Welcome to visit Communications in Theoretical Physics,
Mathematical Physics

Riemann–Hilbert approach and soliton solutions for the Lakshmanan–Porsezian–Daniel equation with nonzero boundary conditions

  • Yilin Wang ,
  • Biao Li
Expand
  • School of Mathematics and Statistics, Ningbo University, Ningbo 315211, China

Received date: 2024-03-21

  Revised date: 2024-06-28

  Accepted date: 2024-08-05

  Online published: 2024-09-13

Copyright

© 2024 Institute of Theoretical Physics CAS, Chinese Physical Society and IOP Publishing

Abstract

We construct the Riemann–Hilbert problem of the Lakshmanan–Porsezian–Daniel equation with nonzero boundary conditions, and use the Laurent expansion and Taylor series expansion to obtain the exact formulas of the soliton solutions in the case of a higher-order pole and multiple higher-order poles. The dynamic behaviors of a simple pole, a second-order pole and a simple pole plus a second-order pole are demonstrated.

Cite this article

Yilin Wang , Biao Li . Riemann–Hilbert approach and soliton solutions for the Lakshmanan–Porsezian–Daniel equation with nonzero boundary conditions[J]. Communications in Theoretical Physics, 2024 , 76(11) : 115003 . DOI: 10.1088/1572-9494/ad6b1c

1. Introduction

Since nonlinear waves can describe many physical phenomena, nonlinear evolution equations and their exact solutions play an extremely important role in physics, biology, atmosphere and oceanography [14]. So far, scholars have developed many effective methods for solving nonlinear partial differential equations, such as inverse scattering transformation method [5], Riemann–Hilbert (RH) method [6, 7], Hirota bilinear method [8, 9], Darboux transformation method [10, 11] and $\bar{\partial }$-dressing method [1214].
The RH method uses the spectral parameters in the Lax pair and adds many analytical tools in the complex analysis to solve the problems that need to be solved. It transforms the problem of solving the initial value of the partial differential equation into the RH problem of finding an analytic function with a specific jump form on a given curve. Next, the reconstruction formula is established to connect the solution of the equation with the solution of the RH problem, so as to solve the initial value problem of the differential equation by solving the RH problem. In addition, the RH method can also solve the high-order spectral problem, so it is very meaningful to study the RH method to solve the initial value problem of the integrable system. In general, when using the RH method to construct the RH problem, the initial value is first required to approach zero at infinity, but then Biondini and Kovai improved and proposed the RH problem under nonzero boundary conditions [15]. Scholars have also extended this method to other integrable equations, such as the nonlocal Hirota equation [16], derivative nonlinear Schrödinger equation [17], the generalized mixed nonlinear Schrödinger equation [18], the Gerdjikov–Ivanov equation [19] and the modified Landau–Lifshitz equation [20].
In this paper, we plan to consider the Lakshmanan–Porsezian–Daniel (LPD) equation with nonzero boundary conditions (also called fourth-order nonlinear Schrödinger equation) [21]
$\begin{eqnarray}\begin{array}{c}{\rm{i}}{q}_{t}+{q}_{{xx}}+2{\left|q\right|}^{2}q+\beta {q}_{{xxxx}}+6{q}^{* }{q}_{x}^{2}\\ \qquad +\,4{\left|{q}_{x}\right|}^{2}q+8{\left|q\right|}^{2}{q}_{{xx}}+2{q}^{2}{q}_{{xx}}^{* }+6{\left|q\right|}^{4}q=0,\\ \qquad \qquad \qquad q\left(x,t\right)\to {q}_{\pm }{{\rm{e}}}^{{\rm{i}}\left(6\beta {q}_{0}^{4}+2{q}_{0}^{2}\right)t},x\to \pm \infty ,\end{array}\end{eqnarray}$
where q± is unrelated to t and $\left|{q}_{\pm }\right|={q}_{0}\ne 0$. The Lax pair of equation (1) can be given by the AKNS method as follows
$\begin{eqnarray}{\phi }_{x}=X\phi ,\quad \ {\phi }_{t}=T\phi ,\end{eqnarray}$
where
$\begin{eqnarray}\begin{array}{ccl}X & = & -{\rm{i}}k{\sigma }_{3}+Q,\quad Q=\left(\begin{array}{cc}0 & q\\ -{q}^{* } & 0\end{array}\right),\\ {\sigma }_{3} & = & \left(\begin{array}{cc}1 & 0\\ 0 & -1\end{array}\right),\\ T & = & \left[3{\rm{i}}\beta {Q}^{4}-{\rm{i}}{Q}^{2}+{\rm{i}}\beta \left({Q}_{x}^{2}-{Q}_{{xx}}Q-{{QQ}}_{{xx}}\right)\right.\\ & & \left.-2k\beta \left({Q}_{x}Q-{{QQ}}_{x}\right)-2{\rm{i}}{k}^{2}\left(1-2\beta {Q}^{2}\right)+8{\rm{i}}\beta {k}^{4}\right]{\sigma }_{3}\\ & & -\,4{\rm{i}}\beta {k}^{2}{\sigma }_{3}{Q}_{x}-8\beta {k}^{3}Q+6{\rm{i}}\beta {Q}^{2}{Q}_{x}{\sigma }_{3}+{\rm{i}}{\sigma }_{3}{Q}_{x}\\ & & +\,{\rm{i}}\beta {\sigma }_{3}{Q}_{{xxx}}+2k\left(Q+\beta {Q}_{{xx}}-2\beta {Q}^{3}\right),\end{array}\end{eqnarray}$
and q = q(x, t) represents the complex envelope, φ is the eigenfunction, k is the spectral parameter, β is a real parameter, which stands for the strength of the higher-order linear and nonlinear effects, x and t represent the coordinates of time evolution and spatial distribution respectively, the subscript represents the partial derivative, * represents the complex conjugate.
Equation (1) has a higher-order dispersion term, which can be used to describe the propagation of ultrashort pulses in light, and [22] found that equation (1) describes the amplitude modulation of the fundamental harmonic of the Stokes wave at different depths of the fluid level. The higher-order dispersion term of the equation describes the third-order dispersion effect and nonlinear dispersion effect. Since equation (1) has important applications in physical science, it has attracted extensive attention in recent years, and many scholars have studied this model. For example, [23] obtained rich bright, dark, singular, kink and periodic optical soliton solutions of equation (1) for the nonlinear Kerr law. In [24], the improved finite band integral method is used to find the periodic solution of equation (1). Based on the analysis of the characteristic spectral lines, [25] deduced the breather molecules composed of two, three and four different breathing atoms, and adjusted the value of the phase parameters to generate the synthesis mode of the molecules. In [20], the soliton solutions of the equation (1) were obtained by the modified generalized Darboux transformation. In [26], the formula of the general N soliton solutions of the integrable LPD equation was obtained by RH method and the dynamic behaviors of the soliton solutions were analyzed graphically. In [27], the soliton solutions and rogue wave solutions of the equation (1) were obtained by RH method. In general, the Plemelj formula and the residue condition can be used to solve the RH problem. However, for the case of multi-higher-order poles, the application of the residue condition to study the residue of each order is very complicated, and for the case of multi-high-order poles, the residue condition is not suitable for solving this problem. In this paper, our purpose is to obtain the soliton solutions with a higher-order pole and multi higher-order poles of equation (1) under nonzero boundary conditions, and to analyze the interactions between the soliton solutions.
The rest of the paper is arranged as follows. In section 2, based on nonzero boundary conditions, we perform spectral analysis on equation (1) and construct a suitable RH problem for equation (1). In section 3, we assume that the analytical scattering coefficient has a high-order zero point or multi-higher-order zero points, which leads to the high-order poles of the reflection coefficient in RH problem. By using the Laurent expansion and Taylor series expansion, the soliton solutions with a higher-order pole or multi-higher-order poles of the equation (1) can be derived. At the same time, the interactions of soliton solutions can be shown. In section 4, we give the summary.

2. Riemann–Hilbert problem: nonzero boundary condition

2.1. Riemann surface and single-branched coordinate

By the transformation
$\begin{eqnarray}q\to q{{\rm{e}}}^{{\rm{i}}\left(6\beta {q}_{0}^{4}+2{q}_{0}^{2}\right)t},\quad \ \phi \to {{\rm{e}}}^{{\rm{i}}\left(3\beta {q}_{0}^{4}+{q}_{0}^{2}\right)t{\sigma }_{3}}\phi ,\end{eqnarray}$
then equation (1) and boundary conditions are reduced to
$\begin{eqnarray}\begin{array}{l}{\rm{i}}{q}_{t}+{q}_{{xx}}+2{\left|q\right|}^{2}q+\beta {q}_{{xxxx}}+6{q}^{* }{q}_{x}^{2}\\ \qquad +4{\left|{q}_{x}\right|}^{2}q+8{\left|q\right|}^{2}{q}_{{xx}}+2{q}^{2}{q}_{{xx}}^{* }+6{\left|q\right|}^{4}q-6{q}_{0}^{4}q-2{q}_{0}^{2}q=0,\end{array}\end{eqnarray}$
$\begin{eqnarray}q\left(x,t\right)\to {q}_{\pm },x\to \pm \infty .\end{eqnarray}$
And equation (1) is the compatibility condition of the Lax pair
$\begin{eqnarray}{\phi }_{x}=X\phi ,\quad \ {\phi }_{t}=T\phi ,\end{eqnarray}$
where
$\begin{eqnarray}\begin{array}{ccl}X & = & -{\rm{i}}k{\sigma }_{3}+Q,\\ T & = & \left[3{\rm{i}}\beta {Q}^{4}-{\rm{i}}{Q}^{2}+{\rm{i}}\beta \left({Q}_{x}^{2}-{Q}_{{xx}}Q-{{QQ}}_{{xx}}\right)\right.\\ & & -\,2k\beta \left({Q}_{x}Q-{{QQ}}_{x}\right)-2{\rm{i}}{k}^{2}\left(1-2\beta {Q}^{2}\right)\\ & & +\,\left.8{\rm{i}}\beta {k}^{4}-3{\rm{i}}\beta {q}_{0}^{4}-{\rm{i}}{q}_{0}^{2}\right]{\sigma }_{3}\\ & & -\,4{\rm{i}}\beta {k}^{2}{\sigma }_{3}{Q}_{x}-8\beta {k}^{3}Q+6{\rm{i}}\beta {Q}^{2}{Q}_{x}{\sigma }_{3}+{\rm{i}}{\sigma }_{3}{Q}_{x}\\ & & +\,{\rm{i}}\beta {\sigma }_{3}{Q}_{{xxx}}+2k\left(Q+\beta {Q}_{{xx}}-2\beta {Q}^{3}\right).\end{array}\end{eqnarray}$
Let x → ±∞ , and using boundary conditions equation (7), we can obtain that the asymptotic spectral problem is
$\begin{eqnarray}{\psi }_{x}={X}_{\pm }\psi ,\quad \ {\psi }_{t}={T}_{\pm }\psi ,\end{eqnarray}$
where
$\begin{eqnarray}\begin{array}{cl}{X}_{\pm }\,=\, & -{\rm{i}}k{\sigma }_{3}+{Q}_{\pm },\quad \\ & {T}_{\pm }=\,\left(2k+4\beta {{kq}}_{0}^{2}-8\beta {k}^{3}\right){X}_{\pm },\quad {Q}_{\pm }=\left(\begin{array}{cc}0 & {q}_{\pm }\\ -{q}_{\pm }^{* } & 0\end{array}\right).\end{array}\end{eqnarray}$
It can be seen from the calculation that the eigenvalue of matrix X± are ±iλ, where
$\begin{eqnarray}{\lambda }^{2}={k}^{2}+{q}_{0}^{2}=\left(k+{\rm{i}}{q}_{0}\right)\left(k-{\rm{i}}{q}_{0}\right).\end{eqnarray}$
The Riemann surface determined by the equation is composed of two complex planes S1 and S2 separated by the branch secant $\left[-{{\rm{i}}{q}}_{0},{{\rm{i}}{q}}_{0}\right]$, and the branch points are k = ±iq0. Therefore, $\lambda \left(k\right)$ is a single-valued function of k and the polar coordinates can be introduced to have
$\begin{eqnarray}k+{\rm{i}}{q}_{0}={r}_{1}{{\rm{e}}}^{{\rm{i}}{\theta }_{1}},\quad k-{\rm{i}}{q}_{0}={r}_{2}{{\rm{e}}}^{{\rm{i}}{\theta }_{2}},\end{eqnarray}$
where $-\tfrac{\pi }{2}\ \lt \ {\theta }_{1},{\theta }_{2}\lt \tfrac{\pi }{2}.$ Then we can get two single analytic functions on Riemann surface
$\begin{eqnarray}\lambda \left(k\right)=\left\{\begin{array}{c}{\left({r}_{1}{r}_{2}\right)}^{\tfrac{1}{2}}{{\rm{e}}}^{\tfrac{{\rm{i}}}{2}\left({\theta }_{1}+{\theta }_{2}\right)},\mathrm{on}\ {S}_{1},\\ -{\left({r}_{1}{r}_{2}\right)}^{\tfrac{1}{2}}{{\rm{e}}}^{\tfrac{{\rm{i}}}{2}\left({\theta }_{1}+{\theta }_{2}\right)},\mathrm{on}\ {S}_{2}.\end{array}\right.\end{eqnarray}$
In order to avoid the multiplicity of function and the complexity of Riemann surface, we introduce the affine parameter z and discuss this problem on the complex plane of z. We define single-valued variable
$\begin{eqnarray}z=k+\lambda .\end{eqnarray}$
Then based on equation (13), we obtain two single-valued functions
$\begin{eqnarray}k\left(z\right)=\displaystyle \frac{1}{2}\left(z-\displaystyle \frac{{q}_{0}^{2}}{z}\right),\quad \lambda \left(z\right)=\displaystyle \frac{1}{2}\left(z+\displaystyle \frac{{q}_{0}^{2}}{z}\right).\end{eqnarray}$
By directly calculating, we can get
$\begin{eqnarray}\mathrm{Im}\left(\lambda \left(z\right)\right)=\mathrm{Im}\displaystyle \frac{{z}^{2}+{q}_{0}^{2}}{2z}=\displaystyle \frac{\left({\left|z\right|}^{2}-{q}_{0}^{2}\right)\mathrm{Im}z}{2{\left|z\right|}^{2}}.\end{eqnarray}$
On the standard z-plane, we define
$\begin{eqnarray}\begin{array}{rcl}{D}^{+} & = & \left\{z\in C:\left({\left|z\right|}^{2}-{q}_{0}^{2}\right)\mathrm{Im}z\gt 0\right\},\\ {D}^{-} & = & \left\{z\in C:\left({\left|z\right|}^{2}-{q}_{0}^{2}\right)\mathrm{Im}z\lt 0\right\},\\ \sum & = & \left\{\left|z\right|={q}_{0},z\in C\right\}.\end{array}\end{eqnarray}$
It is easy to get
$\begin{eqnarray}\left({\left|z\right|}^{2}-{q}_{0}^{2}\right)\mathrm{Im}z\left\{\begin{array}{c}=0,\ \mathrm{as}\,{\rm{z}}\in \sum ,\\ \gt 0,\ \mathrm{as}\,{\rm{z}}\in {D}^{+},\\ \lt 0,\ \mathrm{as}\ {\rm{z}}\in {D}^{-}.\end{array}\right.\end{eqnarray}$

