Welcome to visit Communications in Theoretical Physics,
Mathematical Physics

Riemann–Hilbert approach and multiple high-order pole solutions for the AB system

  • Wenjing Li ,
  • Yi Zhang ,
  • Xiaolin Yang
Expand
  • Department of Mathematics, Zhejiang Normal University, Jinhua 321004, China

Received date: 2024-05-06

  Revised date: 2024-07-13

  Accepted date: 2024-08-13

  Online published: 2024-09-20

Copyright

© 2024 Institute of Theoretical Physics CAS, Chinese Physical Society and IOP Publishing. All rights, including for text and data mining, AI training, and similar technologies, are reserved.

Abstract

This article's purpose is to investigate multiple high-order pole solutions for the AB system by the Riemann–Hilbert (RH) approach. We establish the RH problem through using spectral analysis to the Lax pair. Then the RH problem can be resolved and the soliton solution's formula can be given by using the Laurent expansion method. Finally, we get special soliton solutions, including dark solitons, W-type dark solitons and multiple high-pole solutions. In addition, the W-type dark soliton solutions will occur when the spectral parameters are purely imaginary.

Cite this article

Wenjing Li , Yi Zhang , Xiaolin Yang . Riemann–Hilbert approach and multiple high-order pole solutions for the AB system[J]. Communications in Theoretical Physics, 2024 , 76(11) : 115004 . DOI: 10.1088/1572-9494/ad6e63

1. Introduction

As is widely recognized, numerous effective approaches have been proposed for studying soliton solutions like the Hirota bilinear method [1], Darboux transform [2, 3], physics-informed neural networks [4, 5] 1 inverse scattering transform (IST) [6] and so on. Among these, the IST plays a role in resolving soliton solutions of completely integrable equations. The Riemann–Hilbert (RH) method is a newer form of IST that is garnering increasing interest and investigation [7]. Particularly, when dealing with high-order spectral issues, the RH approach is more convenient. Therefore, the application of the RH method to solve the high-order poles of some integrable equations has drawn increasing attention [811].
The crucial factor to solving nonlinear integrable equations is the pole of the transmission coefficient. The simple and the high-order pole are present in the transmission coefficient, but the RH problem is harder to solve in the case of the high-order pole than the one-order pole. Wadati combined distinct simple poles to research the third-order pole solitons of the modified KdV equation [12]. However, this approach is not practical for solutions involving multiple high-order poles and cannot ensure the regularity of the resulting pole solitons. Recently, Zhang and colleagues have shown an effective approach for obtaining multiple high-order pole solutions and ensuring their regularity, which is the improved RH method by using algebraic computation and matrix computation [13].
The AB system was suggested by Pedlosky in [14] and it can be transformed as follows [15]
$\begin{eqnarray}\begin{array}{rcl}{A}_{{xt}} & = & {AB},\\ {B}_{x} & = & -\displaystyle \frac{1}{2}{\left({\left|A\right|}^{2}\right)}_{t},\end{array}\end{eqnarray}$
where A = A(x, t) is a complex function and B = B(x, t) is a real function. The two variables A and B represent the baroclinic wave packet's amplitude and basic flow correction which is caused by the baroclinic wave's self-rectification. According to equation (1.1), the following normalizing condition is satisfied
$\begin{eqnarray}{\left({\left|A\right|}_{t}\right)}^{2}+{B}^{2}=1.\end{eqnarray}$
The AB equation's envelope periodic waves and solitary waves are used as models to describe ultra-short pulses in nonlinear optics and marginally unstable baroclinic wave packets in geophysical fluids [1619]. Moreover, the AB system will reduce to the sinh-Gordon and sine-Gordon equations when A is a real function [20], which are crucial to both quantum field theory and nonlinear dynamics [2123].
Since its extremely momentous physical significance, the study on the AB equation is ongoing. For the multi-component AB system, Yu et al have used the Hirota bilinear method to report bright-dark soliton solutions [24, 25]. Multi-dark-dark soliton solutions, semirational solutions, rogue wave solutions and breather solutions have been studied via Darboux transformation [20, 2629]. Geng and his collaborators have investigated bright and dark solitons with zero and nonzero backgrounds using the RH method [30, 31]. The nonlinear steepest decent approach has been used to study the long-time asymptotic behavior of solutions [32]. In this paper, we investigate the multiple high-order pole solutions of equation (1.1) according to the RH problem with zero boundary conditions. The primary objective is to establish the exact solution when the scattering data contains arbitrary order zeros. As far as we know, the following aspects of the AB system are still worth studying.

It remains unclear whether the system permits a solution with mixed simple pole and high-order pole, even though it has been shown that the system has several special single-pole solutions [30, 31].

Previously, the RH problem of the AB equation was solved using residue conditions instead of the Laurent expansion.

When the spectral parameters are pure imaginary, we obtain dark W-type soliton solutions, dark W-type double-pole solutions, and mixed dark W-type and double-pole solutions. The W-type solitons have been studied using modulation instability and Darboux transformation [3335]. However, the latter two types of solitons are new and have not been reported in other literature.

The RH approach has not been used to study multiple high-order pole solutions for the AB system.

This paper is organized in the following parts. First and foremost, in section 2, we give the spectral problem and the corresponding RH problem is constructed with zero boundary conditions. In section 3, the formula of the single high-order pole solutions is derived via Laurent expansion. Next, we generalize the soliton solutions for multiple high-order poles and analyze the dynamic behavior by the same method. Finally, section 4 will provide a succinct summary.

2. The Riemann–Hilbert problem

In this section, we carry out detailed spectral analysis from the Lax pair to prepare for constructing the RH problems.

