1. Introduction
2. Preliminaries
Definition 1. Suppose that $D\equiv \{| \psi {\rangle }_{j}={\displaystyle \bigotimes }_{i=1}^{n}| \alpha {\rangle }_{j}^{i}:j\,=1,\ldots ,{{\rm{\Pi }}}_{i=1}^{n}{d}_{i}\}$ is an orthogonal product basis in an n-partite quantum system ${\displaystyle \bigotimes }_{i=1}^{n}{{\mathbb{C}}}^{{d}_{i}}$.
i It is called nonlocal if states in D cannot be perfectly distinguished by LOCC. | |
ii It is called genuinely nonlocal if states in D cannot be perfectly distinguished by LOCC even if any $n-1$ parties are allowed to come together. |
Definition 2. A set of orthogonal quantum states in ${ \mathcal H }={\displaystyle \bigotimes }_{i=1}^{n}{{\mathbb{C}}}^{{d}_{i}}$ with $n\geqslant \,2$ and di $\geqslant 2$, i = 1,…,n, is locally irreducible if it is not possible to eliminate one or more states from the set by nontrivial orthogonality-preserving local measurements.
Figure 1. The relationship between several types of genuinely nonlocal product basis. |
3. Genuinely nonlocal product basis in ${{\mathbb{C}}}^{5}\,\otimes \,{{\mathbb{C}}}^{5}\,\otimes \,{{\mathbb{C}}}^{5}$
3.1. Genuinely nonlocal product basis for type I
3.2. Genuinely nonlocal product basis for type II
4. Entanglement-assisted discrimination
Theorem 1. Suppose Alice and Bob share the maximally entangled state $\tfrac{1}{\sqrt{2}}{\left(| 00\rangle +| 11\rangle \right)}_{{a}_{1}{b}_{1}}$ and Alice and Charlie share the maximally entangled state $\tfrac{1}{\sqrt{2}}{\left(| 00\rangle +| 11\rangle \right)}_{{a}_{2}{c}_{1}}$, the set ${{\bf{B}}}_{\mathrm{II}}(5,3)$ in (9) can be perfectly distinguished by LOCC.
Proof. For the entangled state $\tfrac{1}{\sqrt{2}}{\left(| 00\rangle +| 11\rangle \right)}_{{a}_{1}{b}_{1}}$, assume that Alice takes the a1 particle and Bob takes the b1 particle, and for the entangled state $\tfrac{1}{\sqrt{2}}{\left(| 00\rangle +| 11\rangle \right)}_{{a}_{2}{c}_{1}}$, assume that Alice takes the a2 particle and Bob takes the c1 particle.
Accordingly, the initial state is
Next, Alice, Bob and Charlie perform nontrivial orthogonality-preserving measurement separately, and the specific procedure as follows.
${\bf{Step}}\,{\bf{1}}$ Bob selects the measurement operator in ${\bf{M}}$ to measure the initial state $| \zeta \rangle $, where
${\bf{Step}}\,{\bf{2}}$ Alice selects the measurement operator in ${\bf{K}}$ to measure the post-measurement states in table 1, where
After Alice's measurements, we are able to screen out some locally distinguishable sets of quantum states. The remaining quantum states are locally indistinguishable and remain unchanged. Further measurements can be performed on these remaining quantum states. This is true for every subsequent step.
