle physics, as the inflaton leads to a conflict with observations of the cosmic microwave background (CMB) radiation due to the large prediction of the tensor-to-scalar ratio r. To overcome it, inflation models with the field non-minimally coupled to gravity have been proposed [68]. One notable model is the new Higgs inflation model with the kinetic term non-minimally derivative coupling to the Einstein tensor, represented by Gμνμφνφ/M2 [7, 9]. Under the general relativity (GR) limit F = H2/M2 = 0, this model becomes the canonical situation conflicting with observations, while under the high friction limit F ≫ 1, the tensor-to-scalar ratio is 1/3 of that in the canonical Higgs inflation, aligning with the observational data [9, 10]. Furthermore, the effective self-coupling λ of the Higgs boson in this model can be lowered to the order of unity without introducing a new degree of freedom [7, 9]. For more works on the inflation model with non-minimally derivative coupling, see [1125].
Apart from the slow-roll inflation scenario, the constant-roll inflation scenario, where one slow-roll parameter remains constant and need not be small, can also yield predictions consistent with observational data [2628]. The characteristics of primordial perturbations in constant-roll inflation can differ significantly from those in slow-roll inflation. For instance, in the canonical constant-roll inflation with a constant ${\eta }_{\phi }=-\ddot{\phi }/(H\dot{\phi })$ and ηφ > 3/2, scalar perturbations outside the horizon continue to evolve [27]. Additionally, the power spectrum of scalar perturbations can exhibit sharp enhancements at small scales in ultra-slow-roll inflation with ηφ ≈ 3, potentially leading to the formation of primordial black holes and inducing secondary gravitational waves [2941]. Despite the differences in the evolution of perturbations between ultra-slow-roll inflation ηφ = 3 − α and slow-roll inflation ηφ = α in the canonical inflation model [42], if we neglect the contribution from εH to the scalar spectral tilt ns, the predictions for the scalar spectral tilt ns and tensor-to-scalar ratio r are the same [43, 44]. This indicates the existence of a duality in constant-roll inflation models with large and small ηφ. For more about the constant-roll inflation, please refer to [4566].
In this paper, we research the constant-roll inflation model with non-minimally derivative coupling. We calculate the power spectrum of scalar and tensor fluctuations using the Bessel function method and derive expressions for the scalar spectral tilt ns, the tensor spectral tilt nT, and the tensor-to-scalar ratio r. Additionally, we explore the dual between the ultra-slow-roll inflation and slow-roll inflation. The organization of this paper is as follows: section 2 presents the background evolution and defines the slow-roll parameters. Section 3 calculates the power spectrum for scalar and tensor perturbations using the Bessel function method within the constant-roll condition. Section 4 explores the dual behavior between ultra-slow-roll inflation and slow-roll inflation. Finally, section 5 draws the conclusions.

2. Inflation with non-minimally derivative coupling

In this section, we derive the background evolution, define the slow-roll parameters, and discuss the general formulae for the the scalar and tensor spectral for the inflationary models with non-minimally derivative coupling.

2.1. The background

The action for the inflationary model with the non-minimal derivative coupling is
$\begin{eqnarray}\begin{array}{rcl}S & = & \displaystyle \frac{1}{2}\displaystyle \int {{\rm{d}}}^{4}x\sqrt{-g}\left[{M}_{{pl}}^{2}R-{g}^{\mu \nu }{\partial }_{\mu }\phi {\partial }_{\nu }\phi \right.\\ & & \left.+\displaystyle \frac{1}{{M}^{2}}{G}^{\mu \nu }{\partial }_{\mu }\phi {\partial }_{\nu }\phi -2V(\phi )\right],\end{array}\end{eqnarray}$
where ${M}_{{pl}}=1/\sqrt{8\pi G}$ is the reduced Planck mass, R is the Ricci scalar, φ is the scalar field, Gμν is the Einstein tensor, V(φ) is the potential, and M2 is the coupling parameter with the dimension of energy. For the homogeneous and isotropic background with the flat Friedmann–Robertson–Walker (FRW) metric, the background equations are [10]
$\begin{eqnarray}{H}^{2}={\left(\displaystyle \frac{\dot{a}}{a}\right)}^{2}=\displaystyle \frac{1}{3{M}_{{pl}}^{2}}\left[\displaystyle \frac{{\dot{\phi }}^{2}}{2}(1+9F)+V(\phi )\right],\end{eqnarray}$
$\begin{eqnarray}\displaystyle \frac{{\rm{d}}}{{\rm{d}}t}\left[{a}^{3}\dot{\phi }\left(1+3F)\right)\right]=-{a}^{3}\displaystyle \frac{{\rm{d}}V}{{\rm{d}}\phi },\end{eqnarray}$
$\begin{eqnarray}\dot{H}-\displaystyle \frac{\dot{\phi }\ddot{\phi }}{{M}^{2}{M}_{{pl}}^{2}}H=\displaystyle \frac{1}{2}\displaystyle \frac{{\dot{\phi }}^{2}}{{M}^{2}{M}_{{pl}}^{2}}\dot{H}-\displaystyle \frac{3}{2}\displaystyle \frac{{\dot{\phi }}^{2}}{{M}^{2}{M}_{{pl}}^{2}}{H}^{2}-\displaystyle \frac{1}{2}\displaystyle \frac{{\dot{\phi }}^{2}}{{M}_{{pl}}^{2}},\end{eqnarray}$
where F = H2/M2 and an over-dot means the derivative with respect to the cosmic time t.
In this paper, we define the slow-roll parameters as
$\begin{eqnarray}{\epsilon }_{H}=-\displaystyle \frac{\dot{H}}{{H}^{2}},\quad {\eta }_{H}=-\displaystyle \frac{\ddot{H}}{2H\dot{H}},\quad {\eta }_{\phi }=-\displaystyle \frac{\ddot{\phi }}{H\dot{\phi }}.\end{eqnarray}$
In the canonical inflation models, the slow-roll parameters satisfy ηH = ηφ, a condition not met in the inflation models with non-minimal derivative coupling. By using the slow-roll parameters (5), the background equation (4) can be rewritten as
$\begin{eqnarray}-{\epsilon }_{H}+2{\eta }_{\phi }Q=-{\epsilon }_{H}Q-3Q-Q/F,\end{eqnarray}$
where the definition of Q is
$\begin{eqnarray}Q=\displaystyle \frac{{\dot{\phi }}^{2}}{2{M}^{2}{M}_{{pl}}^{2}}.\end{eqnarray}$
Solving the background equation (6), we get
$\begin{eqnarray}Q=\displaystyle \frac{F{\epsilon }_{H}}{b+F{\epsilon }_{H}},\end{eqnarray}$
where b = 1 + 3F + 2ηφF.
For later use, we also give the following relation,
$\begin{eqnarray}{\dot{\epsilon }}_{H}=2H({\epsilon }_{H}-{\eta }_{H}){\epsilon }_{H},\end{eqnarray}$
$\begin{eqnarray}\dot{F}=-2{HF}{\epsilon }_{H},\end{eqnarray}$
and
$\begin{eqnarray}\displaystyle \frac{{\rm{d}}}{{\rm{d}}\tau }\left(\displaystyle \frac{1}{{aH}}\right)=-1+{\epsilon }_{H},\end{eqnarray}$
where the conformal time τ is related to the cosmic time t by dt = adτ.