2.1. Spectral analysis

The Lax pair of equation (1.1) reads
$\begin{eqnarray}{{\rm{\Omega }}}_{x}=U{\rm{\Omega }},\quad {{\rm{\Omega }}}_{t}=V{\rm{\Omega }},\end{eqnarray}$
where
$\begin{eqnarray}U=-{\rm{i}}\lambda {\sigma }_{3}+Q,\end{eqnarray}$
$\begin{eqnarray}V=-\displaystyle \frac{1}{4{\rm{i}}\lambda }{\sigma }_{3}B+\displaystyle \frac{1}{4{\rm{i}}\lambda }\widetilde{Q},\end{eqnarray}$
λ is spectrum parameter and
$\begin{eqnarray*}Q=\left(\begin{array}{cc}0 & \displaystyle \frac{1}{2}A\\ -\displaystyle \frac{1}{2}{A}^{* } & 0\end{array}\right),\quad \widetilde{Q}=\left(\begin{array}{cc}0 & {\rm{i}}{A}_{t}\\ {\rm{i}}{A}_{t}^{* } & 0\end{array}\right),\quad {\sigma }_{3}=\left(\begin{array}{cc}1 & 0\\ 0 & -1\end{array}\right).\end{eqnarray*}$
Considering the zero boundary value condition and the normalization condition (1.2), we can obtain
$\begin{eqnarray}A(x,t)\to 0,\quad B(x,t)\to 1\quad {\rm{as}}\quad x\to \pm \infty .\end{eqnarray}$
Then the modified Jost solutions will be given
$\begin{eqnarray}{\omega }_{\pm }(x,t,\lambda )={{\rm{\Omega }}}_{\pm }(x,t,\lambda ){{\rm{e}}}^{{\rm{i}}\lambda x+\displaystyle \frac{1}{4{\rm{i}}\lambda }t}.\end{eqnarray}$
Thus ω±(x, t, λ) satisfies the following asymptotic property
$\begin{eqnarray}{\omega }_{\pm }(x,t,\lambda )\to {\mathbb{I}},\quad x\to \pm \infty ,\end{eqnarray}$
where ${\mathbb{I}}$ is a 2 × 2 identity matrix. Then substituting (2.5) into (2.1), we arrive at the equivalent spectrum problem as follows
$\begin{eqnarray}{\omega }_{\pm ,x}=-{\rm{i}}\lambda [{\sigma }_{3},{\omega }_{\pm }]+Q{\omega }_{\pm },\end{eqnarray}$
$\begin{eqnarray}{\omega }_{\pm ,t}=-\displaystyle \frac{1}{4{\rm{i}}\lambda }\left(-{\omega }_{\pm }{\sigma }_{3}+B{\sigma }_{3}{\omega }_{\pm }\right)+\displaystyle \frac{1}{4{\rm{i}}\lambda }\widetilde{Q}{\omega }_{\pm },\end{eqnarray}$
where [σ3, ω±] = σ3ω±ω±σ3.
Conveniently, for the sake of supporting the study of spectral analysis, the eigenfunctions ω±(x, λ) are accurately described
$\begin{eqnarray}{\omega }_{-}(x,\lambda )={\mathbb{I}}+{\int }_{-\infty }^{x}{{\rm{e}}}^{{\rm{i}}\lambda {\sigma }_{3}(y-x)}Q(y){\omega }_{-}(y,\lambda ){{\rm{e}}}^{-{\rm{i}}\lambda {\sigma }_{3}(y-x)}{\rm{d}}{y},\end{eqnarray}$
$\begin{eqnarray}{\omega }_{+}(x,\lambda )={\mathbb{I}}+{\int }_{+\infty }^{x}{{\rm{e}}}^{{\rm{i}}\lambda {\sigma }_{3}(y-x)}Q(y){\omega }_{+}(y,\lambda ){{\rm{e}}}^{-{\rm{i}}\lambda {\sigma }_{3}(y-x)}{\rm{d}}{y}.\end{eqnarray}$
Because Ω± are the linear associated matrix solutions of equation (2.1), there is a spectral matrix S(λ) which we obtain from equation (2.5)
$\begin{eqnarray}{\omega }_{-}(x,t,\lambda ){{\rm{e}}}^{-{\rm{i}}\lambda x-\displaystyle \frac{1}{4{\rm{i}}\lambda }t}={\omega }_{+}(x,t,\lambda ){{\rm{e}}}^{-{\rm{i}}\lambda x-\displaystyle \frac{1}{4{\rm{i}}\lambda }t}S(\lambda ),\end{eqnarray}$
where
$\begin{eqnarray*}S(\lambda )=\left(\begin{array}{cc}{s}_{11}(\lambda ) & {s}_{12}(\lambda )\\ {s}_{21}(\lambda ) & {s}_{22}(\lambda )\end{array}\right),\end{eqnarray*}$
and sij(i, j = 1, 2) are typically referred to as scattering data.

${\omega }_{\pm }(x,t,\lambda )$ possess the following analytic properties:

${\omega }_{+,2}$, ${\omega }_{-,1}$ and s11 are continuous for ${C}^{+}\cup {\mathbb{R}}$ and can be analytically extended to ${C}^{+}$,

${\omega }_{-,2}$, ${\omega }_{+,1}$ and s22 are continuous for ${C}^{-}\cup {\mathbb{R}}$ and can be analytically extended to ${C}^{-}$,

where ${\omega }_{\pm ,j}(x,t,\lambda )(j=1,2)$ denote the jth column of ${\omega }_{\pm }(x,t,\lambda )$, ${\mathbb{R}}$ is the real axis, ${C}^{\pm }$ mean the upper and lower half complex plane.

The asymptotic expansion can be written as
$\begin{eqnarray}{\omega }_{\pm }(x,t,\lambda )={\omega }_{\pm }^{(0)}+\displaystyle \frac{{\omega }_{\pm }^{(1)}}{\lambda }+\displaystyle \frac{{\omega }_{\pm }^{(2)}}{{\lambda }^{2}}+...,\quad \lambda \to \infty ,\end{eqnarray}$
where ${\omega }_{\pm }^{(i)}(i=0,1,2,\ldots \,)$ are independent of λ. When the expansion is substituted into the equation (2.7) and the corresponding coefficients of λ are compared, one can obtain
x-part:
$\begin{eqnarray*}\begin{array}{l}\,O(\lambda ):\qquad 0=-{\rm{i}}[{\sigma }_{3},{\omega }_{\pm }^{(0)}],\\ \,O({\lambda }^{0}):\qquad {\omega }_{x}^{(0)}=-{\rm{i}}[{\sigma }_{3},{\omega }_{\pm }^{(1)}]+Q{\omega }_{\pm }^{(0)},\\ O({\lambda }^{-1}):\qquad {\omega }_{\pm ,x}^{(1)}=-{\rm{i}}[{\sigma }_{3},{\omega }_{\pm }^{(2)}]+Q{\omega }_{\pm }^{(1)}.\end{array}\end{eqnarray*}$
t-part:
$\begin{eqnarray*}\begin{array}{l}O(\lambda ):\qquad {\omega }_{\pm ,t}^{(0)}=0,\\ \Space{0ex}{0.04em}{0ex}O({\lambda }^{-1}):\qquad {\omega }_{\pm ,t}^{(1)}=-\displaystyle \frac{1}{4{\rm{i}}}(-{\omega }_{\pm }^{(0)}{\sigma }_{3}+B{\sigma }_{3}{\omega }_{\pm }^{(0)})\\ \Space{0ex}{0.04em}{0ex}+\displaystyle \frac{1}{4{\rm{i}}}\widetilde{Q}{\omega }_{\pm }^{(0)}.\end{array}\end{eqnarray*}$
From the above, we can deduce
$\begin{eqnarray}{\omega }_{\pm }^{(0)}={\mathbb{I}},\quad A=4{\rm{i}}{\omega }_{\pm ,12}^{(1)},\quad B=-4{\rm{i}}{\left({\omega }_{\pm ,11}^{(1)}\right)}_{t}+1,\end{eqnarray}$
where the subscript ij represents the element in the j column and the i row of the matrix ω.