${\bf{Step}}\,{\bf{3}}$ Bob selects the measurement operator in ${\bf{M}}^{\prime} $ to measure the remaining quantum states in table 1, where
${\bf{Step}}\,{\bf{4}}$ Alice selects the measurement operator in ${\bf{K}}^{\prime} $ to measure the remaining quantum states in table 1, where
${\bf{Step}}\,{\bf{5}}$ Bob selects the measurement operator in ${\bf{M}}^{\prime\prime} $ to measure the remaining quantum states in table 1, where
In ${\bf{Step}}\,{\bf{1}}$, if Bob selects M1 and Charlie selects ${\overline{N}}_{1}$, or other situations, there will also be a similar protocol. □
Table 1. Post-measurement states after Step 1. |
Post-measurement states | Range |
---|---|
$| i\rangle | 0\rangle | 0\rangle \otimes | 00{\rangle }_{{a}_{1}{b}_{1}}\otimes | 00{\rangle }_{{a}_{2}{c}_{1}}.$ | i = 0, 1, 2, 3. |
| |
$| h\rangle | 0\rangle | f\rangle \otimes | 00{\rangle }_{{a}_{1}{b}_{1}}\otimes | 11{\rangle }_{{a}_{2}{c}_{1}},\,\,\,| 3\rangle | 0\rangle | m\rangle \otimes | 00{\rangle }_{{a}_{1}{b}_{1}}\otimes | 11{\rangle }_{{a}_{2}{c}_{1}},$ | h = 0, 1, 2; f = 1, 2, 3; |
$| 4\rangle | 0\rangle | 4\rangle \otimes | 00{\rangle }_{{a}_{1}{b}_{1}}\otimes | 11{\rangle }_{{a}_{2}{c}_{1}},\,\,\,\,| {\phi }_{4,{t}_{2}}\rangle | 4\rangle \otimes | 00{\rangle }_{{a}_{1}{b}_{1}}\otimes | 11{\rangle }_{{a}_{2}{c}_{1}}.$ | m = 1, 2, 3, 4; t2 = 0, 1. |
| |
$| g\rangle | m\rangle | 0\rangle \otimes | 11{\rangle }_{{a}_{1}{b}_{1}}\otimes | 00{\rangle }_{{a}_{2}{c}_{1}},\,\,| 2\rangle | f\rangle | 0\rangle \otimes | 11{\rangle }_{{a}_{1}{b}_{1}}\otimes | 00{\rangle }_{{a}_{2}{c}_{1}},$ | g, t2 = 0, 1; |
$| 3\rangle | f\rangle | 0\rangle \otimes | 11{\rangle }_{{a}_{1}{b}_{1}}\otimes | 00{\rangle }_{{a}_{2}{c}_{1}},\,\,\,| 4\rangle | 3\rangle | 0\rangle \otimes | 11{\rangle }_{{a}_{1}{b}_{1}}\otimes | 00{\rangle }_{{a}_{2}{c}_{1}},$ | m = 1, 2, 3, 4; |
$| 4\rangle | {\phi }_{4,{t}_{2}}\rangle \otimes | 11{\rangle }_{{a}_{1}{b}_{1}}\otimes | 00{\rangle }_{{a}_{2}{c}_{1}},\,\,\,| \tau {\rangle }_{{t}_{1}}| 4\rangle | 0\rangle \otimes | 11{\rangle }_{{a}_{1}{b}_{1}}\otimes | 00{\rangle }_{{a}_{2}{c}_{1}}.$ | f = 1, 2, 3; t1 = 0, 1, 2. |
| |
$| h\rangle | f\rangle | f^{\prime} \rangle \otimes | 11{\rangle }_{{a}_{1}{b}_{1}}\otimes | 11{\rangle }_{{a}_{2}{c}_{1}},\,\,| 0\rangle | 4\rangle | m\rangle \otimes | 11{\rangle }_{{a}_{1}{b}_{1}}\otimes | 11{\rangle }_{{a}_{2}{c}_{1}},$ | |