2.2. The analytic properties of jost functions and scattering matrix

Since the eigenvalues of matrix X± are ±iλ, T± are $\pm \left(2k+4\beta {{kq}}_{0}^{2}-8\beta {k}^{3}\right){\rm{i}}\lambda $, and X± and T± can be diagonalized by the same eigenvector matrix satisfying
$\begin{eqnarray}\begin{array}{ccl}{X}_{\pm } & = & {Y}_{\pm }(-{\rm{i}}\lambda {\sigma }_{3}){Y}_{\pm }^{-1},\quad \ \\ & & {{T}}_{\pm }={Y}_{\pm }\,\left(-\left(2k+4\beta {{kq}}_{0}^{2}-8\beta {k}^{3}\right){\rm{i}}\lambda {\sigma }_{3}\right){Y}_{\pm }^{-1},\end{array}\end{eqnarray}$
where
$\begin{eqnarray}{Y}_{\pm }=\left(\begin{array}{cc}1 & -\displaystyle \frac{{{\rm{i}}{q}}_{\pm }}{z}\\ -\displaystyle \frac{{{\rm{i}}{q}}_{\pm }^{* }}{z} & 1\end{array}\right)=I-\displaystyle \frac{{\rm{i}}}{z}{\sigma }_{3}{Q}_{\pm }.\end{eqnarray}$
By directly calculating, we have
$\begin{eqnarray}\det \left({Y}_{\pm }\right)=1+\displaystyle \frac{{q}_{0}^{2}}{{z}^{2}}=\eta ,\end{eqnarray}$
and
$\begin{eqnarray}\begin{array}{rcl}{Y}_{\pm }^{-1} & = & \displaystyle \frac{1}{\eta }\left(\begin{array}{cc}1 & \tfrac{{{\rm{i}}{q}}_{\pm }}{z}\\ \tfrac{{{\rm{i}}{q}}_{\pm }^{* }}{z} & 1\end{array}\right)=\displaystyle \frac{1}{\eta }\left(I+\displaystyle \frac{{\rm{i}}}{z}{\sigma }_{3}{Q}_{\pm }\right)\\ & = & \displaystyle \frac{1}{\eta }\left(I-\displaystyle \frac{{\rm{i}}}{z}{Q}_{\pm }{\sigma }_{3}\right),z\ne \pm {{\rm{i}}{q}}_{0}.\end{array}\end{eqnarray}$
Then bringing equation (19) into equation (9) to get
$\begin{eqnarray}\begin{array}{rcl}{\left({Y}_{\pm }^{-1}\psi \right)}_{x} & = & -{\rm{i}}\lambda {\sigma }_{3}\left({Y}_{\pm }^{-1}\psi \right),\quad \ {\left({Y}_{\pm }^{-1}\psi \right)}_{t}\\ & = & -\left(2k+4\beta {{kq}}_{0}^{2}-8\beta {k}^{3}\right){\rm{i}}\lambda {\sigma }_{3}\left({Y}_{\pm }^{-1}\psi \right),\ z\ne \pm {{\rm{i}}{q}}_{0},\end{array}\end{eqnarray}$
and the solution of the asymptotic spectral problem equation (9) is
$\begin{eqnarray}\psi \left(x,t,z\right)={Y}_{\pm }{{\rm{e}}}^{{\rm{i}}\theta \left(z\right){\sigma }_{3}},\end{eqnarray}$
where
$\begin{eqnarray}\theta \left(z\right)=-\lambda \left(z\right)\left(x+\left(2k\left(z\right)+4\beta k\left(z\right){q}_{0}^{2}-8\beta k{\left(z\right)}^{3}\right)t\right).\end{eqnarray}$
Now, we define the Jost functions φ± as the solutions of the Lax pair equation (7)
$\begin{eqnarray}{\phi }_{\pm }\sim {Y}_{\pm }{{\rm{e}}}^{{\rm{i}}\theta \left(z\right){\sigma }_{3}},x\to \pm \infty .\end{eqnarray}$
Furthermore, we introduce the modified eigenfunctions to eliminate exponential oscillations
$\begin{eqnarray}{\mu }_{\pm }\left(x,t,z\right)={\phi }_{\pm }\left(x,t,z\right){{\rm{e}}}^{-{\rm{i}}\theta \left(z\right){\sigma }_{3}},\end{eqnarray}$
then we have
$\begin{eqnarray}{\mu }_{\pm }\left(x,t,z\right)\sim {Y}_{\pm }\left(z\right),x\to \pm \infty .\end{eqnarray}$
By calculating, the equivalent Lax pair is obtained
$\begin{eqnarray}{\left({Y}_{\pm }^{-1}{\mu }_{\pm }\right)}_{x}-{\rm{i}}\lambda \left[{Y}_{\pm }^{-1}{\mu }_{\pm },\ {\sigma }_{3}\right]={Y}_{\pm }^{-1}{\rm{\Delta }}{Q}_{\pm }{\mu }_{\pm },\end{eqnarray}$
$\begin{eqnarray}\begin{array}{l}{\left({Y}_{\pm }^{-1}{\mu }_{\pm }\right)}_{t}-{\rm{i}}\lambda \left(2k+4\beta {{kq}}_{0}^{2}-8\beta {k}^{3}\right)\\ \qquad \times \,\left[{Y}_{\pm }^{-1}{\mu }_{\pm },\ {\sigma }_{3}\right]={Y}_{\pm }^{-1}{\rm{\Delta }}{T}_{\pm }{\mu }_{\pm },\end{array}\end{eqnarray}$
where ΔQ± = QQ± and ${\rm{\Delta }}{T}_{\pm }\,=\,T\,-\,{T}_{\pm }\,=\left(2k+4\beta {{kq}}_{0}^{2}-8\beta {k}^{3}\right){\rm{\Delta }}{Q}_{\pm }$. The Lax pair can be written in the form of total differential
$\begin{eqnarray}{\rm{d}}\left({{\rm{e}}}^{-{\rm{i}}\theta \left(z\right)\mathop{{\sigma }_{3}}\limits^{\wedge }}{Y}_{\pm }^{-1}{\mu }_{\pm }\right)={{\rm{e}}}^{-{\rm{i}}\theta \left(z\right)\mathop{{\sigma }_{3}}\limits^{\wedge }}\left[{Y}_{\pm }^{-1}\left({\rm{\Delta }}{Q}_{\pm }{\rm{d}}{x}+{\rm{\Delta }}{T}_{\pm }{\rm{d}}{t}\right){\mu }_{\pm }\right].\end{eqnarray}$
By integrating $\left(-\infty ,t\right)\to \left(x,t\right)$ and $\left(+\infty ,t\right)\to \left(x,t\right)$ along two special paths, two Jost functions solutions can be obtained as follows
$\begin{eqnarray}\begin{array}{rcl}{\mu }_{-}\left(x,t,z\right) & = & {Y}_{-}\\ & & +{\displaystyle \int }_{-\infty }^{x}{Y}_{-}{{\rm{e}}}^{-{\rm{i}}\lambda \left(x-y\right)\mathop{{\sigma }_{3}}\limits^{\wedge }}\,\left[{Y}_{-}^{-1}{Q}_{1}\left(y,t,z\right){\mu }_{-}\left(y,t,z\right)\right]{\rm{d}}{y},\end{array}\end{eqnarray}$
$\begin{eqnarray}\begin{array}{rcl}{\mu }_{+}\left(x,t,z\right) & = & {Y}_{+}\\ & & +{\displaystyle \int }_{+\infty }^{x}{Y}_{+}{{\rm{e}}}^{-{\rm{i}}\lambda \left(x-y\right)\mathop{{\sigma }_{3}}\limits^{\wedge }}\,\left[{Y}_{+}^{-1}{Q}_{1}\left(y,t,z\right){\mu }_{+}\left(y,t,z\right)\right]{\rm{d}}{y},\end{array}\end{eqnarray}$
where ${{\rm{e}}}^{{\rm{i}}{k}\lambda \left(x-y\right){\sigma }_{3}^{\wedge }}A={{\rm{e}}}^{{\rm{i}}{k}\lambda \left(x-y\right){\sigma }_{3}}{{A}{\rm{e}}}^{-{\rm{i}}{k}\lambda \left(x-y\right){\sigma }_{3}},$ for a matrix A.

For $q\left(x\right)-{q}_{\pm }\in {L}^{1}\left({R}^{\pm }\right)$, $t\in {R}^{+}$, the solutions of the equations (32) and (33) have the following analytic properties:

${\mu }_{-,1}$, $\ {\mu }_{+,2}$ are analytic in ${D}^{+}$ and continuous in ${D}^{+}\cup \sum $,

${\mu }_{-,2}$, $\ {\mu }_{+,1}$ are analytic in ${D}^{-}$ and continuous in ${D}^{-}\cup \sum $.