2.2. The perturbations

In the uniform field gauge δφ(x, t) = 0, the action for the primordial scalar perturbation ζ is [10, 11, 67]
$\begin{eqnarray}{S}_{{\zeta }^{2}}=\int {\rm{d}}t{{\rm{d}}}^{3}{{xM}}_{{pl}}^{2}{a}^{3}\left\{\displaystyle \frac{{\rm{\Sigma }}}{{\bar{H}}^{2}}{\dot{\zeta }}^{2}-\displaystyle \frac{{\theta }_{s}}{{a}^{2}}{\left({\partial }_{i}\zeta \right)}^{2}\right\},\end{eqnarray}$
where
$\begin{eqnarray}\begin{array}{l}\bar{H}=\displaystyle \frac{H(1-3Q)}{1-Q},\quad {\rm{\Sigma }}={{QM}}^{2}\left[1+\displaystyle \frac{3F(1+3Q)}{(1-Q)}\right],\end{array}\end{eqnarray}$
and
$\begin{eqnarray}{\theta }_{s}=\displaystyle \frac{1}{a}\displaystyle \frac{{\rm{d}}}{{\rm{d}}t}\left[\displaystyle \frac{a}{\bar{H}}(1-Q)\right]-1-Q.\end{eqnarray}$
By the variation principle, we can derive the equation of motion governing the primordial perturbation ζ; and in the Fourier space, we get the Mukhanov–Sasaki equation
$\begin{eqnarray}{v}_{k}^{{\prime\prime} }+\left({c}_{s}^{2}{k}^{2}-\displaystyle \frac{{z}^{{\prime\prime} }}{z}\right){v}_{k}=0,\end{eqnarray}$
where the prime denotes the derivative with respect to the conformal time τ, the effective sound speed is ${c}_{s}^{2}={\bar{H}}^{2}{\theta }_{s}/{\rm{\Sigma }}$, the canonically normalized field is v = zζ, and
$\begin{eqnarray}z={{aM}}_{{pl}}\displaystyle \frac{\sqrt{2{\rm{\Sigma }}}}{\bar{H}}.\end{eqnarray}$
By using the slow-roll parameters (5) and equation (6), we have
$\begin{eqnarray}\begin{array}{rcl}{c}_{s}^{2} & = & 1-\displaystyle \frac{2{\epsilon }_{H}F(1+7F+6F{\eta }_{\phi })}{{\left(1+3F\right)}^{2}+2F(1+3F){\eta }_{\phi }+12{\epsilon }_{H}{F}^{2}}\\ & & -\displaystyle \frac{8{\epsilon }_{H}^{2}{F}^{3}}{b[b+3F(b+4F{\epsilon }_{H})]},\end{array}\end{eqnarray}$
and
$\begin{eqnarray}\begin{array}{l}\displaystyle \frac{z^{\prime\prime} }{z}={a}^{2}{H}^{2}\left[2+3{\eta }_{H}-4{\epsilon }_{H}-6{\eta }_{\phi }-{\eta }_{\phi }(2{\epsilon }_{H}-2{\eta }_{H}+{\eta }_{\phi })\right.\\ \left.+\displaystyle \frac{{\eta }_{H}-{\eta }_{\phi }}{F}\right]+\displaystyle \frac{{a}^{2}{H}^{2}b{\epsilon }_{H}(3-2{\eta }_{\phi }+3{\epsilon }_{H}-2{\eta }_{H})}{b+3F(b+4F{\epsilon }_{H})}\\ +\displaystyle \frac{8{a}^{2}{H}^{2}F{\epsilon }_{H}m{\left(b+F{\epsilon }_{H}\right)}^{2}}{{b}^{2}\left(b-2F{\epsilon }_{H}\right)\left(b+4F{\epsilon }_{H}\right)}\\ +\displaystyle \frac{48{a}^{2}{H}^{2}{F}^{2}{\epsilon }_{H}^{2}{\eta }_{\phi }^{2}(b+F{\epsilon }_{H})}{b{\left(b-2F{\epsilon }_{H}\right)}^{2}}\\ +\displaystyle \frac{48{a}^{2}{H}^{2}{F}^{3}{\eta }_{\phi }^{2}{\epsilon }_{H}^{3}(b+F{\epsilon }_{H})}{{b}^{2}{\left(b+4F{\epsilon }_{H}\right)}^{2}}\\ -\displaystyle \frac{{a}^{2}{H}^{2}{\epsilon }_{H}^{2}{\left[4F{\eta }_{\phi }(b+F{\epsilon }_{H})+b(b+4F{\epsilon }_{H})\right]}^{2}}{{\left(b+4F{\epsilon }_{H}\right)}^{2}{\left[b+3F(b+4F{\epsilon }_{H})\right]}^{2}}\\ -\displaystyle \frac{4{a}^{2}{H}^{2}F{\epsilon }_{H}(b+F{\epsilon }_{H})}{b+3F(b+4F{\epsilon }_{H})}\left[\displaystyle \frac{2{\eta }_{\phi }{\epsilon }_{H}}{b-2F{\epsilon }_{H}}+\displaystyle \frac{{\eta }_{H}-{\eta }_{\phi }}{F(b+4F{\epsilon }_{H})}\right.\\ +\displaystyle \frac{3({\eta }_{H}-{\epsilon }_{H}-2{\eta }_{\phi })-2{\eta }_{\phi }(2{\epsilon }_{H}-{\eta }_{\phi }-{\eta }_{H})}{b+4F{\epsilon }_{H}}\\ -\displaystyle \frac{4F{\epsilon }_{H}{\eta }_{\phi }^{2}(b-2F{\epsilon }_{H})}{b{\left(b+4F{\epsilon }_{H}\right)}^{2}}\\ \left.+\displaystyle \frac{8F{\eta }_{\phi }^{2}{\epsilon }_{H}(b+F{\epsilon }_{H})}{b(b-2F{\epsilon }_{H})(b+4F{\epsilon }_{H})}\right],\end{array}\end{eqnarray}$