$| 1\rangle | 4\rangle | 1\rangle \otimes | 11{\rangle }_{{a}_{1}{b}_{1}}\otimes | 11{\rangle }_{{a}_{2}{c}_{1}},\,\,\,\,| 1\rangle | 4\rangle | \tau {\rangle }_{{t}_{1}}\otimes | 11{\rangle }_{{a}_{1}{b}_{1}}\otimes | 11{\rangle }_{{a}_{2}{c}_{1}},$ | |
$| 2\rangle | 4\rangle | m\rangle \otimes | 11{\rangle }_{{a}_{1}{b}_{1}}\otimes | 11{\rangle }_{{a}_{2}{c}_{1}},\,\,\,| 3\rangle | 1\rangle | m\rangle \otimes | 11{\rangle }_{{a}_{1}{b}_{1}}\otimes | 11{\rangle }_{{a}_{2}{c}_{1}},$ | |
$| 3\rangle | 2\rangle | 1\rangle \otimes | 11{\rangle }_{{a}_{1}{b}_{1}}\otimes | 11{\rangle }_{{a}_{2}{c}_{1}},\,\,\,\,| 3\rangle | \tau {\rangle }_{{t}_{1}}| 2\rangle \otimes | 11{\rangle }_{{a}_{1}{b}_{1}}\otimes | 11{\rangle }_{{a}_{2}{c}_{1}},$ | h, t1 = 0, 1, 2; $f,f^{\prime} =1,2,3;$ |
$| 3\rangle | 2\rangle | 3\rangle \otimes | 11{\rangle }_{{a}_{1}{b}_{1}}\otimes | 11{\rangle }_{{a}_{2}{c}_{1}},\,\,\,\,| 3\rangle | 2\rangle | 4\rangle \otimes | 11{\rangle }_{{a}_{1}{b}_{1}}\otimes | 11{\rangle }_{{a}_{2}{c}_{1}},$ | m = 1, 2, 3, 4; |
$| 3\rangle | 3\rangle | l\rangle \otimes | 11{\rangle }_{{a}_{1}{b}_{1}}\otimes | 11{\rangle }_{{a}_{2}{c}_{1}},\,\,\,\,\,| 3\rangle | 4\rangle | l\rangle \otimes | 11{\rangle }_{{a}_{1}{b}_{1}}\otimes | 11{\rangle }_{{a}_{2}{c}_{1}},$ | l = 1, 3, 4; |
$| 4\rangle | 1\rangle | 4\rangle \otimes | 11{\rangle }_{{a}_{1}{b}_{1}}\otimes | 11{\rangle }_{{a}_{2}{c}_{1}},\,\,\,\,| 4\rangle | 2\rangle | 4\rangle \otimes | 11{\rangle }_{{a}_{1}{b}_{1}}\otimes | 11{\rangle }_{{a}_{2}{c}_{1}},$ | t2 = 0, 1. |
$| 4\rangle | 3\rangle | m\rangle \otimes | 11{\rangle }_{{a}_{1}{b}_{1}}\otimes | 11{\rangle }_{{a}_{2}{c}_{1}},\,\,\,| 4\rangle | 4\rangle | m\rangle \otimes | 11{\rangle }_{{a}_{1}{b}_{1}}\otimes | 11{\rangle }_{{a}_{2}{c}_{1}},$ | |
$| 4\rangle | {\phi }_{3,{t}_{1}}\rangle \otimes | 11{\rangle }_{{a}_{1}{b}_{1}}\otimes | 11{\rangle }_{{a}_{2}{c}_{1}},\,\,\,\,| 4\rangle | {\psi }_{\mathrm{1,1}}\rangle \otimes | 11{\rangle }_{{a}_{1}{b}_{1}}\otimes | 11{\rangle }_{{a}_{2}{c}_{1}},$ | |
$| 4\rangle | {\psi }_{\mathrm{1,2}}\rangle \otimes | 11{\rangle }_{{a}_{1}{b}_{1}}\otimes | 11{\rangle }_{{a}_{2}{c}_{1}},\,\,\,\,\,| {\phi }_{2,{t}_{2}}\rangle | 4\rangle \otimes | 11{\rangle }_{{a}_{1}{b}_{1}}\otimes | 11{\rangle }_{{a}_{2}{c}_{1}},$ | |