Define ${\mu }_{\pm }=\left({\mu }_{\pm ,1},{\mu }_{\pm ,2}\right)$, $\ W\left(x,z\right)={Y}_{-}^{-1}{\mu }_{-}$, then the first column w of W is

$\begin{eqnarray}\begin{array}{ccl}w\left(x,t,z\right) & = & \left(\begin{array}{c}1\\ 0\end{array}\right)+\,{\int }_{-\infty }^{x}G\left(x-y,z\right){\rm{\Delta }}{Q}_{-}\left(y\right){Y}_{-}\left(y\right)w\left(y,z\right){\rm{d}}y,\end{array}\end{eqnarray}$
where
$\begin{eqnarray}\begin{array}{ccc}G\left(x-y,z\right) & = & \mathrm{diag}\left(1,{{\rm{e}}}^{2{\rm{i}}\lambda \left(x-y\right)}\right){Y}_{-}^{-1}\left(z\right)\\ & = & \frac{1}{\eta }\left(\begin{array}{cc}1 & \tfrac{{{\rm{i}}{q}}_{-}}{z}\\ \tfrac{{{\rm{i}}{q}}_{-}^{* }}{z}{{\rm{e}}}^{2{\rm{i}}\lambda \left(x-y\right)} & {{\rm{e}}}^{2{\rm{i}}\lambda \left(x-y\right)}\end{array}\right),\end{array}\end{eqnarray}$
because ${{\rm{e}}}^{2{\rm{i}}\lambda \left(x-y\right)}={{\rm{e}}}^{2{\rm{i}}\left(x-y\right)\mathrm{Re}\left(\lambda \right)}{{\rm{e}}}^{-2\left(x-y\right)\mathrm{Im}\left(\lambda \right)}$, $y\lt x$, and $\mathrm{Im}\left(\lambda \right)\gt 0$, ${\mu }_{-,1}$ is analytic in ${D}^{+}$. Similarly, we can prove that ${\mu }_{+,2}$ is analytic in ${D}^{+}$, ${\mu }_{-,2}$ and ${\mu }_{+,1}$ are analytic in ${D}^{-}$. $\square $

For $q\left(x\right)-{q}_{\pm }\in {L}^{1}\left(R\right),t\in {R}^{+}$, the Jost functions solutions of the equation (8) have the following analytic properties:

${\phi }_{-,1}$, $\ {\phi }_{+,2}$ are analytic in ${D}^{+}$ and continuous in ${D}^{+}\cup \sum $,

${\phi }_{-,2}$, $\ {\phi }_{+,1}$ are analytic in ${D}^{-}$ and continuous in ${D}^{-}\cup \sum $.

The functions φ± are both fundamental matrix solutions of the Lax pair equation (8), thus there exists a matrix $S\left(z\right)$ that only depends on z, such that
$\begin{eqnarray}{\phi }_{+}\left(x,t,z\right)={\phi }_{-}\left(x,t,z\right)S\left(z\right),\ x,t\in R,\ z\in \sum ,\end{eqnarray}$
where $S\left(z\right)$ is called scattering matrix. Letting $S\left(z\right)=\left({s}_{{ij}}\right)$, after expanding the above equation by the column of the matrix, there are
$\begin{eqnarray}{\phi }_{+,1}={s}_{11}{\phi }_{-,1}+{s}_{21}{\phi }_{-,2},\quad \ {\phi }_{+,2}={s}_{12}{\phi }_{-,1}+{s}_{22}{\phi }_{-,2}.\end{eqnarray}$
From Lax pair equation (8), we know that
$\begin{eqnarray}{\rm{tr}}\left(Q\right)={\rm{tr}}\left(T\right)=0,\end{eqnarray}$
and then by using Abel formula, we can get
$\begin{eqnarray}{\left(\det {\phi }_{\pm }\right)}_{x}={\left(\det {\phi }_{\pm }\right)}_{t}=0.\end{eqnarray}$
Based on equation (27), we have
$\begin{eqnarray}\det \left({\mu }_{\pm }\right)=\det \left({\phi }_{\pm }{{\rm{e}}}^{-{\rm{i}}\theta \left(z\right){\sigma }_{3}}\right)=\det \left({\phi }_{\pm }\right).\end{eqnarray}$
Therefore, it is easy to get ${\left(\det {\mu }_{\pm }\right)}_{x}={\left(\det {\mu }_{\pm }\right)}_{t}=0$, which means $\det \left({\mu }_{\pm }\right)$ is independent with x, t. From equation (28), we can obtain
$\begin{eqnarray}\det \left({\mu }_{\pm }\right)=\mathop{\mathrm{lim}}\limits_{x\to \pm \infty }\det \left({\mu }_{\pm }\right)=\det \left({Y}_{\pm }\right)=\eta \ne 0,\end{eqnarray}$
so μ± is invertible. Bringing the above equation into equation (37), we can get
$\begin{eqnarray}{s}_{11}\left(z\right)=\displaystyle \frac{{\rm{Wr}}\left({\phi }_{+,1},{\phi }_{-,2}\right)}{\eta },\quad \ {s}_{12}\left(z\right)=\displaystyle \frac{{\rm{Wr}}\left({\phi }_{+,2},{\phi }_{-,2}\right)}{\eta },\ \end{eqnarray}$
$\begin{eqnarray}{s}_{21}\left(z\right)=\displaystyle \frac{{\rm{Wr}}\left({\phi }_{-,1},{\phi }_{+,1}\right)}{\eta },\quad \ {s}_{22}\left(z\right)=\displaystyle \frac{{\rm{Wr}}\left({\phi }_{-,1},{\phi }_{+,2}\right)}{\eta },\ \end{eqnarray}$
where $\mathrm{Wr}\left(\cdot ,\cdot \right)$ denotes Wronskian determinant.
Based on the above conclusions and corollary 1, there is the proposition 2.2.

For $q\left(x\right)-{q}_{\pm }\in {L}^{1}\left(R\right),t\in {R}^{+}$, the scattering coefficients have the following analytic properties:

${s}_{11}\left(z\right)$ is analytic in ${D}^{-}$ and continuous in ${D}^{-}\cup \sum ,$

${s}_{22}\left(z\right)$ is analytic in ${D}^{+}$ and continuous in ${D}^{+}\cup \sum ,$

${s}_{12}\left(z\right)$ and ${s}_{21}\left(z\right)$ are continuous in $\sum .$

2.3. The symmetry properties of jost functions and scattering matrix

Since the Riemann–Hilbert (RH) problem with nonzero boundary conditions not only needs to deal with the map kk*, but also needs to deal with the sheets of the Riemann surface, and after removing the asymptotic oscillation, the Jost functions no longer tend to the identity matrix, which causes the complexity of the problem. From the Riemann surface, the transformation zz* implies $\left(k,\ \lambda \right)\mapsto \left({k}^{* },\ {\lambda }^{* }\right)$ and $z\mapsto -\tfrac{{q}_{0}^{2}}{z}$ implies $\left(k,\ \lambda \right)\mapsto \left(k,\ -\lambda \right)$ can be obtained.

The symmetry properties of Jost function, scattering matrix and scattering coefficients can be proved

${\phi }_{\pm }\left(x,t,z\right)={\sigma }_{2}{\phi }_{\pm }^{* }\left(x,t,{z}^{* }\right){\sigma }_{2}$, ${S}\left(z\right)={\sigma }_{2}{S}^{* }\left({z}^{* }\right){\sigma }_{2}$, $\ \rho \left(z\right)\,=-{\tilde{\rho }}^{* }\left({z}^{* }\right)$,

${\phi }_{\pm }\left(x,t,z\right)=-\tfrac{{\rm{i}}}{z}{\phi }_{\pm }\left(x,t,-\tfrac{{q}_{0}^{2}}{z}\right){\sigma }_{3}{Q}_{\pm }$, ${S}\left(z\right)={\left({\sigma }_{3}{Q}_{-}\right)}^{-1}S\left(-\tfrac{{q}_{0}^{2}}{z}\right){\sigma }_{3}{Q}_{+}$, $\ \rho \left(z\right)=\tfrac{{q}_{-}}{{q}_{-}^{* }}\tilde{\rho }\left(-\tfrac{{q}_{0}^{2}}{z}\right),$

where ${\sigma }_{1}=\left(\begin{array}{cc}0 & 1\\ 1 & 0\end{array}\right)$, $\ {\sigma }_{2}=\left(\begin{array}{cc}0 & -{\rm{i}}\\ {\rm{i}} & 0\end{array}\right)$, $\,\rho \left(z\right)=\tfrac{{s}_{12}\left(z\right)}{{s}_{22}\left(z\right)}$, $\tilde{\rho }\left(z\right)\,=\tfrac{{s}_{21}\left(z\right)}{{s}_{11}\left(z\right)}.$

Let φ be a solution of scattering problem equation (8), then

$\begin{eqnarray}{\phi }_{x}=\left(-{\rm{i}}\lambda {\sigma }_{3}+Q\right)\phi ,\end{eqnarray}$
which leads to
$\begin{eqnarray}{\left[{\sigma }_{2}{\phi }^{* }\left({z}^{* }\right){\sigma }_{2}\right]}_{x}={\sigma }_{2}\left[{\rm{i}}{\lambda }^{* }\left({z}^{* }\right){\sigma }_{3}+{Q}^{* }\right]{\phi }^{* }\left({z}^{* }\right){\sigma }_{2}.\end{eqnarray}$
Since ${\sigma }_{2}{\sigma }_{3}{\sigma }_{2}=-{\sigma }_{3}$, $\ {\sigma }_{2}{Q}^{* }{\sigma }_{2}=Q$, $\ {k}^{* }\left({z}^{* }\right)=k\left(z\right)$, we have
$\begin{eqnarray}{\left[{\sigma }_{2}{\phi }^{* }\left({z}^{* }\right){\sigma }_{2}\right]}_{x}=\left[-{\rm{i}}\lambda \left(z\right){\sigma }_{3}+Q\right]\left({\sigma }_{2}{\phi }^{* }\left({z}^{* }\right){\sigma }_{2}\right).\end{eqnarray}$
Therefore, ${\sigma }_{2}{\phi }^{* }\left({z}^{* }\right){\sigma }_{2}$ is also the solution of equation (8). From the following relationships
$\begin{eqnarray}{\sigma }_{2}{Y}_{\pm }^{* }\left({z}^{* }\right){\sigma }_{2}={Y}_{\pm }\left(z\right),\quad \ {\sigma }_{2}{{\rm{e}}}^{-{\rm{i}}{\theta }^{* }\left({z}^{* }\right){\sigma }_{3}}{\sigma }_{2}={{\rm{e}}}^{{\rm{i}}\theta \left(z\right){\sigma }_{3}},\end{eqnarray}$
we can get
$\begin{eqnarray}{\sigma }_{2}{Y}_{\pm }^{* }\left({z}^{* }\right){\sigma }_{2}={Y}_{\pm }\left(z\right){{\rm{e}}}^{{\rm{i}}\theta \left(z\right){\sigma }_{3}}+O\left(1\right),\ x\to \pm \infty .\end{eqnarray}$
From the uniqueness of the solution of the scattering problem, we can obtain
$\begin{eqnarray}{\phi }_{\pm }\left(x,t,z\right)={\sigma }_{2}{\phi }^{* }\left(x,t,{z}^{* }\right){\sigma }_{2}.\end{eqnarray}$
By directly calculating, we have
$\begin{eqnarray}-\displaystyle \frac{{\rm{i}}}{z}{Y}_{\pm }\left(-\displaystyle \frac{{q}_{0}^{2}}{z}\right){{\rm{e}}}^{-{\rm{i}}\theta \left(z\right){\sigma }_{3}}{\sigma }_{3}{Q}_{\pm }={Y}_{\pm }\left(z\right){{\rm{e}}}^{{\rm{i}}\theta \left(z\right){\sigma }_{3}},\end{eqnarray}$
then
$\begin{eqnarray}{\phi }_{\pm }\left(x,t,z\right)=-\frac{{\rm{i}}}{z}{\phi }_{\pm }\left(x,t,-\frac{{q}_{0}^{2}}{z}\right){\sigma }_{3}{Q}_{\pm }.\end{eqnarray}$
Next, we prove the symmetry properties of the scattering matrix. Bringing equation (49) into equation (34), we can get
$\begin{eqnarray}{S}\left(z\right)={\sigma }_{2}{S}^{* }\left({z}^{* }\right){\sigma }_{2},\end{eqnarray}$
and ${s}_{11}\left(z\right)={s}_{22}^{* }\left({z}^{* }\right),\ {s}_{12}\left(z\right)=-{s}_{21}^{* }\left({z}^{* }\right)$ after expansion, so
$\begin{eqnarray}\rho \left(z\right)=-{\tilde{\rho }}^{* }\left({z}^{* }\right).\end{eqnarray}$
Similarly, bringing equation (51) into Equation (34), we can get
$\begin{eqnarray}\ {S}\left(z\right)={\left({\sigma }_{3}{Q}_{-}\right)}^{-1}S\left(-\displaystyle \frac{{q}_{0}^{2}}{z}\right){\sigma }_{3}{Q}_{+}.\end{eqnarray}$
After expansion, we have
$\begin{eqnarray}\begin{array}{rcl}{s}_{11}\left(z\right) & = & \displaystyle \frac{{q}_{+}^{* }}{{q}_{-}^{* }}{s}_{22}\left(-\displaystyle \frac{{q}_{0}^{2}}{z}\right),\quad \ {s}_{12}\left(z\right)=\displaystyle \frac{{q}_{+}}{{q}_{-}^{* }}{s}_{21}\left(-\displaystyle \frac{{q}_{0}^{2}}{z}\right),\\ {s}_{21}\left(z\right) & = & \displaystyle \frac{{q}_{+}^{* }}{{q}_{-}}{s}_{12}\left(-\displaystyle \frac{{q}_{0}^{2}}{z}\right),\quad \ {s}_{22}\left(z\right)=\displaystyle \frac{{q}_{+}}{{q}_{-}}{s}_{11}\left(-\displaystyle \frac{{q}_{0}^{2}}{z}\right),\end{array}\end{eqnarray}$
then
$\begin{eqnarray}\rho \left(z\right)=\displaystyle \frac{{q}_{-}}{{q}_{-}^{* }}\tilde{\rho }\left(-\displaystyle \frac{{q}_{0}^{2}}{z}\right).\end{eqnarray}$

2.4. The asymptotic properties of jost functions and scattering matrix

It is necessary to discuss the asymptotic properties of Jost functions and scattering matrix in order to solve the RH problem in the next section.