where
$\begin{eqnarray}\begin{array}{l}m=2{\eta }_{\phi }({\eta }_{\phi }+{\epsilon }_{H})+4F{\eta }_{\phi }^{2}({\eta }_{H}+{\eta }_{\phi })+(1+3F)\\ \times \left[3({\eta }_{H}-{\epsilon }_{H}-2{\eta }_{\phi })\right.\\ \left.-2{\eta }_{\phi }(2{\epsilon }_{H}+{\eta }_{\phi }-2{\eta }_{H})+\displaystyle \frac{{\eta }_{H}-{\eta }_{\phi }}{F}\right].\end{array}\end{eqnarray}$
The definition of the power spectrum of the scalar perturbation is
$\begin{eqnarray}{{ \mathcal P }}_{\zeta }=\displaystyle \frac{{k}^{3}}{2{\pi }^{2}}{\left|{\zeta }_{k}\right|}^{2},\end{eqnarray}$
and the scalar spectral tilt ns is defined by [68]
$\begin{eqnarray}{n}_{s}-1={\left.\displaystyle \frac{\mathrm{dln}{{ \mathcal P }}_{\zeta }}{\mathrm{dln}k}\right|}_{{aH}=\mathrm{const}}.\end{eqnarray}$
For the tensor perturbation, the quadratic action is [10, 67]
$\begin{eqnarray}S=\int {{\rm{d}}}^{3}x{\rm{d}}t\displaystyle \frac{{M}_{{pl}}^{2}{a}^{3}}{8}\left[(1-Q){\dot{\gamma }}_{{ij}}^{2}-\displaystyle \frac{1}{{a}^{2}}(1+Q){\left({\partial }_{l}{\gamma }_{{ij}}\right)}^{2}\right].\end{eqnarray}$
The Mukhanov–Sasaki equation for tensor perturbation is
$\begin{eqnarray}{u}_{k}^{s^{\prime\prime} }+\left({c}_{t}^{2}{k}^{2}-\displaystyle \frac{{z}_{t}^{\prime\prime} }{{z}_{t}}\right){u}_{k}^{s}=0.\end{eqnarray}$
Here, us = ztγs, the label s = {+, ×}, denotes the polarization of the tensor perturbations, and
$\begin{eqnarray}{\gamma }_{{ij}}=\displaystyle \sum _{s=+,\times }{{\rm{e}}}_{{ij}}^{s}{\gamma }^{s},\end{eqnarray}$
where ${{\rm{e}}}_{{ij}}^{s}$ is the polarization tensor and satisfies ${\sum }_{i}{{\rm{e}}}_{{ii}}^{s}=0$, ${\sum }_{i,j}{{\rm{e}}}_{{ij}}^{s}{{\rm{e}}}_{{ij}}^{{s}^{{\prime} }}=2{\delta }_{{{ss}}^{{\prime} }}$. The sound speed in equation (23) is
$\begin{eqnarray}{c}_{t}^{2}=\displaystyle \frac{1+Q}{1-Q},\end{eqnarray}$
and the normalized parameter is
$\begin{eqnarray}{z}_{t}=\displaystyle \frac{\sqrt{2}}{2}{{aM}}_{{pl}}\sqrt{1-Q}.\end{eqnarray}$
By using the slow-roll parameters (5), equation (6), and the relation (8), we obtain
$\begin{eqnarray}{c}_{t}^{2}=1+\displaystyle \frac{2F{\epsilon }_{H}}{1+(3+2{\eta }_{\phi })F},\end{eqnarray}$
and
$\begin{eqnarray}\begin{array}{rcl}\displaystyle \frac{{z}_{t}^{{\prime\prime} }}{{z}_{t}} & = & {a}^{2}{H}^{2}\left[2-{\epsilon }_{H}-\displaystyle \frac{F{\epsilon }_{H}}{1+(3+2{\eta }_{\phi })F}\left(\displaystyle \frac{{\eta }_{H}-{\eta }_{\phi }}{F}\right.\right.\\ & & \left.+3({\eta }_{H}-2{\eta }_{\phi }-{\epsilon }_{H})-2{\eta }_{\phi }({\epsilon }_{H}-{\eta }_{H})\right)\\ & & -\left.\displaystyle \frac{{F}^{2}{\epsilon }_{H}^{2}{\eta }_{\phi }^{2}}{{\left[1+(3+2{\eta }_{\phi })F\right]}^{2}}\right].\end{array}\end{eqnarray}$
The definition of the power spectrum for the tensor perturbations is
$\begin{eqnarray}{{ \mathcal P }}_{T}=\displaystyle \frac{{k}^{3}}{2{\pi }^{2}}{\left|{\gamma }_{{ij}}\right|}^{2}=\displaystyle \frac{{k}^{3}}{{\pi }^{2}}\displaystyle \sum _{s=+,x}{\left|\displaystyle \frac{{u}_{k}^{s}}{{z}_{t}}\right|}^{2}.\end{eqnarray}$