2.2. Symmetries

For the purpose of making the following symmetry analysis easier, we define the reflection coefficients ϱ(λ) and $\tilde{\varrho }(\lambda )$:
$\begin{eqnarray}\varrho (\lambda )=\displaystyle \frac{{s}_{21}}{{s}_{11}},\quad \tilde{\varrho }(\lambda )=\displaystyle \frac{{s}_{12}}{{s}_{22}},\quad \lambda \in {\mathbb{R}}.\end{eqnarray}$
Owing to the symmetry relation Q = − Q, one can obtain
$\begin{eqnarray}{\omega }_{\pm }^{\dagger }(x,t,{\lambda }^{* })={\omega }_{\pm }^{-1}(x,t,\lambda ),\end{eqnarray}$
where † means the Hermitian conjugation. Then the symmetry of matrix S can be inferred as follows by using equation (2.9)
$\begin{eqnarray}{S}^{\dagger }({\lambda }^{* })={S}^{-1}(\lambda ),\end{eqnarray}$
or
$\begin{eqnarray}{s}_{22}^{* }({\lambda }^{* })={s}_{11}(\lambda ),\quad {s}_{21}^{* }({\lambda }^{* })=-{s}_{12}(\lambda ).\end{eqnarray}$
According to the above relationship and the definition of ϱ(λ) and $\tilde{\varrho }(\lambda )$, one can achieve
$\begin{eqnarray}{\varrho }^{* }({\lambda }^{* })=-\tilde{\varrho }(\lambda ).\end{eqnarray}$

2.3. Riemann–Hilbert problem

We can propose a piecewise meromorphic function based on the analytic features of ω±(x, t, λ). Defining P(x, t, λ) as
$\begin{eqnarray}P(x,t,\lambda )=\left\{\begin{array}{ll}{P}^{+}=\left(\begin{array}{cc}\displaystyle \frac{{\omega }_{-,1}}{{s}_{11}} & {\omega }_{+,2}\end{array}\right), & \lambda \in {C}^{+},\\ {P}^{-}=\left(\begin{array}{cc}{\omega }_{+,1} & \displaystyle \frac{{\omega }_{-,2}}{{s}_{22}}\end{array}\right), & \lambda \in {C}^{-}.\end{array}\right.\end{eqnarray}$
Then the properties of P(x, t, λ) are listed.

A multiplicative matrix RH problem is proposed:

Analyticity : $P(x,t,\lambda )$ is analytic in ${\mathbb{C}}/{\mathbb{R}}$,

Jump condition: ${P}^{-}(x,t,\lambda )={P}^{+}(x,t,\lambda )J(x,t,\lambda )$, $\lambda \in {\mathbb{R}}$,

Asymptotic behaviors : $P(x,t,\lambda )\sim {\mathbb{I}}+O(\tfrac{1}{\lambda }),\quad \lambda \to \infty $,

where
$\begin{eqnarray}J(x,t,\lambda )=\left(\begin{array}{cc}1 & {{\rm{e}}}^{2{\rm{\Delta }}}\tilde{\varrho }(\lambda )\\ -{{\rm{e}}}^{-2{\rm{\Delta }}}\varrho (\lambda ) & 1+\tilde{\varrho }(\lambda )\varrho (\lambda )\end{array}\right)\end{eqnarray}$
and ${\rm{\Delta }}=-{\rm{i}}\lambda x-\tfrac{1}{4{\rm{i}}\lambda }t$.
Moreover, it is possible to write the solution as
$\begin{eqnarray}A(x,t)=4{\rm{i}}{P}_{12}^{(1)},\quad B(x,t)=-4{\rm{i}}{\left({P}_{11}^{(1)}\right)}_{t}+1.\end{eqnarray}$

3. RH problem with high-order poles

In this section we consider the reflectionless condition and start from a single high-order pole. Then the more general situation will be investigated.