It can be proved by equations (29) and (30) that

${\mu }_{\pm }=I+O\left({z}^{-1}\right)$, $z\to \infty ,$

${\mu }_{\pm }=-\tfrac{{\rm{i}}}{z}{\sigma }_{3}{Q}_{\pm }+O\left(1\right)$, $z\to 0.$

So we can get the asymptotic properties of scattering matrix

$S\left(z\right)=I+O\left({z}^{-1}\right)$, $\ z\to \infty ,$

$S\left(z\right)=\mathrm{diag}\left(\tfrac{{q}_{-}}{{q}_{+}},\tfrac{{q}_{+}}{{q}_{-}}\right)+O\left(z\right)$, $\ z\to 0.$

Asymptotic expansion is made at $z=\infty $ as follows

$\begin{eqnarray}{\mu }_{\pm }={\mu }_{0}^{\pm }+\displaystyle \frac{{\mu }_{1}^{\pm }}{z}+\displaystyle \frac{{\mu }_{2}^{\pm }}{{z}^{2}}+\cdots .\end{eqnarray}$
Bringing equations (22) and (57) into equations (29) and (30) to get
$\begin{eqnarray}\begin{array}{l}{\left[\left(I-\displaystyle \frac{{\rm{i}}}{z}{Q}_{\pm }{\sigma }_{3}\right)\left({\mu }_{0}^{\pm }+\displaystyle \frac{{\mu }_{1}^{\pm }}{z}+\cdots \right)\right]}_{x}\\ \qquad -{\rm{i}}\lambda \left[\left(I-\displaystyle \frac{{\rm{i}}}{z}{Q}_{\pm }{\sigma }_{3}\right)\left({\mu }_{0}^{\pm }+\displaystyle \frac{{\mu }_{1}^{\pm }}{z}+\cdots \right),\,{\sigma }_{3}\right]\\ \,=\,\left(I-\displaystyle \frac{{\rm{i}}}{z}{Q}_{\pm }{\sigma }_{3}\right){\rm{\Delta }}{Q}_{\pm }\left({\mu }_{0}^{\pm }+\displaystyle \frac{{\mu }_{1}^{\pm }}{z}+\cdots \right),\\ {\,\left[\left(I-\displaystyle \frac{{\rm{i}}}{z}{Q}_{\pm }{\sigma }_{3}\right)\left({\mu }_{0}^{\pm }+\displaystyle \frac{{\mu }_{1}^{\pm }}{z}+\cdots \right)\right]}_{t}\\ \qquad -\,{\rm{i}}\left(2k+4\beta {{kq}}_{0}^{2}-8\beta {k}^{3}\right)\\ \,\times \,\left[\left(I-\displaystyle \frac{{\rm{i}}}{z}{Q}_{\pm }{\sigma }_{3}\right)\left({\mu }_{0}^{\pm }+\displaystyle \frac{{\mu }_{1}^{\pm }}{z}+\cdots \right),\,{\sigma }_{3}\right]\\ \,=\,\left(I-\displaystyle \frac{{\rm{i}}}{z}{Q}_{\pm }{\sigma }_{3}\right){\rm{\Delta }}{T}_{\pm }\left({\mu }_{0}^{\pm }+\displaystyle \frac{{\mu }_{1}^{\pm }}{z}+\cdots \right).\end{array}\end{eqnarray}$
Combining with equation (15), and comparing the power of z, we can get
$\begin{eqnarray}-\frac{{\rm{i}}}{2}\left[{\mu }_{0}^{\pm },{\sigma }_{3}\right]=0,\end{eqnarray}$
$\begin{eqnarray}{\mu }_{0,x}^{\pm }-\displaystyle \frac{{\rm{i}}}{2}\left[{\mu }_{1}^{\pm }-{{\rm{i}}{Q}}_{\pm }{\sigma }_{3}{\mu }_{0}^{\pm },{\sigma }_{3}\right]={\rm{\Delta }}{Q}_{\pm }{\mu }_{0}^{\pm },\end{eqnarray}$
$\begin{eqnarray}\displaystyle \frac{{\rm{i}}\beta }{2}\left[{\mu }_{1}^{\pm }-{{\rm{i}}{Q}}_{\pm }{\sigma }_{3}{\mu }_{0}^{\pm },{\sigma }_{3}\right]=-\beta {\rm{\Delta }}{Q}_{\pm }{\mu }_{0}^{\pm }.\end{eqnarray}$
From equation (59), we know that ${\mu }_{0}^{\pm }$ is a diagonal matrix. From equations (60) and (61), we know that ${\mu }_{0,x}^{\pm }=0$, so equation (57) takes the limit for x and z at the same time and exchanges the limit order to get
$\begin{eqnarray}\mathop{\mathrm{lim}}\limits_{z\to \infty }{Y}_{\pm }=\mathop{\mathrm{lim}}\limits_{z\to \infty }\mathop{\mathrm{lim}}\limits_{x\to \pm \infty }\mu =\mathop{\mathrm{lim}}\limits_{x\to \pm \infty }\mathop{\mathrm{lim}}\limits_{z\to \infty }\left({\mu }_{0}^{\pm }+O\left({z}^{-1}\right)\right).\end{eqnarray}$
Therefore, we have ${\mu }_{0}^{\pm }=I.$ By taking this into equation (61), we can get
$\begin{eqnarray}{\mu }_{1}^{\pm }=-{\rm{i}}{\sigma }_{3}Q,\end{eqnarray}$
then
$\begin{eqnarray}\begin{array}{ccc}{\mu }_{\pm } & = & I+O\left({z}^{-1}\right),\ z\to \infty ,\\ {\mu }_{\pm } & = & -\frac{{\rm{i}}}{z}{\sigma }_{3}{Q}_{\pm }+O\left(1\right),\ z\to 0.\end{array}\end{eqnarray}$
For the scattering matrix $S\left(z\right)$, when $z\to \infty $, combining with equations (28) and (34), we can know
$\begin{eqnarray}S\left(z\right)=I+O\left({z}^{-1}\right).\end{eqnarray}$
When $z\to 0$, we can obtain
$\begin{eqnarray}S\left(z\right)=\mathrm{diag}\left(\frac{{q}_{-}}{{q}_{+}},\frac{{q}_{+}}{{q}_{-}}\right)+O\left(z\right).\end{eqnarray}$

2.5. The Riemann–Hilbert problem

Expanding equation (36), we have
$\begin{eqnarray}\begin{array}{rcl}{\mu }_{+,1} & = & {s}_{11}{\mu }_{-,1}+{s}_{21}{{\rm{e}}}^{-2{\rm{i}}\theta \left(z\right)}{\mu }_{-,2},\\ {\mu }_{+,2} & = & {s}_{12}{{\rm{e}}}^{2{\rm{i}}\theta \left(z\right)}{\mu }_{-,1}+{s}_{22}{\mu }_{-,2},\end{array}\end{eqnarray}$
furthermore, we define piecewise analytic functions
$\begin{eqnarray}M\left(x,t,z\right)=\left\{\begin{array}{l}{M}^{-}\left(x,t,z\right)=\left(\tfrac{{\mu }_{+,1}}{{s}_{11}},{\mu }_{-,2}\right),z\in {{\rm{D}}}^{-},\\ {M}^{+}\left(x,t,z\right)=\left({\mu }_{-,1},\tfrac{{\mu }_{+,2}}{{s}_{22}}\right),z\in {{\rm{D}}}^{+}.\end{array}\right.\end{eqnarray}$
Therefore, the following generalized RH problem can be obtained.

$M\left(x,t,z\right)$ satisfies

$M\left(x,t,z\right)$ is analytic in $C\setminus \sum .$

${M}^{-}\left(x,t,z\right)={M}^{+}\left(x,t,z\right)\left(I-G\left(x,t,z\right)\right)$, $\,z\in \sum ,$

where $G\left(x,t,z\right)=\left(\begin{array}{cc}\rho \left(z\right)\tilde{\rho }\left(z\right) & \rho \left(z\right){{\rm{e}}}^{2{\rm{i}}\theta \left(z\right)}\\ -\tilde{\rho }\left(z\right){{\rm{e}}}^{-2{\rm{i}}\theta \left(z\right)} & 0\end{array}\right)$.

$\left\{\begin{array}{c}M\left(x,t,z\right)=I+O\left({z}^{-1}\right),z\to \infty ,\\ M\left(x,t,z\right)=-\tfrac{{\rm{i}}}{z}{\sigma }_{3}{Q}_{-}+O\left(1\right),z\to 0.\end{array}\right.$

And the solution of equation (1) can be expressed by the solution of the RH problem
$\begin{eqnarray}q\left(x,t\right)={\rm{i}}\mathop{\mathrm{lim}}\limits_{z\to \infty }{\left({zM}\right)}_{12}.\end{eqnarray}$

2.6. Discrete spectrum

Suppose that z0 is an N-order zero point of ${s}_{22}\left(z\right)$ at ${D}^{+}\cap \left\{z\in C:\mathrm{Im}z\gt 0,\ \left|z\right|\gt {q}_{0}\right\}$. According to the symmetry conditions of proposition 2.3, we know
$\begin{eqnarray}\begin{array}{rcl}{s}_{22}\left({z}_{0}\right) & = & 0\iff {s}_{11}^{* }\left({z}_{0}^{* }\right)\\ & = & 0\iff {s}_{11}\left(-\displaystyle \frac{{q}_{0}^{2}}{{z}_{0}}\right)=0\iff {s}_{22}\left(-\displaystyle \frac{{q}_{0}^{2}}{{z}_{0}^{* }}\right)=0.\end{array}\end{eqnarray}$
So, the discrete spectrum is the set
$\begin{eqnarray}Z=\left\{{z}_{0},{z}_{0}^{* },-\displaystyle \frac{{q}_{0}^{2}}{{z}_{0}},-\displaystyle \frac{{q}_{0}^{2}}{{z}_{0}^{* }}\right\}.\end{eqnarray}$