3. The constant-roll inflation

In addition to the slow-roll inflation scenario, where all the slow-roll parameters are small, the constant-roll inflation scenario, where one of the slow-roll parameters is held constant and need not be small, can also produce predictions consistent with observational data from CMB. In this section, we study the constant-roll scenario where the slow-roll parameter ηφ is a constant.
Combining equations (7) and (8) and calculating $\dot{Q}$, we get
$\begin{eqnarray}\begin{array}{rcl}\dot{{\eta }_{\phi }} & = & 3H({\eta }_{\phi }-{\eta }_{H}+{\epsilon }_{H})+{\eta }_{\phi }H(3{\epsilon }_{H}-2{\eta }_{H}+2{\eta }_{\phi })\\ & & -\displaystyle \frac{({\eta }_{H}-{\eta }_{\phi })H}{F}.\end{array}\end{eqnarray}$
By using the condition that the slow-roll parameter ηφ is a constant, we obtain
$\begin{eqnarray}{\eta }_{H}={\eta }_{\phi }+\displaystyle \frac{3F{\epsilon }_{H}({\eta }_{\phi }+1)}{1+(3+2{\eta }_{\phi })F},\end{eqnarray}$
and relation (9) becomes,
$\begin{eqnarray}{\dot{\epsilon }}_{H}=2H{\epsilon }_{H}\left({\epsilon }_{H}-{\eta }_{\phi }-\displaystyle \frac{3F{\epsilon }_{H}({\eta }_{\phi }+1)}{1+(3+2{\eta }_{\phi })F}\right).\end{eqnarray}$
Because ηφ is a constant and it may not be small, so ${\dot{\epsilon }}_{H}$ can still be the first order in perturbation.
In the GR limit, F = 0, we recover the standard result ηH = ηφ. In the high friction limit, F ≫ 1,
$\begin{eqnarray}{\eta }_{H}={\eta }_{\phi }+\displaystyle \frac{3{\epsilon }_{H}({\eta }_{\phi }+1)}{3+2{\eta }_{\phi }}.\end{eqnarray}$
Because the slow-roll parameter ηφ may not be small in the constant-roll inflation scenario, the slow-roll parameter ηH may not be small in general either.
For the constant-roll inflation with constant ηφ, from equation (11) and to the first order approximation of εH, we get the relation of the conformal Hubble parameter aH and the conformal time τ [28],
$\begin{eqnarray}\displaystyle \frac{1}{{aH}}\approx \left(-1+\displaystyle \frac{{\epsilon }_{H}}{1+2{\eta }_{\phi }}\right)\tau .\end{eqnarray}$