$| {\phi }_{3,{t}_{1}}\rangle | 4\rangle \otimes | 11{\rangle }_{{a}_{1}{b}_{1}}\otimes | 11{\rangle }_{{a}_{2}{c}_{1}},\,\,\,\,| {\psi }_{\mathrm{1,1}}\rangle | 4\rangle \otimes | 11{\rangle }_{{a}_{1}{b}_{1}}\otimes | 11{\rangle }_{{a}_{2}{c}_{1}},$ | |
$| {\psi }_{\mathrm{1,2}}\rangle | 4\rangle \otimes | 11{\rangle }_{{a}_{1}{b}_{1}}\otimes | 11{\rangle }_{{a}_{2}{c}_{1}}.$ | |
| |
$| 4{\rangle }_{{\rm{A}}}| 0{\rangle }_{{\rm{B}}}[| 0{\rangle }_{{\rm{C}}}\otimes | 00{\rangle }_{{a}_{2}{c}_{1}}+{\left({\omega }^{{t}_{1}}| 1\rangle +{\omega }^{2{t}_{1}}| 2\rangle \right)}_{{\rm{C}}}\otimes | 11{\rangle }_{{a}_{2}{c}_{1}}]\otimes | 00{\rangle }_{{a}_{1}{b}_{1}},$ | |
$| 4{\rangle }_{{\rm{A}}}[| 0{\rangle }_{{\rm{B}}}\otimes | 00{\rangle }_{{a}_{1}{b}_{1}}\pm | 1{\rangle }_{{\rm{B}}}\otimes | 11{\rangle }_{{a}_{1}{b}_{1}}]| 3{\rangle }_{{\rm{C}}}\otimes | 11{\rangle }_{{a}_{2}{c}_{1}},$ | $\omega ={{\rm{e}}}^{\tfrac{2\pi {\rm{i}}}{3}}$; |
$| 0{\rangle }_{{\rm{A}}}[| 0{\rangle }_{{\rm{B}}}\otimes | 00{\rangle }_{{a}_{1}{b}_{1}}+{\left({\omega }^{{t}_{1}}| 1\rangle +{\omega }^{2{t}_{1}}| 2\rangle \right)}_{{\rm{B}}}\otimes | 11{\rangle }_{{a}_{1}{b}_{1}}]| 4{\rangle }_{{\rm{C}}}\otimes | 11{\rangle }_{{a}_{2}{c}_{1}}.$ | t1 = 0, 1, 2. |
Theorem 2. Suppose Alice, Bob and Charlie share the three-qubit maximally entangled state $\tfrac{1}{\sqrt{2}}{\left(| 000\rangle +| 111\rangle \right)}_{{abc}}$, then the set ${{\bf{B}}}_{\mathrm{II}}(5,3)$ in (9) can be perfectly distinguished by LOCC.
Proof. For the entangled state $\tfrac{1}{\sqrt{2}}{\left(| 000\rangle +| 111\rangle \right)}_{{abc}}$, assume that Alice takes the a particle, Bob takes the b particle and Charlie takes the c particle. The initial state is
Then, Alice, Bob and Charlie perform nontrivial orthogonality-preserving measurement separately; the specific procedure is as follows.
${\bf{Step}}\,{\bf{1}}$ Bob selects the measurement operator in ${\bf{M}}$ to measure the initial state $| \xi \rangle $, where
${\bf{Step}}\,{\bf{2}}$ Alice selects the measurement operator in ${\bf{K}}$ to measure the post-measurement states in table 2, where
After Alice's measurement, we are able to filter out certain quantum states that are locally distinguishable. The remaining quantum states are locally indistinguishable and remain unchanged, allowing for further measurements to be conducted on them. This holds true for every subsequent step.