3. Soliton solutions

3.1. The RH problem with a single higher-order pole

Let z0D+ be the Nth-order pole, from the symmetry properties of proposition 2.3, we know that −z0, $\pm \tfrac{{q}_{0}^{2}}{{z}_{0}^{* }}\in {D}^{+}$ is also the N-order zero point of ${s}_{22}\left(z\right)$. Then $\pm {z}_{0}^{* }$ and $\pm \tfrac{{q}_{0}^{2}}{{z}_{0}}$ are the N-order poles of ${s}_{11}\left(z\right)$. Taking $v$1 = z0 and ${\upsilon }_{2}=\tfrac{{q}_{0}^{2}}{{z}_{0}^{* }}$, then ${s}_{22}\left(z\right)$ can be expressed as
$\begin{eqnarray}{s}_{22}\left({z}^{2}\right)={\left(z-{\upsilon }_{1}^{2}\right)}^{N}{\left(z-{\upsilon }_{2}^{2}\right)}^{N}{s}_{0}\left(z\right),\end{eqnarray}$
where ${s}_{0}\left(z\right)\ne 0$ in D+. According to the Laurent series expansion in poles, the reflection coefficients $\rho \left(z\right)$ and ${\rho }^{* }\left({z}^{* }\right)$ can be expanded as
$\begin{eqnarray}\begin{array}{r}\rho \left(z\right)={\rho }_{0}\left(z\right)+\displaystyle \sum _{j=1}^{N}\displaystyle \frac{{\rho }_{1,j}}{{\left(z-{\upsilon }_{1}\right)}^{j}},\,\\ \,\rho \left(z\right)={\tilde{\rho }}_{0}(z)+\displaystyle \sum _{j=1}^{N}\displaystyle \frac{{\left(-1\right)}^{j+1}{\rho }_{2,j}}{{\left(z-{\upsilon }_{2}\right)}^{j}},\,\\ {\rho }^{* }\left({z}^{* }\right)={\rho }_{0}^{* }\left({z}^{* }\right)+\displaystyle \sum _{j=1}^{N}\displaystyle \frac{{\rho }_{1,j}^{* }}{{\left(z-{\upsilon }_{1}^{* }\right)}^{j}},\,\\ {\rho }^{* }\left({z}^{* }\right)={\tilde{\rho }}_{0}^{* }\left({z}^{* }\right)+\displaystyle \sum _{j=1}^{N}\displaystyle \frac{{\left(-1\right)}^{j+1}{\rho }_{2,j}^{* }}{{\left(z-{\upsilon }_{2}^{* }\right)}^{j}},\,\end{array}\end{eqnarray}$
where
$\begin{eqnarray}\begin{array}{rcl}{\rho }_{m,{m}_{j}} & = & \mathop{\mathrm{lim}}\limits_{z\to {\upsilon }_{m}}\displaystyle \frac{1}{\left(N-{m}_{j}\right)!}\displaystyle \frac{{\partial }^{N-{m}_{j}}}{\partial {z}^{N-{m}_{j}}}\left[{\left(z-{\upsilon }_{m}\right)}^{N}{\rho }_{m}\left(z\right)\right],\\ m & = & 1,2,\ {m}_{j}=1,2,\cdots N,\end{array}\end{eqnarray}$
and ${\rho }_{0},m\left(z\right)$ and ${\hat{\rho }}_{0},m\left(z\right)$ are analytic for all zD+. According to the definition of $M\left(x,t,z\right)$, we know that z = ±$v$m and $z=\pm {\upsilon }_{m}^{* }$ are N-order poles of ${M}_{12}\left(x,t,z\right)$ and ${M}_{11}\left(x,t,z\right)$, respectively. Therefore, $M\left(x,t,z\right)$ can be expanded as
$\begin{eqnarray}{M}_{11}\left(x,t,z\right)=1+\displaystyle \sum _{m=1}^{2}\displaystyle \sum _{l=1}^{N}\left(\displaystyle \frac{{F}_{m.l}\left(x,t\right)}{{\left(z-{\upsilon }_{m}^{* }\right)}^{l}}+\displaystyle \frac{{G}_{m,l}\left(x,t\right)}{{\left(z+{\upsilon }_{m}^{* }\right)}^{l}}\right),\end{eqnarray}$
$\begin{eqnarray}{M}_{12}\left(x,t,z\right)=-\displaystyle \frac{{\rm{i}}}{z}{q}_{-}+\displaystyle \sum _{m=1}^{2}\displaystyle \sum _{l=1}^{N}\left(\displaystyle \frac{{H}_{m,l}\left(x,t\right)}{{\left(z-{\upsilon }_{m}\right)}^{l}}+\displaystyle \frac{{L}_{m,l}\left(x,t\right)}{{\left(z-{\upsilon }_{m}\right)}^{l}}\right),\end{eqnarray}$
where ${F}_{m,l}\left(x,t\right),\ {G}_{m,l}\left(x,t\right),\ {H}_{m,l}\left(x,t\right)$ and ${L}_{m,l}\left(x,t\right)\left(l=1,2,\cdots N\right)$ are unknown functions to be determined. Once these functions are solved, the solution of equation (1) can also be obtained from equation (75b).
In what follows, according to Taylor series expansion, we have
$\begin{eqnarray}\begin{array}{l}{{\rm{e}}}^{2{\rm{i}}\theta \left(z\right)}=\displaystyle \sum _{s=0}^{+\infty }{f}_{1,s}\left(x,t\right){\left(z-{\upsilon }_{1}\right)}^{s},\ \\ {{\rm{e}}}^{2{\rm{i}}\theta \left(z\right)}=\displaystyle \sum _{s=0}^{+\infty }{\left(-1\right)}^{s}{f}_{2,s}\left(x,t\right){\left(z-{\upsilon }_{2}\right)}^{s},\end{array}\end{eqnarray}$
$\begin{eqnarray}\begin{array}{l}{{\rm{e}}}^{-2{\rm{i}}\theta \left(z\right)}=\displaystyle \sum _{s=0}^{+\infty }{f}_{1,s}^{* }\left(x,t\right){\left(z-{\upsilon }_{1}^{* }\right)}^{s},\ \\ {{\rm{e}}}^{-2{\rm{i}}\theta \left(z\right)}=\displaystyle \sum _{s=0}^{+\infty }{\left(-1\right)}^{s}{f}_{2,s}^{* }\left(x,t\right){\left(z-{\upsilon }_{2}^{* }\right)}^{s},\end{array}\end{eqnarray}$
$\begin{eqnarray}\begin{array}{rcl}{M}_{11}\left(x,t,z\right) & = & \displaystyle \sum _{s=0}^{+\infty }{g}_{1,s}\left(x,t\right){\left(z-{\upsilon }_{1}\right)}^{s},\ \\ {M}_{11}\left(x,t,z\right) & = & \displaystyle \sum _{s=0}^{+\infty }{\left(-1\right)}^{s}{g}_{2,s}\left(x,t\right){\left(z-{\upsilon }_{2}\right)}^{s},\end{array}\end{eqnarray}$
$\begin{eqnarray}\begin{array}{rcl}{M}_{12}\left(x,t,z\right) & = & \displaystyle \sum _{s=0}^{+\infty }{h}_{1,s}\left(x,t\right){\left(z-{\upsilon }_{1}^{* }\right)}^{s},\\ {M}_{12}\left(x,t,z\right) & = & \displaystyle \sum _{s=0}^{+\infty }{\left(-1\right)}^{s}{h}_{2,s}\left(x,t\right){\left(z-{\upsilon }_{2}^{* }\right)}^{s},\end{array}\end{eqnarray}$
where
$\begin{eqnarray}{f}_{m,s}\left(x,t\right)=\mathop{\mathrm{lim}}\limits_{z\to {\upsilon }_{m}}\displaystyle \frac{1}{s!}\displaystyle \frac{{\partial }^{s}}{\partial {z}^{s}}{{\rm{e}}}^{2{\rm{i}}\theta \left(z\right)},\end{eqnarray}$
$\begin{eqnarray}{g}_{m,s}\left(x,t\right)=\mathop{\mathrm{lim}}\limits_{z\to {\upsilon }_{m}}\displaystyle \frac{1}{s!}\displaystyle \frac{{\partial }^{s}}{\partial {z}^{s}}{M}_{11}\left(x,t,z\right),\end{eqnarray}$
$\begin{eqnarray}\begin{array}{rcl}{h}_{m,s}\left(x,t\right) & = & \mathop{\mathrm{lim}}\limits_{z\to {\upsilon }_{m}^{* }}\displaystyle \frac{1}{s!}\displaystyle \frac{{\partial }^{s}}{\partial {z}^{s}}{M}_{12}\left(x,t,z\right),\\ m & = & 1,2,\ {\rm{s}}=0,1,2\cdots .\end{array}\end{eqnarray}$
When zD+, the function $M\left(z\right)$ has the expansions at $z={\upsilon }_{m}\left(m=1,2.\right),$
$\begin{eqnarray}{M}_{11}\left(x,t,z\right)={\mu }_{-,11}\left(z\right)=\displaystyle \sum _{s=0}^{+\infty }{g}_{m,s}\left(x,t\right){\left(z-{\upsilon }_{m}\right)}^{s},\end{eqnarray}$
$\begin{eqnarray}{M}_{12}\left(x,t,z\right)=\displaystyle \frac{{\mu }_{+,12}\left(z\right)}{{s}_{22}\left(z\right)}={\mu }_{-,12}\left(z\right)+\rho \left(z\right){{\rm{e}}}^{2{\rm{i}}\theta \left(z\right)}{\mu }_{-,11}\left(z\right).\end{eqnarray}$
Substituting equations (75b) and (78) into equation (79), and comparing the coefficients of ${\left(z-{\upsilon }_{m}\right)}^{-s}$ with equation (75b), we can obtain
$\begin{eqnarray}{H}_{l}\left(x,t\right)=\displaystyle \sum _{j=l}^{N}\displaystyle \sum _{s=0}^{j-l}{\rho }_{1,j}{f}_{1,j-l-s}\left(x,t\right){g}_{1,s}\left(x,t\right),\end{eqnarray}$
$\begin{eqnarray}{L}_{l}\left(x,t\right)=\displaystyle \sum _{j=l}^{N}\displaystyle \sum _{s=0}^{j-l}{\left(-1\right)}^{l+1}{\rho }_{2,j}{f}_{2,j-l-s}\left(x,t\right){g}_{2,s}\left(x,t\right).\end{eqnarray}$
Similarly, when zD,
$\begin{eqnarray}\begin{array}{ccl}{F}_{l}\left(x,t\right) & = & -\displaystyle \sum _{j=l}^{N}\displaystyle \sum _{s=0}^{j-l}{\rho }_{1,j}^{\ast }{f}_{1,j-l-s}^{\ast }\left(x,t\right){h}_{1,s}\left(x,t\right),\\ {G}_{l}\left(x,t\right) & = & -\displaystyle \sum _{j=l}^{N}\displaystyle \sum _{s=0}^{j-l}{\left(-1\right)}^{l+1}{\rho }_{2,j}^{\ast }{f}_{2,j-l-s}^{\ast }\left(x,t\right){h}_{2,s}\left(x,t\right),\end{array}\end{eqnarray}$