3.1. Scalar perturbations

To the first order of εH, the relation (18) becomes
$\begin{eqnarray}\begin{array}{l}\displaystyle \frac{z^{\prime\prime} }{z}\approx {a}^{2}{H}^{2}\left[2-3{\eta }_{\phi }+{\eta }_{\phi }^{2}+\displaystyle \frac{2-3F}{1+3F}{\epsilon }_{H}\right.\\ \,\left.-{\eta }_{\phi }{\epsilon }_{H}\left(\displaystyle \frac{3(1-F)}{1+3F}+\displaystyle \frac{4F(1+6F)(3-4{\eta }_{\phi })}{(1+3F)[1+(3+2{\eta }_{\phi })F]}\right)\right].\end{array}\end{eqnarray}$
To solve the Mukhanov–Sasaki equation (15), we write
$\begin{eqnarray}\displaystyle \frac{z^{\prime\prime} }{z}=\displaystyle \frac{{\nu }^{2}-1/4}{{\tau }^{2}}.\end{eqnarray}$
To the first order of εH, combining equations (34) and (35), we get
$\begin{eqnarray}\begin{array}{rcl}\nu & = & \left|\displaystyle \frac{3}{2}-{\eta }_{\phi }\right|+\displaystyle \frac{\bar{\nu }{\epsilon }_{H}}{\left|3/2-{\eta }_{\phi }\right|},\end{array}\end{eqnarray}$
where
$\begin{eqnarray}\begin{array}{rcl}\bar{\nu } & = & \displaystyle \frac{2-3{\eta }_{\phi }+{\eta }_{\phi }^{2}}{1+2{\eta }_{\phi }}+\displaystyle \frac{2-3F}{2(1+3F)}\\ & & -{\eta }_{\phi }\left[\displaystyle \frac{3(1-F)}{2(1+3F)}+\displaystyle \frac{2F(1+6F)(3-4{\eta }_{\phi })}{(1+3F)[1+(3+2{\eta }_{\phi })F]}\right].\end{array}\end{eqnarray}$
Assuming that both ν and cs are constants, then the Mukhanov–Sasaki equation (15) becomes the standard Bessel equation, and the solution can be expressed as the Hankel function of order ν [69],
$\begin{eqnarray}{v}_{k}(\tau )=\sqrt{-\tau }\left[{c}_{1}{H}_{\nu }^{(1)}(-{c}_{s}k\tau )+{c}_{2}{H}_{\nu }^{(2)}(-{c}_{s}k\tau )\right].\end{eqnarray}$
Choosing the Bunch–Davies vacuum, at small scales, −cskτ ≫ 1, we have the initial condition
$\begin{eqnarray}{v}_{k}\to \displaystyle \frac{1}{\sqrt{2{c}_{s}k}}{{\rm{e}}}^{-{\rm{i}}{c}_{s}k\tau }.\end{eqnarray}$
Using the initial condition (40) and the asymptotic behavior of the Hankel function, we obtain the mode function outside the horizon
$\begin{eqnarray}{v}_{k}={{\rm{e}}}^{-{\rm{i}}(\nu -1/2)\tfrac{\pi }{2}}{2}^{\nu -\tfrac{3}{2}}\displaystyle \frac{{\rm{\Gamma }}(\nu )}{{\rm{\Gamma }}(3/2)}\displaystyle \frac{1}{\sqrt{2{c}_{s}k}}{\left(-{c}_{s}k\tau \right)}^{\tfrac{1}{2}-\nu }.\end{eqnarray}$
Combining equation (16) and the solution (41), from the definition of the power spectrum for the scalar perturbation (20), we obtain
$\begin{eqnarray}\begin{array}{l}{{ \mathcal P }}_{\zeta }\approx {2}^{2\nu -3}{\left[\displaystyle \frac{{\rm{\Gamma }}(\nu )}{{\rm{\Gamma }}(3/2)}\right]}^{2}\displaystyle \frac{{H}^{2}}{8{\pi }^{2}{M}_{{pl}}^{2}{c}_{s}{\theta }_{s}}\\ \qquad \times {\left(1-\displaystyle \frac{{\epsilon }_{H}}{1+2{\eta }_{\phi }}\right)}^{2\nu -1}{\left(\displaystyle \frac{{c}_{s}k}{{aH}}\right)}^{3-2\nu }.\end{array}\end{eqnarray}$
Substituting equation (42) into the definition of the scalar spectral tilt ns, equation (21), we obtain
$\begin{eqnarray}{n}_{s}-1=3-2\nu .\end{eqnarray}$
If ∣ηφ∣ ≪ 1, to the first order of perturbation, we get [10, 70]
$\begin{eqnarray}{n}_{s}-1\approx 2{\eta }_{\phi }-\displaystyle \frac{2(2+3F)}{1+3F}{\epsilon }_{H}.\end{eqnarray}$
In the GR limit, we have
$\begin{eqnarray}\nu =\left|\displaystyle \frac{3}{2}-{\eta }_{\phi }\right|+\displaystyle \frac{(6-5{\eta }_{\phi }-4{\eta }_{\phi }^{2}){\epsilon }_{H}}{\left|3-2{\eta }_{\phi }\right|(1+2{\eta }_{\phi })},\end{eqnarray}$
and
$\begin{eqnarray}{n}_{s}-1=3-\left|3-2{\eta }_{\phi }\right|-\displaystyle \frac{2(6-5{\eta }_{\phi }-4{\eta }_{\phi }^{2}){\epsilon }_{H}}{\left|3-2{\eta }_{\phi }\right|(1+2{\eta }_{\phi })}.\end{eqnarray}$
In the high friction limit, we have
$\begin{eqnarray}\nu =\left|\displaystyle \frac{3}{2}-{\eta }_{\phi }\right|+\displaystyle \frac{3(3-4{\eta }_{\phi })(1-3{\eta }_{\phi }-6{\eta }_{\phi }^{2}){\epsilon }_{H}}{\left|3-2{\eta }_{\phi }\right|(1+2{\eta }_{\phi })(3+2{\eta }_{\phi })},\end{eqnarray}$
$\begin{eqnarray}\begin{array}{rcl}{n}_{s}-1 & = & 3-\left|3-2{\eta }_{\phi }\right|\\ & & -\displaystyle \frac{6(3-4{\eta }_{\phi })(1-3{\eta }_{\phi }-6{\eta }_{\phi }^{2}){\epsilon }_{H}}{\left|3-2{\eta }_{\phi }\right|(1+2{\eta }_{\phi })(3+2{\eta }_{\phi })}.\end{array}\end{eqnarray}$
As discussed above, ${\dot{\epsilon }}_{H}$ is still the first order, so we will get a different expression for the scalar spectral tilt if we take the derivative of the amplitude of the scalar power spectrum at the horizon crossing csk = aH with respect to the scale k. To show this point, we give the derivation below.
For the constant-roll inflation with large ηφ, the scalar perturbations may continue evolving outside the horizon [27]. If scalar perturbations are constant after the horizon crossing, aHcsk, to the first order of εH, the amplitude of the power spectrum for scalar perturbations outside the horizon is
$\begin{eqnarray}\begin{array}{rcl}{{ \mathcal A }}_{\zeta } & = & {{ \mathcal P }}_{\zeta }{| }_{{c}_{s}k={aH}}\\ & \approx & {2}^{| 3-2{\eta }_{\phi }| -3}{\left[\displaystyle \frac{{\rm{\Gamma }}(| 3/2-{\eta }_{\phi }| )}{{\rm{\Gamma }}(3/2)}\right]}^{2}\displaystyle \frac{{H}^{2}}{8{\pi }^{2}{M}_{{pl}}^{2}{\epsilon }_{H}}\\ & & \times \displaystyle \frac{1+3F+2F{\eta }_{\phi }}{1+3F}(1+D{\epsilon }_{H}),\end{array}\end{eqnarray}$
where
$\begin{eqnarray}\begin{array}{rcl}D & = & \displaystyle \frac{4\bar{\nu }}{| 3-2{\eta }_{\phi }| }\left(\mathrm{ln}2+\displaystyle \frac{{\rm{\Gamma }}^{\prime} (| 3/2-{\eta }_{\phi }| )}{{\rm{\Gamma }}(| 3/2-{\eta }_{\phi }| )}\right)-\displaystyle \frac{| 3-2{\eta }_{\phi }| -1}{1+2{\eta }_{\phi }}\\ & & \times \displaystyle \frac{18{F}^{2}{\eta }_{\phi }}{(1+3F)[1+(3+2{\eta }_{\phi })F]}.\end{array}\end{eqnarray}$
Besides the definition (20), if scalar perturbations are constants after the horizon crossing, the scalar spectral tilt can also be derived by using the the amplitude of the power spectrum for the scalar perturbation,
$\begin{eqnarray}{n}_{s}-1={\left.\displaystyle \frac{\mathrm{dln}{{ \mathcal A }}_{\zeta }}{\mathrm{dln}k}\right|}_{{c}_{s}k={aH}}.\end{eqnarray}$
To the first order of approximation of εH,
$\begin{eqnarray}\begin{array}{rcl}\displaystyle \frac{\mathrm{dln}k}{H{\rm{d}}t} & = & (1-{\epsilon }_{H})-{H}^{-1}\displaystyle \frac{\dot{{c}_{s}}}{{c}_{s}}\\ & \approx & 1-\left(\displaystyle \frac{2F{\eta }_{\phi }(1+7F+6F{\eta }_{\phi })}{(1+3F)[1+(3+2{\eta }_{\phi })F]}+1\right){\epsilon }_{H}.\end{array}\end{eqnarray}$
Substituting equations (49) and (52) into equation (51), to the first order of εH, we get
$\begin{aligned} n_{s} & -1 \approx 2 \eta_{\phi}-\frac{2(2+3 F) \epsilon_{H}}{1+3 F} \\ & +2 \eta_{\phi} \epsilon_{H}\left[\frac{\left|3-2 \eta_{\phi}\right|-1}{1+2 \eta_{\phi}}\right. \\ & -\frac{4 \bar{\nu}}{\left|3-2 \eta_{\phi}\right|}\left(\ln 2+\frac{\Gamma^{\prime}\left(\left|3 / 2-\eta_{\phi}\right|\right)}{\Gamma\left(\left|3 / 2-\eta_{\phi}\right|\right)}\right) \\ & \left.+\frac{(1+3 F)(1+4 F)+2 F \eta_{\phi}\left(2+F+6 F \eta_{\phi}\right)}{(1+3 F)\left[1+\left(3+2 \eta_{\phi}\right) F\right]}\right] \end{aligned}$
It is obvious that this result is different from equation (43) if ηφ is not small. If ∣ηφ∣ ≪ 1, then the result (53) reduces to the result (44). In the following discussion, we use the familiar result (43).