3.1. RH problem with single high-order pole

Suppose λ0C+ is a high-order pole, according to the symmetric relations (2.14), obviously, ${\lambda }_{0}^{* }$ is the zero of s22, and the discrete spectrum reads:
$\begin{eqnarray}\{{\lambda }_{0},{\lambda }_{0}^{* }\}.\end{eqnarray}$
Let
$\begin{eqnarray}{s}_{11}(\lambda )={\left(\lambda -{\lambda }_{0}\right)}^{H}{s}_{0}(\lambda ),\end{eqnarray}$
in which s0(λ) ≠ 0 in D+. Then ϱ(λ) and ϱ*(λ*) are expanded as
$\begin{eqnarray}\begin{array}{rcl}\varrho (\lambda ) & = & {\varrho }_{0}({\lambda }_{0})+\displaystyle \sum _{m=1}^{H}\displaystyle \frac{{\varrho }_{m}}{{\left(\lambda -{\lambda }_{0}\right)}^{m}}\qquad \mathrm{and}\\ {\varrho }^{* }({\lambda }^{* }) & = & {\varrho }_{0}^{* }({\lambda }_{0}^{* })+\displaystyle \sum _{m=1}^{H}\displaystyle \frac{{\varrho }_{m}^{* }}{{\left(\lambda -{\lambda }_{0}^{* }\right)}^{m}},\end{array}\end{eqnarray}$
where ϱm are defined by
$\begin{eqnarray}\begin{array}{rcl}{\varrho }_{m} & = & \mathop{\mathrm{lim}}\limits_{\lambda \to {\lambda }_{0}}\displaystyle \frac{1}{(H-m)!}\displaystyle \frac{{\partial }^{H-m}}{\partial {\lambda }^{H-m}}[{\left(\lambda -{\lambda }_{0}\right)}^{H}\varrho (\lambda )],\\ m & = & 1,2,3,\ldots ,H.\end{array}\end{eqnarray}$
Recalling the definition of matrix P, one can obtain that λ = λ0 is the Hth-order pole of P11(x, t, λ) while $\lambda ={\lambda }_{0}^{* }$ is the Hth-order pole of P12(x, t, λ). Then P11(x, t, λ) and P12(x, t, λ) are expanded via the Laurent series expansion:
$\begin{eqnarray}{P}_{11}=1+\displaystyle \sum _{r=1}^{H}\left\{\displaystyle \frac{{L}_{r}(x,t)}{{\left(\lambda -{\lambda }_{0}\right)}^{r}}\right\},\end{eqnarray}$
$\begin{eqnarray}{P}_{12}=\displaystyle \sum _{r=1}^{H}\left\{\displaystyle \frac{{R}_{r}(x,t)}{{\left(\lambda -{\lambda }_{0}^{* }\right)}^{r}}\right\},\end{eqnarray}$
Lr(x, t) and Rr(x, t) are the undetermined function. Once they are solved, we can derive P(x, t, λ). Now we can work out Lr(x, t) and Rr(x, t). To this end, we expand these series
$\begin{eqnarray}\begin{array}{rcl}{{\rm{e}}}^{-2{\rm{\Delta }}(\lambda )} & = & \displaystyle \sum _{d=0}^{+\infty }{g}_{d}(x,t){\left(\lambda -{\lambda }_{0}\right)}^{d},\\ {{\rm{e}}}^{2{\rm{\Delta }}(\lambda )} & = & \displaystyle \sum _{d=0}^{+\infty }{g}_{d}^{* }(x,t){\left(\lambda -{\lambda }_{0}^{* }\right)}^{d},\end{array}\end{eqnarray}$
$\begin{eqnarray}\begin{array}{rcl}{P}_{11}(x,t,\lambda ) & = & \displaystyle \sum _{d=0}^{H}{\mu }_{d}(x,t){\left(\lambda -{\lambda }_{0}^{* }\right)}^{d},\\ {P}_{12}(x,t,\lambda ) & = & \displaystyle \sum _{d=0}^{H}{\nu }_{d}(x,t){\left(\lambda -{\lambda }_{0}\right)}^{d},\end{array}\end{eqnarray}$
where
$\begin{eqnarray}{g}_{d}(x,t)=\mathop{\mathrm{lim}}\limits_{\lambda \to {\lambda }_{0}}\displaystyle \frac{1}{d!}\displaystyle \frac{{\partial }^{d}}{\partial {\lambda }^{d}}{{\rm{e}}}^{-2{\rm{\Delta }}},\end{eqnarray}$
$\begin{eqnarray}{\mu }_{d}(x,t)=\mathop{\mathrm{lim}}\limits_{\lambda \to {\lambda }_{0}^{* }}\displaystyle \frac{1}{d!}\displaystyle \frac{{\partial }^{d}}{\partial {\lambda }^{d}}{P}_{11}(x,t,\lambda ),\end{eqnarray}$
$\begin{eqnarray}{\nu }_{d}(x,t)=\mathop{\mathrm{lim}}\limits_{\lambda \to {\lambda }_{0}}\displaystyle \frac{1}{d!}\displaystyle \frac{{\partial }^{d}}{\partial {\lambda }^{d}}{P}_{12}(x,t,\lambda ).\end{eqnarray}$
The expansions in λ = λ0 can be obtained when λC+ is as follows
$\begin{eqnarray}\begin{array}{rcl}{P}_{11}(x,t,\lambda ) & = & \displaystyle \frac{{\omega }_{-,11}}{{s}_{11}}={\omega }_{+,11}+\varrho (\lambda ){{\rm{e}}}^{-2{\rm{\Delta }}}{\omega }_{+,12},\\ {P}_{12}(x,t,\lambda ) & = & {\omega }_{+,12}.\end{array}\end{eqnarray}$
Comparing the coefficients of ${\left(\lambda -{\lambda }_{0}\right)}^{-r}$ with equation (3.5), it yields
$\begin{eqnarray}{L}_{r}(x,t)=\displaystyle \sum _{z=r}^{H}\displaystyle \sum _{d=0}^{z-r}{\varrho }_{z}{g}_{z-r-d}(x,t){\nu }_{d}(x,t).\end{eqnarray}$
Taking $\lambda ={\lambda }_{0}^{* }$ and λC, one can obtain
$\begin{eqnarray}\begin{array}{rcl}{P}_{11}(x,t,\lambda ) & = & {\omega }_{+,11},\\ {P}_{12}(x,t,\lambda ) & = & \displaystyle \frac{{\omega }_{-,12}}{{s}_{22}}={\omega }_{+,12}+\tilde{\varrho }(\lambda ){{\rm{e}}}^{2{\rm{\Delta }}}{\omega }_{+,11}.\end{array}\end{eqnarray}$
Similarly, comparing ${\left(\lambda -{\lambda }_{0}^{* }\right)}^{-r}$'s coefficients with equation (3.6), we have
$\begin{eqnarray}{R}_{r}(x,t)=-\displaystyle \sum _{z=r}^{H}\displaystyle \sum _{d=0}^{z-r}{\varrho }_{z}^{* }{g}_{z-r-d}^{* }(x,t){\mu }_{d}(x,t).\end{eqnarray}$
In addition, μd(x, t) and νd(x, t) are expressed via direct calculation
$\begin{eqnarray}\begin{array}{l}{\mu }_{d}(x,t)\\ \quad =\left\{\begin{array}{ll}1+\displaystyle \sum _{r=1}^{H}\{\displaystyle \frac{{L}_{r}(x,t)}{{\left({\lambda }_{0}^{* }-{\lambda }_{0}\right)}^{r}}\}, & d=0,\\ \displaystyle \sum _{r=1}^{H}\left(\begin{array}{c}r+d-1\\ d\end{array}\right)\{\displaystyle \frac{{\left(-1\right)}^{d}{L}_{r}(x,t)}{{\left({\lambda }_{0}^{* }-{\lambda }_{0}\right)}^{r+d}}\}, & d=1,2,3,\ldots ,\end{array}\right.\end{array}\end{eqnarray}$
$\begin{eqnarray}\begin{array}{rcl}{\nu }_{d}(x,t) & = & \displaystyle \sum _{r=1}^{H}\left(\begin{array}{c}r+d-1\\ d\end{array}\right)\left\{\displaystyle \frac{{\left(-1\right)}^{d}{R}_{r}(x,t)}{{\left({\lambda }_{0}-{\lambda }_{0}^{* }\right)}^{r+d}}\right\},\\ d & = & 0,1,2,\ldots ,\end{array}\end{eqnarray}$
then
$\begin{eqnarray}\begin{array}{rcl}{L}_{r}(x,t) & = & \displaystyle \sum _{z=r}^{H}\displaystyle \sum _{d=0}^{z-r}\displaystyle \sum _{p=1}^{H}\left(\begin{array}{c}p+d-1\\ d\end{array}\right){\varrho }_{z}{g}_{z-r-d}(x,t)\\ & & \Space{0ex}{4.04em}{0ex}\times \left\{\displaystyle \frac{{\left(-1\right)}^{d}{R}_{p}(x,t)}{{\left({\lambda }_{0}-{\lambda }_{0}^{* }\right)}^{d+p}}\right\},\end{array}\end{eqnarray}$
$\begin{eqnarray}\begin{array}{rcl}{R}_{r}(x,t) & = & -\displaystyle \sum _{z=r}^{H}{\varrho }_{z}^{* }{g}_{z-r-d}^{* }(x,t)\\ & & -\displaystyle \sum _{z=r}^{H}\displaystyle \sum _{d=0}^{z-r}\displaystyle \sum _{p=1}^{H}\left(\begin{array}{c}p+d-1\\ d\end{array}\right){\varrho }_{z}^{* }{g}_{z-r-d}^{* }(x,t)\\ & & \times \left\{\displaystyle \frac{{\left(-1\right)}^{d}{L}_{p}(x,t)}{{\left({\lambda }_{0}^{* }-{\lambda }_{0}\right)}^{d+p}}\right\}.\end{array}\end{eqnarray}$
To facilitate representation, we introduce notations
$\begin{eqnarray}| \vartheta \rangle ={\left({\vartheta }_{1},{\vartheta }_{2},\ldots ,{\vartheta }_{H}\right)}^{{\rm{T}}},\quad {\vartheta }_{r}=-\displaystyle \sum _{z=r}^{H}{\varrho }_{z}^{* }{g}_{z-r-d}^{* }(x,t),\end{eqnarray}$
$\begin{eqnarray}| L\rangle ={\left({L}_{1},{L}_{2},\ldots ,{L}_{H}\right)}^{{\rm{T}}},\quad | R\rangle ={\left({R}_{1},{R}_{2},\ldots ,{R}_{H}\right)}^{{\rm{T}}},\end{eqnarray}$
$\begin{eqnarray}\begin{array}{rcl}{\rm{\Upsilon }} & = & {\left[{{\rm{\Upsilon }}}_{{rp}}\right]}_{H\times H}=\left[\displaystyle \sum _{z=r}^{H}\displaystyle \sum _{d=0}^{z-r}\left(\begin{array}{c}p+d-1\\ d\end{array}\right)\right.\\ & & \left.\times \displaystyle \frac{{\left(-1\right)}^{d}{\varrho }_{z}{g}_{z-r-d}(x,t)}{{\left({\lambda }_{0}-{\lambda }_{0}^{* }\right)}^{d+p}}\right].\end{array}\end{eqnarray}$
Therefore, the equations (3.18)–(3.22) can be written as follows
$\begin{eqnarray}\left\{\begin{array}{l}{\rm{\Lambda }}| L\rangle -{\rm{\Upsilon }}| R\rangle =0,\\ {{\rm{\Upsilon }}}^{* }| L\rangle +{\rm{\Lambda }}| R\rangle =| \vartheta \rangle .\end{array}\right.\end{eqnarray}$
By calculation, ∣L⟩ and $\left|R\right\rangle $ are explicitly expressed as
$\begin{eqnarray}| L\rangle ={\rm{\Upsilon }}{\left({\rm{\Lambda }}+{{\rm{\Upsilon }}}^{* }{\rm{\Upsilon }}\right)}^{-1}| \vartheta \rangle ,\end{eqnarray}$
$\begin{eqnarray}| R\rangle ={\left({\rm{\Lambda }}+{{\rm{\Upsilon }}}^{* }{\rm{\Upsilon }}\right)}^{-1}| \vartheta \rangle ,\end{eqnarray}$
where
$\begin{eqnarray}{\rm{\Lambda }}={I}_{H\times H}.\end{eqnarray}$
So the expansions of P11 and P12 are given as
$\begin{eqnarray}{P}_{11}(x,t,\lambda )=\displaystyle \frac{\det ({\rm{\Lambda }}+{{\rm{\Upsilon }}}^{* }{\rm{\Upsilon }}+| \vartheta \rangle \langle K| {\rm{\Upsilon }})}{\det ({\rm{\Lambda }}+{{\rm{\Upsilon }}}^{* }{\rm{\Upsilon }})},\end{eqnarray}$
$\begin{eqnarray}{P}_{12}(x,t,\lambda )=\displaystyle \frac{\det ({\rm{\Lambda }}+{{\rm{\Upsilon }}}^{* }{\rm{\Upsilon }}+| \vartheta \rangle \langle {K}_{1}| }{\det ({\rm{\Lambda }}+{{\rm{\Upsilon }}}^{* }{\rm{\Upsilon }})}-1,\end{eqnarray}$
where
$\begin{eqnarray}\langle K(\lambda )| =(\displaystyle \frac{1}{(\lambda -{\lambda }_{0})},\displaystyle \frac{1}{{\left(\lambda -{\lambda }_{0}\right)}^{2}},\ldots ,\displaystyle \frac{1}{{\left(\lambda -{\lambda }_{0}\right)}^{H}}),\end{eqnarray}$
$\begin{eqnarray}\langle {K}_{1}(\lambda )| =(\displaystyle \frac{1}{(\lambda -{\lambda }_{0}^{* })},\displaystyle \frac{1}{{\left(\lambda -{\lambda }_{0}^{* }\right)}^{2}},\ldots ,\displaystyle \frac{1}{{\left(\lambda -{\lambda }_{0}^{* }\right)}^{H}}).\end{eqnarray}$