can be gotten by comparing the coefficients of ${\left(z-{\upsilon }_{m}^{* }\right)}^{-s}$. Actually, gm,s and hm,s can be expressed by these functions ${H}_{m,l}\left(x,t\right),\ {L}_{m,l}\left(x,t\right)$ and ${F}_{m,l}\left(x,t\right),\ {G}_{m,l}\left(x,t\right)$ respectively. Recalling equation (77a) and substituting equations (75b) and (77c) into them, we have
$\begin{eqnarray}\begin{array}{l}{h}_{1,s}\left(x,t\right)=\frac{{\left(-1\right)}^{s+1}}{{\left({\upsilon }_{1}^{* }\right)}^{s+1}}{\rm{i}}{q}_{-}\\ \,+\displaystyle \sum _{l=1}^{N}\left(\begin{array}{l}l+s-1\\ s\end{array}\right)\left(\frac{{\left(-1\right)}^{s}{H}_{l}\left(x,t\right)}{{\left({\upsilon }_{1}^{* }-{\upsilon }_{1}\right)}^{s+l}}+\frac{{\left(-1\right)}^{s}{L}_{l}\left(x,t\right)}{{\left({\upsilon }_{1}^{* }-{\upsilon }_{2}\right)}^{s+l}}\right),\\ \,s=0,1,2\cdots ,\end{array}\end{eqnarray}$
$\begin{eqnarray}\begin{array}{rcl}{h}_{2,s}\left(x,t\right) & = & \displaystyle \frac{{\left(-1\right)}^{s+1}}{{\left({\upsilon }_{2}^{* }\right)}^{s+1}}{{\rm{i}}{q}}_{-}+\displaystyle \sum _{l=1}^{N}\left(\begin{array}{c}l+s-1\\ s\end{array}\right)\\ & & \times \,\left(\displaystyle \frac{{\left(-1\right)}^{s}{H}_{l}\left(x,t\right)}{{\left({\upsilon }_{2}^{* }-{\upsilon }_{1}\right)}^{s+l}}+\displaystyle \frac{{\left(-1\right)}^{s}{L}_{l}\left(x,t\right)}{{\left({\upsilon }_{2}^{* }-{\upsilon }_{2}\right)}^{s+l}}\right),\\ & & s=0,1,2\cdots ,\end{array}\end{eqnarray}$
$\begin{eqnarray}{g}_{1,s}\left(x,t\right)=\left\{\begin{array}{ll}1+\displaystyle \sum _{l=1}^{N}\left(\tfrac{{\left(-1\right)}^{s}{F}_{l}\left(x,t\right)}{{\left({\upsilon }_{1}-{\upsilon }_{1}^{* }\right)}^{s+l}}+\tfrac{{\left(-1\right)}^{s}{G}_{l}\left(x,t\right)}{{\left({\upsilon }_{1}-{\upsilon }_{2}^{* }\right)}^{s+l}}\right), & s=0,\\ \displaystyle \sum _{l=1}^{N}\left(\begin{array}{c}l+s-1\\ s\end{array}\right)\left(\tfrac{{\left(-1\right)}^{s}{F}_{l}\left(x,t\right)}{{\left({\upsilon }_{1}-{\upsilon }_{2}^{* }\right)}^{s+l}}+\tfrac{{\left(-1\right)}^{s}{L}_{l}\left(x,t\right)}{{\left({\upsilon }_{2}-{\upsilon }_{2}^{* }\right)}^{s+l}}\right), & s=0,1,2\cdots ,\end{array}\right.\end{eqnarray}$
$\begin{eqnarray}{g}_{2,s}\left(x,t\right)=\left\{\begin{array}{cc}1+\displaystyle \sum _{l=1}^{N}\left(\tfrac{{\left(-1\right)}^{s}{F}_{l}\left(x,t\right)}{{\left({\upsilon }_{2}-{\upsilon }_{1}^{* }\right)}^{s+l}}+\tfrac{{\left(-1\right)}^{s}{G}_{l}\left(x,t\right)}{{\left({\upsilon }_{2}-{\upsilon }_{2}^{* }\right)}^{s+l}}\right), & s=0,\\ \displaystyle \sum _{l=1}^{N}\left(\begin{array}{c}l+s-1\\ s\end{array}\right)\left(\displaystyle \frac{{\left(-1\right)}^{s}{F}_{l}\left(x,t\right)}{{\left({\upsilon }_{2}-{\upsilon }_{2}^{* }\right)}^{s+l}}+\displaystyle \frac{{\left(-1\right)}^{s}{L}_{l}\left(x,t\right)}{{\left({\upsilon }_{2}-{\upsilon }_{2}^{* }\right)}^{s+l}}\right), & s=0,1,2\cdots .\end{array}\right.\end{eqnarray}$
Then, substituting the above equations into equation (80a), we can obtain
$\begin{eqnarray}{F}_{l}\left(x,t\right)=-{\rm{i}}{q}_{-}\displaystyle \sum _{j=l}^{N}\displaystyle \sum _{s=0}^{j-l}\frac{{\left(-1\right)}^{s+1}}{{\left({\upsilon }_{1}^{* }\right)}^{s+1}}{\rho }_{1,j}^{* }{f}_{1,j-l-s}^{* }\left(x,t\right)\end{eqnarray}$
$\begin{eqnarray}\begin{array}{l}-\displaystyle \sum _{j=l}^{N}\displaystyle \sum _{s=0}^{j-l}\displaystyle \sum _{p=1}^{N}\left(\begin{array}{c}p+s-1\\ s\end{array}\right){\rho }_{1,j}^{* }{f}_{1,j-l-s}^{* }\left(x,t\right)\\ \qquad \times \,\left(\displaystyle \frac{{\left(-1\right)}^{s}{H}_{p}\left(x,t\right)}{{\left({\upsilon }_{1}^{* }-{\upsilon }_{1}\right)}^{s+p}}+\displaystyle \frac{{\left(-1\right)}^{s}{L}_{p}\left(x,t\right)}{{\left({\upsilon }_{1}^{* }-{\upsilon }_{2}\right)}^{s+p}}\right),\end{array}\end{eqnarray}$
$\begin{eqnarray}{G}_{l}\left(x,t\right)=-{\rm{i}}{q}_{-}\displaystyle \sum _{j=l}^{N}\displaystyle \sum _{s=0}^{j-l}\frac{{\left(-1\right)}^{l+1}{\left(-1\right)}^{s+1}}{{\left({\upsilon }_{2}^{* }\right)}^{s+1}}{\rho }_{2,j}^{* }{f}_{2,j-l-s}^{* }\left(x,t\right)\end{eqnarray}$
$\begin{eqnarray}\begin{array}{l}-\displaystyle \sum _{j=l}^{N}\displaystyle \sum _{s=0}^{j-l}\displaystyle \sum _{p=1}^{N}{\left(-1\right)}^{l+1}\left(\begin{array}{c}p+s-1\\ s\end{array}\right){\rho }_{2,j}^{* }{f}_{2,j-l-s}^{* }\left(x,t\right)\\ \qquad \times \,\left(\displaystyle \frac{{\left(-1\right)}^{s}{H}_{p}\left(x,t\right)}{{\left({\upsilon }_{2}^{* }-{\upsilon }_{1}\right)}^{s+p}}+\displaystyle \frac{{\left(-1\right)}^{s}{L}_{p}\left(x,t\right)}{{\left({\upsilon }_{2}^{* }-{\upsilon }_{2}\right)}^{s+p}}\right),\end{array}\end{eqnarray}$
$\begin{eqnarray}{H}_{l}\left(x,t\right)=\displaystyle \sum _{j=l}^{N}{\rho }_{1,j}{f}_{1,j-l}\left(x,t\right)\end{eqnarray}$
$\begin{eqnarray}\begin{array}{l}\ +\ \displaystyle \sum _{j=l}^{N}\displaystyle \sum _{s=0}^{j-l}\displaystyle \sum _{p=1}^{N}\left(\begin{array}{c}p+s-1\\ s\end{array}\right){\rho }_{1,j}{f}_{1,j-l-s}\left(x,t\right)\\ \qquad \times \,\left(\displaystyle \frac{{\left(-1\right)}^{s}{F}_{p}\left(x,t\right)}{{\left({\upsilon }_{1}-{\upsilon }_{1}^{* }\right)}^{s+p}}+\displaystyle \frac{{\left(-1\right)}^{s}{G}_{p}\left(x,t\right)}{{\left({\upsilon }_{1}-{\upsilon }_{2}^{* }\right)}^{s+p}}\right),\end{array}\end{eqnarray}$
$\begin{eqnarray}{L}_{l}\left(x,t\right)=\displaystyle \sum _{j=l}^{N}{\left(-1\right)}^{l+1}{\rho }_{2,j}{f}_{2,j-l}\left(x,t\right)\end{eqnarray}$
$\begin{eqnarray}\begin{array}{l}+\displaystyle \sum _{j=l}^{N}\displaystyle \sum _{s=0}^{j-l}\displaystyle \sum _{p=1}^{N}{\left(-1\right)}^{l+1}\left(\begin{array}{c}p+s-1\\ s\end{array}\right){\rho }_{2,j}{f}_{2,j-l-s}\left(x,t\right)\\ \left(\displaystyle \frac{{\left(-1\right)}^{s}{F}_{p}\left(x,t\right)}{{\left({\upsilon }_{2}-{\upsilon }_{1}^{* }\right)}^{s+p}}+\displaystyle \frac{{\left(-1\right)}^{s}{G}_{p}\left(x,t\right)}{{\left({\upsilon }_{2}-{\upsilon }_{2}^{* }\right)}^{s+p}}\right).\end{array}\end{eqnarray}$
Let us define
$\begin{eqnarray*}\begin{array}{l}\left|{\eta }_{1}\right\rangle ={\left({\eta }_{\mathrm{1,1}},{\eta }_{\mathrm{1,2}},\cdots {\eta }_{1,N}\right)}^{{\rm{T}}},\\ {\eta }_{1,l}=-{\rm{i}}{q}_{-}\displaystyle \sum _{j=l}^{N}\displaystyle \sum _{s=0}^{j-l}\frac{{\left(-1\right)}^{s+1}}{{\left({\upsilon }_{1}^{* }\right)}^{s+1}}{\rho }_{1,j}^{* }{f}_{1,j-l-s}^{* }\left(x,t\right),\\ \left|{\eta }_{2}\right\rangle ={\left({\eta }_{\mathrm{2,1}},{\eta }_{\mathrm{2,2}},\cdots {\eta }_{2,N}\right)}^{{\rm{T}}},\\ {\eta }_{2,l}=-{\rm{i}}{q}_{-}\displaystyle \sum _{j=l}^{N}\displaystyle \sum _{s=0}^{j-l}{\left(-1\right)}^{l+1}\\ \frac{{\left(-1\right)}^{s+1}}{{\left({\upsilon }_{2}^{* }\right)}^{s+1}}{\rho }_{2,j}^{* }{f}_{2,j-l-s}^{* }\left(x,t\right),\\ \left|{\hat{\eta }}_{1}\right\rangle ={\left({\hat{\eta }}_{\mathrm{1,1}},{\hat{\eta }}_{\mathrm{1,2}},\cdots {\hat{\eta }}_{1,N}\right)}^{{\rm{T}}},\\ {\hat{\eta }}_{1,l}=\displaystyle \sum _{j=l}^{N}{\rho }_{1,j}{f}_{1,j-l}\left(x,t\right),\\ \left|{\hat{\eta }}_{2}\right\rangle ={\left({\hat{\eta }}_{\mathrm{2,1}},{\hat{\eta }}_{\mathrm{2,2}},\cdots {\hat{\eta }}_{2,N}\right)}^{{\rm{T}}},\end{array}\end{eqnarray*}$