3.2. Tensor perturbation

For tensor perturbations, to solve equation (23), we use the same method as that solving the scalar perturbation. To the first order of εH, we have
$\begin{eqnarray}\begin{array}{rcl}\displaystyle \frac{{z}_{t}^{{\prime\prime} }}{{z}_{t}} & \approx & {a}^{2}{H}^{2}\left[2-{\epsilon }_{H}+\displaystyle \frac{F{\epsilon }_{H}{\eta }_{\phi }(3-2{\eta }_{\phi })}{1+(3+2{\eta }_{\phi })F}\right]\\ & = & \displaystyle \frac{{\mu }^{2}-1/4}{{\tau }^{2}},\end{array}\end{eqnarray}$
where
$\begin{eqnarray}\mu \approx \displaystyle \frac{3}{2}+\bar{\mu }{\epsilon }_{H},\end{eqnarray}$
and
$\begin{eqnarray}\bar{\mu }=\displaystyle \frac{(3-2{\eta }_{\phi })[1+3F+F{\eta }_{\phi }(3+2{\eta }_{\phi })]}{3(1+2{\eta }_{\phi })[1+(3+2{\eta }_{\phi })F]}.\end{eqnarray}$
Like scalar perturbations, assuming that both ct and μ are constants, to the first order of εH, we obtain the power spectrum for the tensor perturbation,
$\begin{eqnarray}\begin{array}{l}{{ \mathcal P }}_{T}\approx \displaystyle \frac{{2}^{2\mu }}{{M}_{{pl}}^{2}}{\left(\displaystyle \frac{H}{2\pi }\right)}^{2}{\left[\displaystyle \frac{{\rm{\Gamma }}(\mu )}{{\rm{\Gamma }}(3/2)}\right]}^{2}{\left(1-\displaystyle \frac{{\epsilon }_{H}}{1+2{\eta }_{\phi }}\right)}^{2\mu -1}\\ \quad \times \left(\displaystyle \frac{1+3F+2F{\eta }_{\phi }-2F{\epsilon }_{H}}{1+(3+2{\eta }_{\phi })F}\right){\left(\displaystyle \frac{{c}_{t}k}{{aH}}\right)}^{(3-2\mu )}.\end{array}\end{eqnarray}$
Therefore, the tensor spectral tilt is
$\begin{eqnarray}\begin{array}{rcl}{n}_{T} & = & {\left.\displaystyle \frac{\mathrm{dln}{{ \mathcal P }}_{T}}{\mathrm{dln}k}\right|}_{{aH}=\mathrm{const}}\\ & = & -\displaystyle \frac{2(3-2{\eta }_{\phi })[1+3F+F{\eta }_{\phi }(3+2{\eta }_{\phi })]}{3(1+2{\eta }_{\phi })[1+(3+2{\eta }_{\phi })F]}{\epsilon }_{H}.\end{array}\end{eqnarray}$
If ∣ηφ∣ ≪ 1, then we get nT ≈ −2εH.
In the GR limit, we get
$\begin{eqnarray}{n}_{T}=-\displaystyle \frac{2(3-2{\eta }_{\phi })}{3(1+2{\eta }_{\phi })}{\epsilon }_{H}.\end{eqnarray}$
In the high friction limit, we get
$\begin{eqnarray}{n}_{T}=-\displaystyle \frac{2(3-2{\eta }_{\phi })[3+{\eta }_{\phi }(3+2{\eta }_{\phi })]}{3(1+2{\eta }_{\phi })(3+2{\eta }_{\phi })}{\epsilon }_{H}.\end{eqnarray}$
To the first order of εH, the amplitude of the power spectrum for tensor perturbations becomes
$\begin{eqnarray}\begin{array}{l}{{ \mathcal P }}_{T}\left|{}_{{c}_{t}k={aH}}\approx \displaystyle \frac{8}{{M}_{{pl}}^{2}}{\left(\displaystyle \frac{H}{2\pi }\right)}^{2}\left[1-(A-B){\epsilon }_{H}\right]\right.,\end{array}\end{eqnarray}$
where
$\begin{eqnarray}\begin{array}{rcl}A & = & \displaystyle \frac{2[3+C(3-2{\eta }_{\phi })]}{3(1+2{\eta }_{\phi })},\\ B & = & -\displaystyle \frac{2F[C{\eta }_{\phi }(3-2{\eta }_{\phi })+3]}{3[1+(3+2{\eta }_{\phi })F]},\end{array}\end{eqnarray}$
and the constant $C=-2+\gamma +\mathrm{ln}2\approx -0.73$.
Combining the scalar power spectrum (49) and the tensor power spectrum (61), we obtain the tensor-to-scalar ratio
$\begin{eqnarray}\begin{array}{rcl}r & = & \displaystyle \frac{{{ \mathcal P }}_{T}{| }_{{c}_{t}k={aH}}}{{{ \mathcal P }}_{\zeta }{| }_{{c}_{s}k={aH}}}\\ & = & \displaystyle \frac{{2}^{7-| 3-2{\eta }_{\phi }| }{\left[{\rm{\Gamma }}(3/2)\right]}^{2}(1+3F)}{{\left[{\rm{\Gamma }}(| 3/2-{\eta }_{\phi }| )\right]}^{2}[1+(3+2{\eta }_{\phi })F]}{\epsilon }_{H}.\end{array}\end{eqnarray}$
It is apparent that the consistency relation r = − 8nT does not hold for the constant-roll inflation if ∣ηφ∣ is not small. If ∣ηφ∣ ≪ 1, then
$\begin{eqnarray}r\approx 16{\epsilon }_{H},\end{eqnarray}$
the consistency relation still holds.
In the GR limit, we get
$\begin{eqnarray}r=\displaystyle \frac{{2}^{7-| 3-2{\eta }_{\phi }| }{\left[{\rm{\Gamma }}(3/2)\right]}^{2}}{{\left[{\rm{\Gamma }}(| 3/2-{\eta }_{\phi }| )\right]}^{2}}{\epsilon }_{H}.\end{eqnarray}$
In the high friction limit, we get
$\begin{eqnarray}r=\displaystyle \frac{3{\left[{\rm{\Gamma }}(3/2)\right]}^{2}{2}^{7-| 3-2{\eta }_{\phi }| }}{{\left[{\rm{\Gamma }}(| 3/2-{\eta }_{\phi }| )\right]}^{2}(3+2{\eta }_{\phi })}{\epsilon }_{H}.\end{eqnarray}$

4. The duality in constant-roll inflation

In the GR case, from equation (46), we see that if we neglect the contribution from εH, then we have the same scalar spectral tilt ns − 1 ≈ 2α when we replace ηφ = α by ηφ = 3 − α with ∣α∣ < 3/2. From equation (65), we see that the duality between ηφ = α and ηφ = 3 − α also exists for the tensor-to-scalar ratio r. The duality is also referred to as the duality between constant slow-roll and ultra-slow-roll inflation and explained as the two branches of the solution of the inflation field from the same potential [44], although the behaviors of background and perturbations are different for the constant slow-roll and ultra-slow-roll inflationary models if εH is not negligible [42]. In this section, we discuss this duality behavior, aiming to understand the connection between the slow-roll and ultra-slow-roll scenarios within the framework of inflationary models with non-minimally derivative coupling.
Combining equations (37) and (43), and neglecting the contribution from εH, we get
$\begin{eqnarray}{n}_{s}-1=3-| 3-2{\eta }_{\phi }| .\end{eqnarray}$
It is obvious that the duality between ηφ = α and ηφ = 3 − α holds, and
$\begin{eqnarray}{n}_{s}-1\approx 2\alpha ,\end{eqnarray}$
if ∣α∣ < 3/2. Now we discuss whether the duality holds for the tensor-to-scalar ratio r. For the constant slow-roll inflation with ηφ = α, from equation (63), we get
$\begin{eqnarray}r=\displaystyle \frac{{2}^{4+2\alpha }{\left[{\rm{\Gamma }}(3/2)\right]}^{2}(1+3F)}{{\left[{\rm{\Gamma }}(3/2-\alpha )\right]}^{2}[1+(3+2\alpha )F]}{\epsilon }_{H}.\end{eqnarray}$
For the ultra-slow-roll inflation with ηφ = 3 − α, the tensor-to-scalar ratio becomes
$\begin{eqnarray}r=\displaystyle \frac{{2}^{4+2\alpha }{\left[{\rm{\Gamma }}(3/2)\right]}^{2}(1+3F)}{{\left[{\rm{\Gamma }}(3/2-\alpha )\right]}^{2}[1+(9-2\alpha )F]}{\epsilon }_{H}.\end{eqnarray}$
Comparing equations (69) and (70), we find that they are the same only if F = 0, i.e., the duality exists only in the GR case, and there is no such duality in inflationary models with non-minimally derivative coupling.
When the slow-roll parameter εH is extremely small and can be neglected, the scalar spectral tilts obtained from both the slow-roll inflation and the ultra-slow-roll inflation coincide. In the limit where F = 0 (GR limit), the tensor-to-scalar ratio (69) derived from slow-roll inflation matches equation (70) obtained from ultra-slow-roll inflation, thus the duality recovers in the GR limit. However, in a more general case, the tensor-to-scalar ratios r from slow-roll inflation and ultra-slow-roll inflation are different. Consequently, even for the scalar spectral tilt ns and the tensor-to-scalar ratio r, the duality behavior between slow-roll and ultra-slow-roll inflation models with non-minimally derivative coupling is not observed. Therefore, the duality of ns and r is not a universal feature in the constant-roll inflation models.