With the rapidly decaying initial condition (2.5), if s11 has a high-order zero, then the soliton solution is

$\begin{eqnarray}\begin{array}{rcl}A(x,t) & = & 4{\rm{i}}\displaystyle \frac{\det ({\rm{\Lambda }}+{{\rm{\Upsilon }}}^{* }{\rm{\Upsilon }}+| \vartheta \rangle \langle \widetilde{K}| )}{\det ({\rm{\Lambda }}+{{\rm{\Upsilon }}}^{* }{\rm{\Upsilon }})},\\ B(x,t) & = & 1-4{\rm{i}}{\left(\displaystyle \frac{\det ({\rm{\Lambda }}+{{\rm{\Upsilon }}}^{* }{\rm{\Upsilon }}+| \vartheta \rangle \langle \widetilde{K}| {\rm{\Upsilon }})}{\det ({\rm{\Lambda }}+{{\rm{\Upsilon }}}^{* }{\rm{\Upsilon }})}\right)}_{t},\end{array}\end{eqnarray}$
where
$\begin{eqnarray}\langle \tilde{K}| \,=\,{\left(\mathrm{1,0,0},\ldots ,0\right)}_{1\times H}.\end{eqnarray}$

Case 1: Let H = 1, and one soliton can be obtained and shown in figure 1. B is a W-type dark soliton as λ0 is purely imaginary. If λ is not purely imaginary, B will be a dark soliton. The elements of equation (3.30) can be derived from
$\begin{eqnarray}{{\rm{\Upsilon }}}_{11}=\displaystyle \frac{{\varrho }_{1}{g}_{0}}{{\lambda }_{0}-{\lambda }_{0}^{* }},\quad {\vartheta }_{1}=-{\varrho }_{1}^{* }{g}_{0}^{* }.\end{eqnarray}$
Figure 1. The single solution with parameters (1) ϱ1 = 1, λ0 = i. (2) ϱ1 = 1, λ0 = 2 + i.
Case 2: Considering a second-order pole soliton, we take H = 2 and get figure 2. As same as the first example, B has dark W-type double-pole soliton solutions, depending on whether λ0 is purely imaginary. The elements of equation (3.30) can be derived
$\begin{eqnarray}\begin{array}{rcl}{{\rm{\Upsilon }}}_{11} & = & \displaystyle \frac{{\varrho }_{1}{g}_{0}}{{\lambda }_{0}-{\lambda }_{0}^{* }}+\displaystyle \frac{{\varrho }_{2}{g}_{1}}{{\lambda }_{0}-{\lambda }_{0}^{* }}-\displaystyle \frac{{\varrho }_{2}{g}_{0}}{{\left({\lambda }_{0}-{\lambda }_{0}^{* }\right)}^{2}},\\ {{\rm{\Upsilon }}}_{12} & = & \displaystyle \frac{{\varrho }_{1}{g}_{0}}{{\left({\lambda }_{0}-{\lambda }_{0}^{* }\right)}^{2}}+\displaystyle \frac{{\varrho }_{2}{g}_{1}}{{\left({\lambda }_{0}-{\lambda }_{0}^{* }\right)}^{2}}-\displaystyle \frac{2{\varrho }_{2}{g}_{0}}{{\left({\lambda }_{0}-{\lambda }_{0}^{* }\right)}^{3}},\\ {{\rm{\Upsilon }}}_{21} & = & \displaystyle \frac{{\varrho }_{2}{g}_{0}}{{\lambda }_{0}-{\lambda }_{0}^{* }},\quad {{\rm{\Upsilon }}}_{22}=\displaystyle \frac{{\varrho }_{2}{g}_{0}}{{\left({\lambda }_{0}-{\lambda }_{0}^{* }\right)}^{2}},\\ \vartheta & = & -{\varrho }_{1}^{* }{g}_{0}^{* }-{\varrho }_{2}^{* }{g}_{1}^{* },\quad \vartheta =-{\varrho }_{2}^{* }{g}_{0}^{* }.\end{array}\end{eqnarray}$
Figure 2. The second-order pole solution with parameters ϱ1 = 1, ϱ2 = 2. (1) λ0 = i. (2) λ0 = 1 + i.