$\begin{eqnarray}\begin{array}{l}{\hat{\eta }}_{2,l}=\displaystyle \sum _{j=l}^{N}{\left(-1\right)}^{l+1}{\rho }_{2,j}{f}_{2,j-l}\left(x,t\right),\\ {{\rm{\Omega }}}_{1}={\left[{{\rm{\Omega }}}_{1,{lp}}\right]}_{N\times N}=-\displaystyle \sum _{j=l}^{N}\displaystyle \sum _{s=0}^{j-l}\left(\begin{array}{c}p+s-1\\ s\end{array}\right)\\ \,\times \,\frac{{\left(-1\right)}^{s}{\rho }_{1,j}^{* }{f}_{1,j-s-p}^{* }\left(x,t\right)}{{\left({\upsilon }_{1}^{* }-{\upsilon }_{1}\right)}^{s+p}},\\ {{\rm{\Omega }}}_{2}={\left[{{\rm{\Omega }}}_{2,{lp}}\right]}_{N\times N}=-\displaystyle \sum _{j=l}^{N}\displaystyle \sum _{s=0}^{j-l}\left(\begin{array}{c}p+s-1\\ s\end{array}\right)\\ \,\times \,\frac{{\left(-1\right)}^{s}{\rho }_{1,j}^{* }{f}_{1,j-s-p}^{* }\left(x,t\right)}{{\left({\upsilon }_{1}^{* }-{\upsilon }_{2}\right)}^{s+p}},\\ {{\rm{\Omega }}}_{3}={\left[{{\rm{\Omega }}}_{3,{lp}}\right]}_{N\times N}=-\displaystyle \sum _{j=l}^{N}\displaystyle \sum _{s=0}^{j-l}\left(\begin{array}{c}p+s-1\\ s\end{array}\right)\\ \,\times \,\frac{{\left(-1\right)}^{l+1}{\left(-1\right)}^{s}{\rho }_{2,j}^{* }{f}_{2,j-s-p}^{* }\left(x,t\right)}{{\left({\upsilon }_{2}^{* }-{\upsilon }_{1}\right)}^{s+p}},\\ {{\rm{\Omega }}}_{4}={\left[{{\rm{\Omega }}}_{1,{lp}}\right]}_{N\times N}=-\displaystyle \sum _{j=l}^{N}\displaystyle \sum _{s=0}^{j-l}\left(\begin{array}{c}p+s-1\\ s\end{array}\right)\\ \,\times \,\frac{{\left(-1\right)}^{l+1}{\left(-1\right)}^{s}{\rho }_{2,j}^{* }{f}_{2,j-s-p}^{* }\left(x,t\right)}{{\left({\upsilon }_{2}^{* }-{\upsilon }_{1}\right)}^{s+p}},\\ \left|F\right\rangle ={\left({F}_{1},\cdots ,{F}_{N}\right)}^{{\rm{T}}},\ \ \ \left|G\right\rangle ={\left({G}_{1},\cdots ,{G}_{N}\right)}^{{\rm{T}}},\\ \left|H\right\rangle ={\left({H}_{1},\cdots ,{H}_{N}\right)}^{{\rm{T}}},\quad \ \left|L\right\rangle ={\left({L}_{1},\cdots ,{L}_{N}\right)}^{{\rm{T}}}.\end{array}\end{eqnarray}$
Let
$\begin{eqnarray}\begin{array}{l}{\rm{\Omega }}=\left(\begin{array}{cc}{{\rm{\Omega }}}_{1} & {{\rm{\Omega }}}_{2}\\ {{\rm{\Omega }}}_{3} & {{\rm{\Omega }}}_{4}\end{array}\right),\quad \ \left|{\alpha }_{1}\right\rangle ={\left(\left|{\eta }_{1}\right\rangle \left|{\eta }_{2}\right\rangle \right)}^{{\rm{T}}},\\ \left|{\alpha }_{2}\right\rangle ={\left(\left|{\hat{\eta }}_{1}\right\rangle \ \left|{\hat{\eta }}_{2}\right\rangle \right)}^{{\rm{T}}},\end{array}\end{eqnarray}$
so we have
$\begin{eqnarray}\begin{array}{rcl}\left(\begin{array}{cc}\left|H\right\rangle & \left|L\right\rangle \end{array}\right) & = & -{\left({I}_{\sigma }+{{\rm{\Omega }}}^{* }{\rm{\Omega }}\right)}^{-1}{{\rm{\Omega }}}^{* }\left|{\alpha }_{1}\right\rangle \\ & & +\,{\left({I}_{\sigma }+{{\rm{\Omega }}}^{* }{\rm{\Omega }}\right)}^{-1}\left|{\alpha }_{2}\right\rangle ,\end{array}\end{eqnarray}$
$\begin{eqnarray}\begin{array}{rcl}\left(\begin{array}{cc}\left|F\right\rangle & \left|G\right\rangle \end{array}\right) & = & -{\rm{\Omega }}\left({\left({I}_{\sigma }+{{\rm{\Omega }}}^{* }{\rm{\Omega }}\right)}^{-1}{{\rm{\Omega }}}^{* }\left|{\alpha }_{1}\right\rangle \right)\\ & & +\,{\left({I}_{\sigma }+{{\rm{\Omega }}}^{* }{\rm{\Omega }}\right)}^{-1}\left|{\alpha }_{2}\right\rangle +\left|{\alpha }_{1}\right\rangle ,\end{array}\end{eqnarray}$
where
$\begin{eqnarray}{I}_{\sigma }=\left(\begin{array}{cc}{I}_{N\times N} & 0\\ 0 & {I}_{N\times N}\end{array}\right).\end{eqnarray}$
Applying equations (75b) and (86a), we have
$\begin{eqnarray}\begin{array}{ccl}{M}_{12}\left(x,t,z\right) & = & -\frac{{\rm{i}}}{z}{q}_{-}\\ & & +\,\frac{\det \left({I}_{\sigma }+{{\rm{\Omega }}}^{* }{\rm{\Omega }}+\left|{\alpha }_{2}\right\rangle \left\langle Y\right|\right)-\det \left({I}_{\sigma }+{{\rm{\Omega }}}^{* }{\rm{\Omega }}+{{\rm{\Omega }}}^{* }\left|{\alpha }_{1}\right\rangle \left\langle Y\right|\right)}{\det \left({I}_{\sigma }+{{\rm{\Omega }}}^{* }{\rm{\Omega }}\right)},\end{array}\end{eqnarray}$
where
$\begin{eqnarray}\left\langle Y\right|=\left(\displaystyle \frac{1}{z-{\upsilon }_{1}},\cdots ,\displaystyle \frac{1}{{\left(z-{\upsilon }_{1}\right)}^{N}},\displaystyle \frac{1}{z-{\upsilon }_{2}},\cdots ,\displaystyle \frac{1}{{\left(z-{\upsilon }_{2}\right)}^{N}}\right).\end{eqnarray}$
With the nonzero boundary conditions equation (4), the N-order soliton solution of equation (1) is
$\begin{eqnarray}\begin{array}{rcl}q\left(x,t\right) & = & {\rm{i}}\mathop{\mathrm{lim}}\limits_{z\to \infty }{\left({zM}\right)}_{12}\\ & = & {\rm{i}}\mathop{\mathrm{lim}}\limits_{z\to \infty }z\left(-\displaystyle \frac{{\rm{i}}}{z}{q}_{-}+\displaystyle \frac{\det \left({I}_{\sigma }+{{\rm{\Omega }}}^{* }{\rm{\Omega }}+\left|{\alpha }_{2}\right\rangle \left\langle Y\right|\right)-\det \left({I}_{\sigma }+{{\rm{\Omega }}}^{* }{\rm{\Omega }}+{{\rm{\Omega }}}^{* }\left|{\alpha }_{1}\right\rangle \left\langle Y\right|\right)}{\det \left({I}_{\sigma }+{{\rm{\Omega }}}^{* }{\rm{\Omega }}\right)}\right)\\ & = & {q}_{-}+{\rm{i}}\displaystyle \frac{\det \left({I}_{\sigma }+{{\rm{\Omega }}}^{* }{\rm{\Omega }}+\left|{\alpha }_{2}\right\rangle \left\langle {Y}_{0}\right|\right)-\det \left({I}_{\sigma }+{{\rm{\Omega }}}^{* }{\rm{\Omega }}+{{\rm{\Omega }}}^{* }\left|{\alpha }_{1}\right\rangle \left\langle {Y}_{0}\right|\right)}{\det \left({I}_{\sigma }+{{\rm{\Omega }}}^{* }{\rm{\Omega }}\right)},\end{array}\end{eqnarray}$
where
$\begin{eqnarray}\left\langle {Y}_{0}\right|={\left(\mathrm{1,0},\cdots ,\mathrm{0,1,0},\cdots ,0\right)}_{1\times 2N}.\end{eqnarray}$
In order to further study the dynamic behaviors of soliton solutions, we do some image analysis. Based on equation (90), when N = 1, let $\beta =\tfrac{1}{2},{\rho }_{11}={\rho }_{21}={q}_{0}=1$, the dynamic behaviors of the solutions can be obtained as shown in figures 1 and 2.
Figure 1. The soliton solution with one simple pole of the LPD equation with $v$1 = 2i. (a) The soliton solution. (b) The density plot.
Figure 2. The soliton solution with one simple pole of the LPD equation with ${\upsilon }_{1}=\tfrac{1}{3}+2{\rm{i}}$. (a) The soliton solution. (b) The density plot.
It can be found that when z is a pure imaginary number, the propagation of the solution is parallel to the t-axis, which is usually called the steady-state breather soliton solution. When the real part of z is not equal to zero, the propagation of the solution is not parallel to the x-axis and t-axis, it is usually called the unsteady breather soliton solution, and it can be found that the arrangement of the soliton solution is very close. Comparing with the focusing nonlinear Schrödinger equation [27], the solution will be arranged more closely, that is, the propagation speed will be accelerated due to the addition of β in equation (1).
When N = 2, let β = 1 , ρ12 = ρ21 = q0 = 1, ρ11 = ρ22 = 2, the propagation behaviors of the solutions can be obtained as shown in figures 3 and 4.
Figure 3. The soliton solution with one second-order pole of the LPD equation with $v$1 = 2i. (a) The soliton solution. (b) The density plot.
Figure 4. The soliton solution with one second-order pole of the LPD equation with ${\upsilon }_{1}=\tfrac{1}{3}+2{\rm{i}}$. (a) The soliton solution. (b) The density plot.
It can be found that compared with the simple pole soliton solution, the second-order pole soliton solution has two columns of breather solutions moving and colliding, and the propagation speed of the solution is still very fast.