5. Conclusion

We study the constant-roll inflation model with the kinetic term non-minimally derivative coupling to the Einstein tensor. For the constant-roll condition, we choose the slow-roll parameter ${\eta }_{\phi }=-\ddot{\phi }/(H\dot{\phi })$ to be a constant. With this constant-roll condition, we calculate the power spectra for the scalar and tensor perturbations and subsequently derive the scalar spectral tilt ns, tensor spectral tilt nT, and tensor-to-scalar ratio r. Due to the effect of large ηφ, ${\dot{\epsilon }}_{H}$ remains to be the first order, the expressions for ns are different with different ordering of taking the derivative of the scalar power spectrum with respect to the scale k and the horizon crossing condition csk = aH in the constant-roll inflation, and the consistency relation between the tensor-to-scalar ratio and tensor spectral tilt, r = − 8nT, does not hold. Between the slow-roll inflation with ηφ = α being small and the ultra-slow-roll inflation with ηφ = 3 − α, although the duality for the scalar spectral tilt still holds if we neglect the contribution of εH to ns, but the results for the tensor-to-scalar ratio r are different. Thus, the duality of ns and r is not a universal feature in inflation with non-minimally derivative coupling.
The inflation model with non-minimally derivative coupling is important because the new Higgs inflation model saves the Higgs inflation from unitarity bound violations. This investigation into constant-roll inflation presents a different perspective from the typical slow-roll inflation scenario, thereby enhancing our understanding of inflation models with non-minimally derivative coupling. Scalar-induced gravitational waves usually originate from inflation models featuring a transitional ultra-slow-roll phase. Therefore, this investigation into the ultra-slow-roll condition is also helpful for the issue of scalar-induced gravitational waves in the inflation model with non-minimally derivative coupling.

JL is supported by the Hainan Provincial Natural Science Foundation of China under Grant No. 121MS033. YG is partially supported by the National Key Research and Development Program of China under Grant No. 2020YFC2201504. ZY is supported by the National Natural Science Foundation of China under Grant No. 12205015.

1
Guth A H 1981 The inflationary universe: a possible solution to the horizon and flatness problems Phys. Rev. D 23 347

DOI

2
Linde A D 1982 A new inflationary universe scenario: a possible solution of the horizon, flatness, homogeneity, isotropy and primordial monopole problems Phys. Lett. B 108 389

DOI

3
Albrecht A, Steinhardt P J 1982 Cosmology for grand unified theories with radiatively induced symmetry breaking Phys. Rev. Lett. 48 1220

DOI

4
Starobinsky A A 1980 A new type of isotropic cosmological models without singularity Phys. Lett. B 91 99

DOI

5
Guth A H, Pi S Y 1982 Fluctuations in the new inflationary universe Phys. Rev. Lett. 49 1110

DOI

6
Bezrukov F L, Shaposhnikov M 2008 The standard model higgs boson as the inflaton Phys. Lett. B 659 703

DOI

7
Germani C, Kehagias A 2010 New model of inflation with non-minimal derivative coupling of standard model higgs boson to gravity Phys. Rev. Lett. 105 011302

DOI

8
Yi Z, Gong Y, Sabir M 2018 Inflation with Gauss-Bonnet coupling Phys. Rev. D 98 083521

DOI

9
Germani C, Watanabe Y, Wintergerst N 2014 Self-unitarization of New Higgs Inflation and compatibility with Planck and BICEP2 data J. Cosmol. Astropart. Phys. 2014 JCAP12(2014)009

DOI

10
Yang N, Fei Q, Gao Q, Gong Y 2016 Inflationary models with non-minimally derivative coupling Class. Quant. Grav. 33 205001

DOI

11
Germani C, Kehagias A 2010 Cosmological perturbations in the new higgs inflation J. Cosmol. Astropart. Phys. 2010 JCAP05(2010)019

DOI

12
Minamitsuji M 2014 Solutions in the scalar-tensor theory with nonminimal derivative coupling Phys. Rev. D 89 064017

DOI

13
Sadjadi H M, Goodarzi P 2013 Reheating in nonminimal derivative coupling model J. Cosmol. Astropart. Phys. 2013 JCAP02(2013)038

DOI

14
Zhu Y, Gong Y 2016 PPN parameters in gravitational theory with nonminimally derivative coupling Int. J. Mod. Phys. D 26 1750005

DOI

15
Yang N, Gao Q, Gong Y 2015 Inflation with non-minimally derivative coupling Int. J. Mod. Phys. A 30 1545004

DOI

16
Gong Y, Papantonopoulos E, Yi Z 2018 Constraints on scalar–tensor theory of gravity by the recent observational results on gravitational waves Eur. Phys. J. C 78 738

DOI

17
Fu C, Wu P, Yu H 2019 Primordial black holes from inflation with nonminimal derivative coupling Phys. Rev. D 100 063532

DOI

18
Granda L N, Jimenez D F, Cardona W 2020 Higgs inflation with non-minimal derivative coupling to gravity Astropart. Phys. 121 102459

DOI

19
Oliveros A, Noriega H E 2019 Constant-roll inflation driven by a scalar field with nonminimal derivative coupling Int. J. Mod. Phys. D 28 1950159

DOI

20
Gialamas I D, Karam A, Lykkas A, Pappas T D 2020 Palatini-Higgs inflation with nonminimal derivative coupling Phys. Rev. D 102 063522

DOI

21
Heydari S, Karami K 2022 Primordial black holes in nonminimal derivative coupling inflation with quartic potential and reheating consideration Eur. Phys. J. C 82 83

DOI

22
Goodarzi P 2022 Anisotropic inflation in non-minimal kinetic coupling model J. Cosmol. Astropart. Phys. 2022 JCAP11(2022)052

DOI

23
Oikonomou V K 2024 Non-minimal derivative coupling theories compatible with GW170817 Nucl. Phys. B 1000 116467

DOI

24
Gialamas I D, Katsoulas T, Tamvakis K 2024 Inflation and Reheating in Quadratic Metric-Affine Gravity with Derivative Couplings arXiv:2403.08530

25
Hell A 2024 Unveiling the Inconsistency of the Proca Theory with Non-Minimal Coupling to Gravity arXiv:2403.18673

26
Martin J, Motohashi H, Suyama T 2013 Ultra slow-roll inflation and the non-gaussianity consistency relation Phys. Rev. D 87 023514

DOI

27
Motohashi H, Starobinsky A A, Yokoyama J 2015 Inflation with a constant rate of roll J. Cosmol. Astropart. Phys. 2015 JCAP09(2015)018

DOI

28
Yi Z, Gong Y 2018 On the constant-roll inflation J. Cosmol. Astropart. Phys. 2018 JCAP03(2018)052

DOI

29
Germani C, Prokopec T 2017 On primordial black holes from an inflection point Phys. Dark Univ. 18 6

DOI

30
Di H, Gong Y 2018 Primordial black holes and second order gravitational waves from ultra-slow-roll inflation J. Cosmol. Astropart. Phys. 2018 JCAP07(2018)007