3.2. RH problem with multiple high-order poles

Assume λ1, λ2, …, λH (λzD+, z = 1, 2,…,H) are H high-order zeros of s11, and the powers are h1, h2, …, hH, respectively. Based on the Laurent series, ϱz(λ) and ${\varrho }_{z}^{* }({\lambda }^{* })$ are expanded as
$\begin{eqnarray}\begin{array}{rcl}{\varrho }_{z}(\lambda ) & = & {\varrho }_{z,0}(\lambda )+\displaystyle \sum _{{m}_{z}=1}^{{h}_{z}}\displaystyle \frac{{\varrho }_{z,{m}_{z}}}{{\left(\lambda -{\lambda }_{z}\right)}^{{m}_{z}}},\\ {\varrho }_{z}^{* }({\lambda }^{* }) & = & {\varrho }_{z,0}^{* }({\lambda }^{* })+\displaystyle \sum _{{m}_{z}=1}^{{h}_{z}}\displaystyle \frac{{\varrho }_{z,{m}_{z}}}{{\left(\lambda -{\lambda }_{z}^{* }\right)}^{{m}_{z}}},\end{array}\end{eqnarray}$
where
$\begin{eqnarray}{\varrho }_{z,{m}_{z}}=\mathop{\mathrm{lim}}\limits_{\lambda \to {\lambda }_{z}}\displaystyle \frac{1}{({h}_{z}-{m}_{z})!}\displaystyle \frac{{\partial }^{{h}_{z}-{m}_{z}}}{\partial {\lambda }^{{h}_{z}-{m}_{z}}}[{\left(\lambda -{\lambda }_{z}\right)}^{{h}_{z}}\varrho (\lambda )],\end{eqnarray}$
and ϱz,0(λ)(z = 1,…,H) are analytic for all λD+ .
Then we obtain the multiple high-order solitons as follows.

With the rapidly decaying initial condition (2.4), if s11 has H distinct high-order zeros, then the multiple solitons of the AB system have the same form as (3.30)

$\begin{eqnarray}\begin{array}{rcl}A(x,t) & = & 4{\rm{i}}\displaystyle \frac{\det ({\rm{\Lambda }}+{{\rm{\Upsilon }}}^{* }{\rm{\Upsilon }}+| \vartheta \rangle \langle \widetilde{K}| )}{\det ({\rm{\Lambda }}+{{\rm{\Upsilon }}}^{* }{\rm{\Upsilon }})},\\ B(x,t) & = & 1-4{\rm{i}}{\left(\displaystyle \frac{\det ({\rm{\Lambda }}+{{\rm{\Upsilon }}}^{* }{\rm{\Upsilon }}+| \vartheta \rangle \langle \widetilde{K}| {\rm{\Upsilon }})}{\det ({\rm{\Lambda }}+{{\rm{\Upsilon }}}^{* }{\rm{\Upsilon }})}\right)}_{t},\end{array}\end{eqnarray}$
where
$\begin{eqnarray}| \vartheta \rangle ={\left[{\vartheta }_{1},{\vartheta }_{2},\ldots ,{\vartheta }_{H}\right]}^{{\rm{T}}},\quad | {\vartheta }_{z}\rangle =[{\vartheta }_{z,1},{\vartheta }_{z,2},\ldots ,{\vartheta }_{z,{h}_{z}}],\end{eqnarray}$
$\begin{eqnarray}{\vartheta }_{z,d}=-\displaystyle \sum _{{m}_{z}=d}^{{h}_{z}}{\varrho }_{z,{m}_{z}}^{* }{g}_{z,{m}_{z}-d}^{* }(x,t),\end{eqnarray}$
$\begin{eqnarray}\langle \tilde{K}| \,=\,[\langle {\tilde{K}}^{1}| ,\langle {\tilde{K}}^{2}| ,\ldots ,\langle {\tilde{K}}^{H}| ],\langle {\tilde{K}}^{z}| \,=\,{\left(\mathrm{1,0},\ldots ,0\right)}_{1\times {h}_{z}},\end{eqnarray}$
$\begin{eqnarray}{\rm{\Upsilon }}=\left(\begin{array}{cccc}\left[{{\rm{\Upsilon }}}_{11}\right] & [{{\rm{\Upsilon }}}_{12}] & ... & [{{\rm{\Upsilon }}}_{1H}]\\ \left[{{\rm{\Upsilon }}}_{21}\right] & [{{\rm{\Upsilon }}}_{22}] & ... & [{{\rm{\Upsilon }}}_{2H}]\\ \vdots & \vdots & \vdots & \vdots \\ \left[{{\rm{\Upsilon }}}_{H1}\right] & [{{\rm{\Upsilon }}}_{H2}] & ... & [{{\rm{\Upsilon }}}_{{HH}}]\end{array}\right),\end{eqnarray}$
$\begin{eqnarray}\begin{array}{rcl}\left[{{\rm{\Upsilon }}}_{{zd}}\right] & = & {\left({\left[{{\rm{\Upsilon }}}_{{zd}}\right]}_{p,q}\right)}_{{h}_{z}\times {h}_{d}}=\displaystyle \sum _{{m}_{z}=p}^{{h}_{z}}\displaystyle \sum _{{r}_{z}=0}^{{m}_{z}-p}\left(\begin{array}{c}p+{r}_{z}-1\\ {r}_{z}\end{array}\right)\\ & & \times \displaystyle \frac{{\left(-1\right)}^{{r}_{z}}{\varrho }_{z,{m}_{z}}{g}_{z,{m}_{z}-p-{r}_{z}}(x,t)}{{\left({\lambda }_{z}-{\lambda }_{d}^{* }\right)}^{{r}_{z}+q}},\end{array}\end{eqnarray}$
$\begin{eqnarray}{\rm{\Lambda }}=\left(\begin{array}{cccc}{I}_{{h}_{1}\times {h}_{1}} & & & \\ & {I}_{{h}_{2}\times {h}_{2}} & & \\ & & \ddots & \\ & & & {I}_{{h}_{H}\times {h}_{H}}\end{array}\right).\end{eqnarray}$