3.2. The RH problem with multiple higher-order poles

In this section, we will discuss the case that ${s}_{22}\left(z\right)$ has N-order zero points z1, z2, ⋯, znD+ and their powers are n1, n2,nN, respectively. Let
$\begin{eqnarray}{\xi }_{j}=\left\{\begin{array}{cc}{z}_{j} & ,\ j=1,2,\cdots ,N,\\ -\tfrac{{q}_{0}^{2}}{{z}_{j-N}^{* }} & ,\ j=N+1,N+2,\cdots ,2N.\end{array}\right.\end{eqnarray}$
Then the reflection coefficient $\rho \left(z\right)$ can be expressed as follows
$\begin{eqnarray}\begin{array}{rcl}\rho \left(z\right) & = & {\rho }_{0}\left(z\right)+\displaystyle \sum _{{m}_{j}=1}^{{n}_{j}}\displaystyle \frac{{\rho }_{j,{m}_{j}}}{{\left(z-{\xi }_{j}\right)}^{{m}_{j}}},j=1,2,\cdots ,N,\\ \rho \left(z\right) & = & {\tilde{\rho }}_{0}\left(z\right)+\displaystyle \sum _{{m}_{j}=1}^{{n}_{j}}\displaystyle \frac{{\left(-1\right)}^{{m}_{j}+1}{\rho }_{j,{m}_{j}}}{{\left(z-{\xi }_{j}\right)}^{{m}_{j}}},\\ j & = & N+1,N+2,\cdots ,2N,\end{array}\end{eqnarray}$
where ${\rho }_{0}\left(z\right)$ and ${\tilde{\rho }}_{0}\left(z\right)$ are analytic for all zD+ and
$\begin{eqnarray}{\rho }_{j,{m}_{j}}=\mathop{\mathrm{lim}}\limits_{z\to {\xi }_{j}}\displaystyle \frac{1}{\left({n}_{j}-{m}_{j}\right)!}\displaystyle \frac{{\partial }^{{n}_{j}-{m}_{j}}}{\partial {z}^{{n}_{j}-{m}_{j}}}\left[{\left(z-{\xi }_{m}\right)}^{{n}_{j}}\rho \left(z\right)\right].\end{eqnarray}$
Like the case of one higher-order pole discussed in above, the solution of equation (1) with multiple higher-order poles can be obtained as follows
$\begin{eqnarray}\begin{array}{ccl}q\left(x,t\right) & = & {q}_{-}\\ & & +\,{\rm{i}}\frac{\det \left({I}_{\sigma }+{{K}}^{* }{K}+\left|{X}\right\rangle \langle {Y}_{0}| \right)-\det \left({I}_{\sigma }+{{K}}^{* }{K}+{{K}}^{* }\left|{\rm{\Gamma }}\right\rangle \langle {Y}_{0}| \right)}{\det \left({I}_{\sigma }+{{K}}^{* }{K}\right)},\end{array}\end{eqnarray}$
where
$\begin{eqnarray}\begin{array}{cll}\left|{\Gamma }\right\rangle & = & {\left({\tau }_{1},{\tau }_{2},\cdots ,{\tau }_{2N}\right)}^{{\rm{T}}},\quad {\tau }_{j}={\left({\tau }_{j,1},{\tau }_{j,2},\cdots ,{\tau }_{j,{n}_{j}}\right)}^{{\rm{T}}},\\ \left|{X}\right\rangle & = & {\left({\chi }_{1},{\chi }_{2},\cdots ,{\chi }_{2N}\right)}^{{\rm{T}}},\quad {\chi }_{j}={\left({\chi }_{j,1},{\chi }_{j,2},\cdots ,{\chi }_{j,{n}_{j}}\right)}^{{\rm{T}}},\\ {\tau }_{j,l} & = & -{\rm{i}}{q}_{-}\displaystyle \sum _{{m}_{j}=l}^{N}\displaystyle \sum _{{s}_{j}=0}^{{m}_{j}-l}\frac{{\left(-1\right)}^{{s}_{j}+1}}{{\left({\xi }_{1}^{* }\right)}^{{s}_{j}+1}}\\ & & \times \,{\rho }_{j,{m}_{j}}^{* }{f}_{j,{m}_{j}-{s}_{j}-l}^{* }\left(x,t\right),j=1,2,\cdots N,\\ {\tau }_{j,l} & = & -{\rm{i}}{q}_{-}\displaystyle \sum _{{m}_{j}=l}^{N}\displaystyle \sum _{{s}_{j}=0}^{{m}_{j}-l}\frac{{\left(-1\right)}^{l+1}{\left(-1\right)}^{{s}_{j}+1}}{{\left({\xi }_{1}^{* }\right)}^{{s}_{j}+1}}\\ & & \times \,{\rho }_{j,{m}_{j}}^{* }{f}_{j,{m}_{j}-{s}_{j}-l}^{* }\left(x,t\right),j=N+1,N+2,\cdots 2N,\\ {\chi }_{j,l} & = & \displaystyle \sum _{{m}_{j}=l}^{{n}_{j}}{\rho }_{j,{m}_{j}}{f}_{j,{m}_{j}-l}\left(x,t\right),j=1,2,\cdots N,\\ {\chi }_{j,l} & = & \displaystyle \sum _{{m}_{j}=l}^{{n}_{j}}{\left(-1\right)}^{l+1}{\rho }_{j,{m}_{j}}{f}_{j,{m}_{j}-l}\left(x,t\right),\\ j & = & N+1,N+2,\cdots 2N,\\ {\boldsymbol{K}} & =\, & \left(\begin{array}{llll}\left({\kappa }_{11}\right) & \left({\kappa }_{12}\right) & \cdots & \left({\kappa }_{1\left(2N\right)}\right)\\ \left({\kappa }_{21}\right) & \left({\kappa }_{22}\right) & \cdots & \left({\kappa }_{2\left(2N\right)}\right)\\ \vdots & \vdots & & \vdots \\ \left({\kappa }_{\left(2N\right)1}\right) & \left({\kappa }_{\left(2N\right)2}\right) & \cdots & \left({\kappa }_{\left(2N\right)\left(2N\right)}\right)\end{array}\right),\\ \left({\theta }_{{js}}\right) & = & {\left({\left({\theta }_{{js}}\right)}_{{pq}}\right)}_{{n}_{j}\times {n}_{s}}\\ & = & -\displaystyle \sum _{{m}_{j}=p}^{{n}_{j}}\displaystyle \sum _{{s}_{j}=0}^{{m}_{j}-p}\left(\begin{array}{l}q+{s}_{j}-1\\ {s}_{j}\end{array}\right)\\ & & \times \,{\frac{{\left(-1\right)}^{{s}_{j}}{\rho }_{j,{m}_{j}}^{* }{f}_{j,{m}_{j}-{s}_{j}-p}^{* }\left(x,t\right)}{{\left({\xi }_{j}^{* }-{\xi }_{s}\right)}^{{s}_{j}+q}}}_{{n}_{j}\times {n}_{s}},\\ j & = & 1,2,\cdots N,\\ \left({\theta }_{{js}}\right) & = & {\left({\left({\theta }_{{js}}\right)}_{{pq}}\right)}_{{n}_{j}\times {n}_{s}}\\ & = & {\left(-\displaystyle \sum _{{m}_{j}=p}^{{n}_{j}}\displaystyle \sum _{{s}_{j}=0}^{{m}_{j}-p}{\left(-1\right)}^{l+1}\left(\begin{array}{l}q+{s}_{j}-1\\ {s}_{j}\end{array}\right)\frac{{\left(-1\right)}^{{s}_{j}}{\rho }_{j,{m}_{j}}^{* }{f}_{j,{m}_{j}-{s}_{j}-p}^{* }\left(x,t\right)}{{\left({\xi }_{j}^{* }-{\xi }_{s}\right)}^{{s}_{j}+q}}\right)}_{{n}_{j}\times {n}_{s}},\\ j & = & N+1,N+2,\cdots 2N,\\ \langle {Y}_{0}| & = & {\left(\mathrm{1,0},\cdots ,0\right)}_{1\times {n}_{1}},\ \ {\left(\mathrm{1,0},\cdots ,0\right)}_{1\times {n}_{2}},\,\cdots ,{\left(\mathrm{1,0},\cdots ,0\right)}_{1\times {n}_{j}},\\ {I}_{\sigma } & = & \left(\begin{array}{lccc}{I}_{{n}_{1}\times {n}_{1}} & & & \\ & {I}_{{n}_{2}\times {n}_{2}} & & \\ & & \ddots & \\ & & & {I}_{{n}_{j}\times {n}_{j}}\end{array}\right),\ \ \ j=1,2,\cdots ,2N.\end{array}\end{eqnarray}$
Here, we consider the propagation of solutions corresponding to a simple pole and a second-order pole. Let $\beta =\tfrac{1}{2}$, ρ11 = ρ12 = ρ21 = ρ31 = ρ32 = ρ41 = q0 = 1, the dynamic behaviors of the solution can be obtained as shown in figure 5.
Figure 5. The soliton solutions with one simple pole and a second-order pole of the LPD equation. (a) The soliton solutions corresponding to ${z}_{1}=2{\rm{i}},{z}_{2}=\tfrac{1}{3}{\rm{i}}$. (b) The soliton solutions corresponding to ${z}_{1}=\tfrac{1}{3}+2{\rm{i}},{z}_{2}=\tfrac{1}{3}{\rm{i}}$. (c) The soliton solutions corresponding to ${z}_{1}=\tfrac{1}{3}+2{\rm{i}},{z}_{2}=1-2{\rm{i}}$.
It can be found that in figure 5(a), when the two poles are a pure imaginary number and a non-pure imaginary number, the propagation behavior of the solution is a nonlinear superposition of the breather soliton solution corresponding to the pole of a first-order pure imaginary number and the breather soliton solution corresponding to the second-order pole of a non-pure imaginary number. In figure 5(b), when both poles are pure imaginary numbers, there are three columns of breather soliton solutions parallel to the t-axis moving and colliding. In figure 5(c), when the two poles are non-pure imaginary numbers, the breather solution corresponding to a simple pole and the breather soliton solution corresponding to the second-order pole collide after motion, but the propagation direction of the solution does not change significantly.

4. Summary

In this paper, we consider the Lakshmanan–Porsezian–Daniel (LPD) equation with nonzero boundary conditions. By analyzing the analyticity, symmetry, asymptotic properties of the Jost functions and scattering matrix, we construct the related Riemann–Hilbert (RH) problem. Due to the complexity of the Plemelj formula and the residue condition, in order to obtain the soliton solutions of equation (1) with multi-higher-order poles under nonzero boundary conditions, we perform Laurent expansion and Taylor series expansion on the scattering data ${s}_{22}\left(z\right)$ at the zero points to solve the corresponding RH problem.
In addition, we also analyze the dynamic behaviors of the soliton solutions. For the case of a higher-order pole, such as a simple pole and a second-order pole, the propagation of the solutions is shown in figures 14. The shape of the solution is similar to that of the breather soliton solution, and the propagation speed of the solution is faster. For the case of multiple higher-order poles, for example, a first-order pole plus a second-order pole, the propagation of the solution is shown in figure 5. It can be found that the propagation behaviors of the solutions can be regarded as a nonlinear superposition of a simple pole and a second-order pole, which is a very interesting phenomenon. The idea used in this paper can be extended to other integrable evolution equations, and the results can be used to study the long-time asymptotic property of equation (1) under nonzero boundary conditions.

This work is supported by the National Natural Science Foundation of China under Grant Nos. 12175111, 12275144 and 12235007, and the KC Wong Magna Fund in Ningbo University.

1
Kodama Y 2010 KP solitons in shallow water J. Phys. A 43 434004

DOI

2
Chen A H 2010 Multi-kink solutions and solution fission and fussion of Sharma–Tasso–Olver equation Phys. Lett. A 374 2340 2345

DOI

3
Liu Y Q, Wen X Y, Wang D S 2019 The N-soliton solution and localized wave interaction solutions of the (2+1)-dimensional generalized Hirota–Satsuma–Ito equation Comput. Math. Appl. 77 947 966

DOI

4
Zhang R, Sha W Y, Jiang G R 2013 Soliton-like thermal source forcing and singular response of atmosphere and oceans to it Appl. Math. Mech. 24 714 719

5
Novikov S, Manakov S V, Pitaevskii L P, Zakharov V E 1984 Theory of Solitons: The Inverse Scattering Method Springer

6
Fan E G 2022 Integrable Systems, Orthogonal Polynomials and Random Matrices: Riemann–Hilbert Method Science Press

7
Xiao Y, Fan E G 2016 A Riemann–Hilbert approach to the Harry-Dym equation on the line Chin. Ann. Math. Ser. B 37 373 384

DOI

8
Hirota R 2004 The Direct Method in Soliton Theory Cambridge University Press

9
Hietarinta J 2005 Hirota's bilinear method and soliton solutions Phys. AUC 15 31 37

10
Matveev Vladimir B, Salle M A 1991 Darboux Transformations and Solitons Springer

11
Gu C H, Hu H S, Zhou Z X 1999 Darboux Transformation in Soliton Theory and its Geometric Applications Shanghai Scientific and Technical Publishers

12
Doktorov E V, Leble S B 2007 A Dressing Method in Mathematical Physics Springer

13
Luo J H, Fan E G 2020 $\bar{\partial }$-dressing method for the coupled Gerdjikov–Ivanov equation Appl. Math. Lett. 110 106589

DOI

14
Yang S X, Li B 2023 $\bar{\partial }$-dressing method for the (2+1)-dimensional Korteweg–de Vries equation Appl. Math. Lett. 140 108589

DOI

15
Biondini G, Kovačič G 1979 Inverse scattering transform for the focusing nonlinear Schrödinger equation with nonzero boundary conditions J. Math. Phys. 55 031506

DOI

16
Chen Y, Peng W Q 2022 N-double poles solutions for nonlocal Hirota equation with nonzero boundary conditions using Riemann–Hilbert method and PINN algorithm Physica D 435 133274

DOI

17
Zhang G Q, Yan Z Y 2020 The derivative nonlinear Schrödinger equation with zero/nonzero boundary conditions: inverse scattering transforms and N-double-pole solutions J. Nonlinear Sci. 30 1089 3127

DOI

18
Qiu D, Zhang Y 2022 Novel solutions of the generalized mixed nonlinear Schrödinger equation with nonzero boundary condition Nonlinear Dyn. 111 7657 7670

DOI

19
Zhang Z C, Fan E G 2021 Inverse scattering transform and multiple high-order pole solutions for the Gerdjikov–Ivanov equation under the zero/nonzero background Z. Angew. Math. Phys. 72 1 25

DOI

20
Yang J J, Tian S F 2020 Riemann–Hilbert problem for the modified Landau–Lifshitz equation with nonzero boundary conditions Theor. Math. Phys. 205 1611 1637

DOI

21
Wu X H, Gao Y T, Yu X, Ding C C, Li L Q 2022 Modified generalized Darboux transformation and solitons for a Lakshmanan–Porsezian–Daniel equation Chaos Solitons Fractals 162 112399

DOI

22
Sedletsky Y V 2003 The fourth-order nonlinear Schrödinger equation for the envelope of Stokes waves on the surface of a finite-depth fluid J. Exp. Theor. 97 180 193

DOI

23
Akram G, Sadaf M, Dawood M, Baleanu D 2021 Optical solitons for Lakshmanan–Porsezian–Daniel equation with Kerr law non-linearity using improved tanψ(η) 2-expansion technique Results Phys. 29 104758

DOI

24
Zhang Y, Hao H Q, Guo R 2022 Periodic solutions and whitham modulation equations for the Lakshmanan–Porsezian–Daniel equation Phys. Lett. A 450 128369

DOI

25
Zhou S, Wang L, Zhao J F, Sun W R 2022 Nonlinear wave molecules for the Lakshmanan–Porsezian–Daniel equation in nonlinear optics and biology Ann. Phys. 534 2100545

DOI

26
Guo H D, Xia T C, Tong L N 2022 Abundant solutions for the Lakshmanan–Porsezian–Daniel equation in an optical fiber through Riemann–Hilbert approach Mod. Phys. Lett. B 36 2250058

DOI

27
Liu N, Guo B 2020 Solitons and rogue waves of the quartic nonlinear Schrödinger equation by Riemann–Hilbert approach Nonlinear Dyn. 100 629 646

DOI

Outlines

/