DOI

31
Ezquiaga J M, Garcia-Bellido J, Ruiz Morales E 2018 Primordial black hole production in critical higgs inflation Phys. Lett. B 776 345

DOI

32
Ballesteros G, Taoso M 2018 Primordial black hole dark matter from single field inflation Phys. Rev. D 97 023501

DOI

33
Drees M, Xu Y 2021 Overshooting, critical higgs inflation and second order gravitational wave signatures Eur. Phys. J. C 81 182

DOI

34
Lin J 2020 Primordial black holes and secondary gravitational waves from k and G inflation Phys. Rev. D 101 103515

DOI

35
Lin J 2023 Primordial black holes and scalar induced gravitational waves from Higgs inflation with noncanonical kinetic term Phys. Rev. D 107 043517

DOI

36
Yi Z, Gao Q, Gong Y, Zhu Z-h 2021 Primordial black holes and scalar-induced secondary gravitational waves from inflationary models with a noncanonical kinetic term Phys. Rev. D 103 063534

DOI

37
Yi Z, Gong Y, Wang B, Zhu Z-h 2021 Primordial black holes and secondary gravitational waves from the Higgs field Phys. Rev. D 103 063535

DOI

38
Yi Z, Zhu Z-H 2022 NANOGrav signal and LIGO-Virgo primordial black holes from the Higgs field J. Cosmol. Astropart. Phys. 2022 JCAP05(2022)046

DOI

39
Yi Z 2023 Primordial black holes and scalar-induced gravitational waves from the generalized Brans-Dicke theory J. Cosmol. Astropart. Phys. 2023 JCAP03(2023)048

DOI

40
Zhang F 2022 Primordial black holes and scalar induced gravitational waves from the E model with a Gauss-Bonnet term Phys. Rev. D 105 063539

DOI

41
Wang Z, Gao S, Gong Y, Wang Y 2024 Primordial Black Holes and Scalar-Induced Gravitational Waves from the Polynomial Attractor Model Phys. Rev. D 109 103532

DOI

42
Gao Q, Gong Y, Yi Z 2019 On the constant-roll inflation with large and small ηH Universe 5 215

DOI

43
Tzirakis K, Kinney W H 2007 Inflation over the hill Phys. Rev. D 75 123510

DOI

44
Morse M J P, Kinney W H 2018 Large-η constant-roll inflation is never an attractor Phys. Rev. D 97 123519

DOI

45
Motohashi H, Starobinsky A A 2017 f(R) constant-roll inflation Eur. Phys. J. C 77 538

DOI

46
Oikonomou V K 2017 Reheating in Constant-roll F(R) Gravity Mod. Phys. Lett. A 32 1750172

DOI

47
Odintsov S D, Oikonomou V K 2017 Inflation with a smooth constant-roll to constant-roll era transition Phys. Rev. D 96 024029

DOI

48
Nojiri S, Odintsov S D, Oikonomou V K 2017 Constant-roll inflation in F(R) gravity Class. Quant. Grav. 34 245012

DOI

49
Dimopoulos K 2017 Ultra slow-roll inflation demystified Phys. Lett. B 775 262

DOI

50
Ito A, Soda J 2018 Anisotropic Constant-roll Inflation Eur. Phys. J. C 78 55

DOI

51
Karam A, Marzola L, Pappas T, Racioppi A, Tamvakis K 2018 Constant-Roll (Quasi-)Linear Inflation J. Cosmol. Astropart. Phys. 2018 JCAP05(2018)011

DOI

52
Fei Q, Gong Y, Lin J, Yi Z 2017 The reconstruction of tachyon inflationary potentials J. Cosmol. Astropart. Phys. 2017 JCAP08(2017)018

DOI

53
Cicciarella F, Mabillard J, Pieroni M 2018 New perspectives on constant-roll inflation J. Cosmol. Astropart. Phys. 2018 JCAP01(2018)024

DOI

54
Anguelova L, Suranyi P, Wijewardhana L C R 2018 Systematics of constant roll inflation J. Cosmol. Astropart. Phys. 2018 JCAP02(2018)004

DOI

55
Gao Q, Gong Y, Fei Q 2018 Constant-roll tachyon inflation and observational constraints J. Cosmol. Astropart. Phys. 2018 JCAP05(2018)005

DOI

56
Gao Q 2018 The observational constraint on constant-roll inflation Sci. China Phys. Mech. Astron. 61 070411

DOI

57
Mohammadi A, Saaidi K, Sheikhahmadi H 2019 Constant-roll approach to non-canonical inflation Phys. Rev. D 100 083520

DOI

58
Pattison C, Vennin V, Assadullahi H, Wands D 2018 The attractive behaviour of ultra-slow-roll inflation J. Cosmol. Astropart. Phys. 2018 JCAP08(2018)048

DOI

59
Lin W-C, Morse M J P, Kinney W H 2019 Dynamical analysis of attractor behavior in constant roll inflation J. Cosmol. Astropart. Phys. 2019 JCAP09(2019)063

DOI

60
Fei Q, Yi Z, Yang Y 2020 The reconstruction of non-minimal derivative coupling inflationary potentials Universe 6 213

DOI

61
Antoniadis I, Lykkas A, Tamvakis K 2020 Constant-roll in the Palatini-R2 models J. Cosmol. Astropart. Phys. 2020 JCAP04(2020)033

DOI

62
Guerrero M, Rubiera-Garcia D, Saez-Chillon Gomez D 2020 Constant roll inflation in multifield models Phys. Rev. D 102 123528

DOI

63
Shokri M, Setare M R, Capozziello S, Sadeghi J 2022 Constant-roll f(R) inflation compared with cosmic microwave background anisotropies and swampland criteria Eur. Phys. J. Plus 137 639

64
Fei Q, Ahmed W, Wang Z-L 2022 On the constant-roll tachyon inflation with large and small ηH Symmetry 14 2670

DOI

65
Stojanovic M, Bilic N, Dimitrijevic D D, Djordjevic G S, Milosevic M 2023 Constant-Roll Inflation with Tachyon Field in the Holographic Braneworld arXiv:2401.00352

66
Huang Q, Huang H, Xu B, Zhang K 2024 Constant-Roll Inflation and Primordial Black Holes with Barrow Holographic Dark Energy arXiv:2401.15451

67
Germani C, Watanabe Y 2011 UV-protected (natural) inflation: primordial fluctuations and non-gaussian features J. Cosmol. Astropart. Phys. 2011 JCAP07(2011)031

DOI

68
Kinney W H 2005 Horizon crossing and inflation with large eta Phys. Rev. D 72 023515

DOI

69
Stewart E D, Lyth D H 1993 A More accurate analytic calculation of the spectrum of cosmological perturbations produced during inflation Phys. Lett. B 302 171

DOI

70
Tsujikawa S 2012 Observational tests of inflation with a field derivative coupling to gravity Phys. Rev. D 85 083518

DOI

Outlines

/