Case 3: Now, we take H = 2, h1 = h2 = 1, then the two-soliton solutions can be obtained in figure 3. Unlike chaos theory and inelastic collisions [36, 37], the observation clearly shows that the collision between two solitons is elastic, meaning that neither the amplitude nor the velocity direction is affected. In addition, if the spectral parameters are purely imaginary, W-type solitons will be generated. In this case, the elements can be given as
$\begin{eqnarray}\begin{array}{rcl}{\left[{{\rm{\Upsilon }}}_{11}\right]}_{11} & = & \displaystyle \frac{{\varrho }_{\mathrm{1,1}}{g}_{\mathrm{1,0}}}{{\lambda }_{1}-{\lambda }_{1}^{* }},\quad {\left[{{\rm{\Upsilon }}}_{12}\right]}_{11}=\displaystyle \frac{{\varrho }_{\mathrm{1,1}}{g}_{\mathrm{1,0}}}{{\lambda }_{1}-{\lambda }_{2}^{* }},\\ {\left[{{\rm{\Upsilon }}}_{21}\right]}_{11} & = & \displaystyle \frac{{\varrho }_{\mathrm{2,1}}{g}_{\mathrm{2,0}}}{{\lambda }_{2}-{\lambda }_{1}^{* }},\quad {\left[{{\rm{\Upsilon }}}_{22}\right]}_{11}=\displaystyle \frac{{\varrho }_{\mathrm{2,1}}{g}_{\mathrm{2,0}}}{{\lambda }_{2}-{\lambda }_{2}^{* }},\\ {\vartheta }_{\mathrm{1,1}} & = & -{\varrho }_{1,1}^{* }{g}_{1,0}^{* },\quad {\vartheta }_{\mathrm{2,1}}=-{\varrho }_{2,1}^{* }{g}_{2,0}^{* }.\end{array}\end{eqnarray}$
Figure 3. The two-soliton solution with parameters ϱ1,1 = ϱ2,1 = 1. (1) λ1 = i, λ2 = 2i. (2) λ1 = 2 + i, λ2 = 0.5i.
Case 4: For one second-order pole and one simple pole, i.e., H = 2, h1 = 2, h2 = 1, the mixed solution of a soliton and a double-pole can be obtained and shown in figure 4. The relevant elements of solutions can be expressed as
$\begin{eqnarray}\begin{array}{rcl}{\left[{{\rm{\Upsilon }}}_{11}\right]}_{11} & = & \displaystyle \frac{{\varrho }_{\mathrm{1,1}}{g}_{\mathrm{1,0}}}{{\lambda }_{1}-{\lambda }_{1}^{* }}+\displaystyle \frac{{\varrho }_{\mathrm{1,2}}{g}_{\mathrm{1,1}}}{{\lambda }_{1}-{\lambda }_{1}^{* }}-\displaystyle \frac{{\varrho }_{\mathrm{1,2}}{g}_{\mathrm{1,0}}}{{\left({\lambda }_{1}-{\lambda }_{1}^{* }\right)}^{2}},\\ {\left[{{\rm{\Upsilon }}}_{11}\right]}_{12} & = & \displaystyle \frac{{\varrho }_{\mathrm{1,1}}{g}_{\mathrm{1,0}}}{{\left({\lambda }_{1}-{\lambda }_{1}^{* }\right)}^{2}}+\displaystyle \frac{{\varrho }_{\mathrm{1,2}}{g}_{\mathrm{1,1}}}{{\left({\lambda }_{1}-{\lambda }_{1}^{* }\right)}^{2}}-\displaystyle \frac{2{\varrho }_{\mathrm{1,2}}{g}_{\mathrm{1,0}}}{{\left({\lambda }_{1}-{\lambda }_{1}^{* }\right)}^{3}},\\ {\left[{{\rm{\Upsilon }}}_{11}\right]}_{21} & = & \displaystyle \frac{{\varrho }_{\mathrm{1,2}}{g}_{\mathrm{1,0}}}{{\lambda }_{1}-{\lambda }_{1}^{* }},\quad {\left[{{\rm{\Upsilon }}}_{11}\right]}_{22}=\displaystyle \frac{{\varrho }_{\mathrm{1,2}}{g}_{\mathrm{1,0}}}{{\left({\lambda }_{1}-{\lambda }_{1}^{* }\right)}^{2}},\\ {\left[{{\rm{\Upsilon }}}_{12}\right]}_{11} & = & \displaystyle \frac{{\varrho }_{\mathrm{1,1}}{g}_{\mathrm{1,0}}}{{\lambda }_{1}-{\lambda }_{2}^{* }}+\displaystyle \frac{{\varrho }_{\mathrm{1,2}}{g}_{\mathrm{1,1}}}{{\lambda }_{1}-{\lambda }_{2}^{* }}-\displaystyle \frac{{\varrho }_{\mathrm{1,2}}{g}_{\mathrm{1,0}}}{{\left({\lambda }_{1}-{\lambda }_{2}^{* }\right)}^{2}},\\ {\left[{{\rm{\Upsilon }}}_{12}\right]}_{21} & = & \displaystyle \frac{{\varrho }_{\mathrm{1,2}}{g}_{\mathrm{1,0}}}{{\lambda }_{1}-{\lambda }_{2}^{* }},\quad {\left[{{\rm{\Upsilon }}}_{21}\right]}_{11}=\displaystyle \frac{{\varrho }_{\mathrm{2,1}}{g}_{\mathrm{2,0}}}{{\lambda }_{2}-{\lambda }_{1}^{* }},\\ {\left[{{\rm{\Upsilon }}}_{21}\right]}_{12} & = & \displaystyle \frac{{\varrho }_{\mathrm{2,1}}{g}_{\mathrm{2,0}}}{{\left({\lambda }_{2}-{\lambda }_{1}^{* }\right)}^{2}},\quad {\left[{{\rm{\Upsilon }}}_{22}\right]}_{11}=\displaystyle \frac{{\varrho }_{\mathrm{2,1}}{g}_{\mathrm{2,0}}}{{\lambda }_{2}-{\lambda }_{2}^{* }},\\ {\vartheta }_{\mathrm{1,1}} & = & -{\varrho }_{1,1}^{* }{g}_{1,0}^{* }-{\varrho }_{1,2}^{* }{g}_{1,1}^{* },\\ {\vartheta }_{\mathrm{1,2}} & = & -{\varrho }_{1,2}^{* }{g}_{1,0}^{* },\quad {\vartheta }_{\mathrm{2,1}}=-{\varrho }_{2,1}^{* }{g}_{2,0}^{* }.\end{array}\end{eqnarray}$
Figure 4. A simple and a second-order pole solution with parameters ϱ1,1 = ϱ1,2 = ϱ2,1 = 1. (1) λ1 = 0.5i, λ2 = 2i. (2) λ1 = 0.5i, λ2 = 0.2 + 0.2i. (3) λ1 = 0.5 + 0.5i, λ2 = 0.2 + 0.2i.

4. Conclusion

In this paper, multiple high-order poles of the AB system have been investigated using the RH approach. For this purpose, firstly, we construct the RH problem on the ground of the spectral analysis. Next, the expression of the soliton solution can be determined under the condition of no reflection. It is noteworthy that it is inconvenient to solve the soliton solutions by the residue condition. Therefore, we adopt the Laurent expansion and the determinant expression to construct the exact expression of the multiple high-order pole solutions. Finally, a few distinctive characteristics of these solutions are visualized and described in a clear and concise manner. Three types of soliton solutions are obtained, including single soliton solutions, double-pole solutions, and mixed solutions. All solutions of A are bright soliton solutions, while all solutions of B are dark soliton solutions. Furthermore, it is an interesting phenomenon that if the spectral parameters are purely imaginary, dark solitons of the W-type will appear. And the collisions between these solitons are all elastic. In the future, we will plan to extend this study to multi-components or the matrix for the AB system.

This work is supported by the National Natural Science Foundation of China (No. 11371326 and No. 12271488).

1
Hirota R 2004 The Direct Method in Soliton Theory Cambridge University Press

2
Matveev V B, Salle M A 1991 Darboux Transformations and Solitons Springer

3
Chen Y X 2024 (3+1)-dimensional partially nonlocal ring-like bright-dark monster waves Chaos Solitons Fract. 180 114519

DOI

4
Peng W Q, Chen Y 2022 N-double poles solutions for nonlocal Hirota equation with nonzero boundary conditions using Riemann-Hilbert method and PINN algorithm Physica D 435 133274

DOI

5
Qiu W X 2024 Data-driven forward-inverse problems of the 2-coupled mixed derivative nonlinear Schrödinger equation using deep learning Nonlinear Dyn. 112 10215 10228

DOI

6
Ablowitz M J, Clarkson P A 1991 Solitons, Nonlinear Evolution Equations and Inverse Scattering Cambridge University Press

7
Ma W X 2023 Sasa-Satsuma type matrix integrable hierarchies and their Riemann-Hilbert problems and soliton solutions Physica D 446 133672

DOI

8
Zhang X F, Tian S F, Yang J J 2021 The Riemann-Hilbert approach for the focusing Hirota equation with single and double poles Anal. Math. Phys. 11 86

DOI

9
Ma X X 2022 Riemann-Hilbert approach for a higher-order Chen-Lee-Liu equation with high-order poles Commun. Nonlinear Sci. Numer. Simul. 114 106606

DOI

10
Zhang Y S, Tao X X, Xu S W 2020 The bound-state soliton solutions of the complex modified KdV equation Inverse Probl. 36 065003

DOI

11
Chen M S, Fan E G 2022 Riemann-Hilbert approach for discrete sine-Gordon equation with simple and double poles Stud. Appl. Math. 148 1180 1207

DOI

12
Wadati M, Ohkuma K 1982 Multiple-pole solutions of the modified Korteweg-de Vries equation J Phys. Soc. Jpn. 51 2029 2035

DOI

13
Zhang Y S, Tao X X, Yao T T, He J S 2020 The regularity of the multiple higher-order poles solitons of the NLS equation Stud. Appl. Math. 145 812 827

DOI

14
Pedlosky J 1972 Finite-amplitude baroclinic wave packets J. Atmos. Sci. 29 680 686

DOI

15
Wu C F, Grimshaw R H J, Chow K W, Chan H N 2015 A coupled AB system: rogue waves and modulation instabilities Chaos 25 103113

DOI

16
Yang L, Mu M 1996 Baroclinic instability in the generalized Phillips' model Part I: Two-layer model Adv. Atmos. Sci. 13 33 42

DOI

17
Tan B K, Boyd J P 2002 Envelope solitary waves and periodic waves in the AB equations Stud. Appl. Math. 109 67 87

DOI

18
Dodd R K, Eilbeck J C, Gibbon J D, Morris H C 1982 Solitons and Nonlinear Wave Equations Academic

19
Gibbon J D, James I N, Moroz I M, Hide R 1979 An example of soliton behaviour in a rotating baroclinic fluid Proc. R. Soc. Lond. A 367 219 237

DOI

20
Wen X Y, Yan Z Y 2015 Modulational instability and higher-order rogue waves with parameters modulation in a coupled integrable AB system via the generalized Darboux transformation Chaos 25 123115

DOI

21
Baseilhac P, Koizumi K 2003 Sine-Gordon quantum field theory on the half-line with quantum boundary degrees of freedom Nucl. Phys. B 649 491 510

DOI

22
Bastianello A, Doyon B, Watts G, Yoshimura T 2018 Generalized hydrodynamics of classical integrable field theory: the sinh-Gordon model SciPost Phys. 4 045

DOI

23
Sasaki R, Yamanaka I 1988 Virasoro algebra, vertex operators, quantum sine-Gordon and solvable quantum field theories Adv. Stud. Pure Math. 16 271 296

DOI

24
Xu Z W, Yu G F, Zhu Z N 2018 Bright-dark soliton solutions of the multi-component AB system Wave Motion 83 134 147

DOI

25
Yu G F, Xu Z W, Hu J, Zhao H Q 2017 Bright and dark soliton solutions to the AB system and its multi-component generalization Commun. Nonlinear Sci. Numer. Simul. 47 178 189

DOI

26
Wang L 2015 Semirational solutions and baseband modulational instability of the AB system in fluid mechanics Eur. Phys. J. Plus 130 199

DOI

27
Wang X, Li Y Q, Huang F, Chen Y 2015 Rogue wave solutions of AB system Commun. Nonlinear Sci. Numer. Simul. 20 434 442

DOI

28
Zhang G Q, Yan Z Y, Wen X Y 2017 Multi-dark-dark solitons of the integrable repulsive AB system via the determinants Chaos 27 083110

DOI

29
Guo R, Hao H Q, Zhang L L 2013 Dynamic behaviors of the breather solutions for the AB system in fluid mechanics Nonlinear Dyn. 74 701 709

DOI

30
Zhai Y Y, Wei L F, Geng X G, Wei J 2022 Multi-bright-dark soliton solutions to the AB system in nonlinear optics Commun. Theor. Phys. 74 045003

DOI

31
Zhai Y Y, Wei L F, Geng X G, Tao L 2023 Breather solutions to the AB system with non-zero background J. Geom. Phys. 190 104858

DOI

32
Zhu J Y, Chen Y 2022 Long-time asymptotic behavior of the coupled dispersive AB system in low regularity spaces J. Math. Phys. 63 113504

DOI

33
Zhang H S 2021 Mechanisms of stationary converted waves and their complexes in the multi-component AB system Physica D 419 132849

DOI

34
Wang L 2016 Stationary nonlinear waves, superposition modes and modulational instability characteristics in the AB system Nonlinear Dyn. 86 185 196

DOI

35
Xu T, He G L 2021 Higher-order semirational solutions and W-shaped solitons for the multi-component AB system Wave Motion 106 102790

DOI

36
Li W J, Zhang Y, Yang X L 2024 Riemann-Hilbert approach and multi-soliton solutions of nonlocal Newell-type long wave-short wave equation Phys. Scr. 99 075246

DOI

37
Si Z Z, Wang Y Y, Dai C Q 2024 Switching, explosion, and chaos of multi-wavelength soliton states in ultrafast fiber lasers Sci. China Phys. Mech. Astron. 67 274211

DOI

Outlines

/