${\bf{Step}}\,{\bf{3}}$ Charlie selects the measurement operator in ${\bf{N}}$ to measure the remaining quantum states in table 2, where
${\bf{Step}}\,{\bf{4}}$ Alice selects the measurement operator in ${\bf{K}}^{\prime} $ to measure the remaining quantum states in table 2, where
${\bf{Step}}\,{\bf{5}}$ Bob selects the measurement operator in ${\bf{M}}^{\prime} $ to measure the remaining quantum states in table 2, where
${\bf{Step}}\,{\bf{6}}$ Alice selects the measurement operator in ${\bf{K}}^{\prime\prime} $ to measure the remaining quantum states in table 2, where
${\bf{Step}}\,{\bf{7}}$ Charlie selects the measurement operator in ${\bf{N}}^{\prime} $ to measure the remaining quantum states in table 2, where
In ${\bf{Step}}\,{\bf{1}}$, if Bob selects ${\overline{M}}_{1}$, there will also be a similar protocol. □
Table 2. Post-measurement states after Step 1. |
Post-measurement States | Range |
---|---|
∣h〉∣0〉∣j〉 ⨂ ∣000〉abc, ∣3〉∣0〉∣k〉 ⨂ ∣000〉abc, | h, t1 = 0, 1, 2; j = 0, 1, 2, 3; |
$| 4\rangle | 0\rangle | 4\rangle \otimes | 000{\rangle }_{{abc}},\,\,\,| 4\rangle | {\phi }_{1,{t}_{1}}\rangle \otimes | 000{\rangle }_{{abc}},$ | k = 0, 1, 2, 3, 4; t2 = 0, 1. |
$| {\phi }_{4,{t}_{2}}\rangle | 4\rangle \otimes | 000{\rangle }_{{abc}}.$ | |
| |
∣h〉∣f〉∣j〉 ⨂ ∣111〉abc, ∣0〉∣4〉∣k〉 ⨂ ∣111〉abc, | |
$| 1\rangle | 4\rangle | g\rangle \otimes | 111{\rangle }_{{abc}},\,\,\,\,| 1\rangle | 4\rangle | \tau {\rangle }_{{t}_{1}}\otimes | 111{\rangle }_{{abc}},$ | |
$| \tau {\rangle }_{{t}_{1}}| 4\rangle | 0\rangle \otimes | 111{\rangle }_{{abc}},\,\,| 2\rangle | 4\rangle | m\rangle \otimes | 111{\rangle }_{{abc}},$ | |
∣3〉∣1〉∣k〉 ⨂ ∣111〉abc, ∣3〉∣2〉∣n〉 ⨂ ∣111〉abc, | h, t1 = 0, 1, 2; |
∣3〉∣3〉∣n〉 ⨂ ∣111〉abc, ∣3〉∣4〉∣1〉 ⨂ ∣111〉abc, | f = 1, 2, 3; |
∣3〉∣4〉∣3〉 ⨂ ∣111〉abc, ∣3〉∣4〉∣4〉 ⨂ ∣111〉abc, | j = 0, 1, 2, 3; |
$| 3\rangle | \tau {\rangle }_{{t}_{1}}| 2\rangle \otimes | 111{\rangle }_{{abc}},\,\,| 4\rangle | 1\rangle | 4\rangle \otimes | 111{\rangle }_{{abc}},$ | k = 0, 1, 2, 3, 4; |
∣4〉∣2〉∣4〉 ⨂ ∣111〉abc, ∣4〉∣3〉∣k〉 ⨂ ∣111〉abc, | g, t2 = 0, 1; |
$| 4\rangle | 4\rangle | m\rangle \otimes | 111{\rangle }_{{abc}},\,\,\,| 4\rangle | {\phi }_{3,{t}_{1}}\rangle \otimes | 111{\rangle }_{{abc}},$ | m = 1, 2, 3, 4; |
$| 4\rangle | {\phi }_{4,{t}_{2}}\rangle \otimes | 111{\rangle }_{{abc}},\,\,\,\,| 4\rangle | {\psi }_{\mathrm{1,1}}\rangle \otimes | 111{\rangle }_{{abc}},$ | n = 0, 1, 3, 4. |
$| 4\rangle | {\psi }_{\mathrm{1,2}}\rangle \otimes | 111{\rangle }_{{abc}},\,\,\,\,\,| {\phi }_{2,{t}_{2}}\rangle | 4\rangle \otimes | 111{\rangle }_{{abc}},$ | |
$| {\phi }_{3,{t}_{1}}\rangle | 4\rangle \otimes | 111{\rangle }_{{abc}},\,\,\,\,| {\psi }_{\mathrm{1,1}}\rangle | 4\rangle \otimes | 111{\rangle }_{{abc}},$ | |
∣ψ1,2〉∣4〉 ⨂ ∣111〉abc. | |
| |
∣4〉A(∣0〉B ⨂ ∣000〉abc ± ∣1〉B ⨂ ∣111〉abc)∣3〉C, | $\omega ={{\rm{e}}}^{\tfrac{2\pi {\rm{i}}}{3}};$ |
$| 0{\rangle }_{{\rm{A}}}[| 0{\rangle }_{{\rm{B}}}\otimes | 000{\rangle }_{{abc}}+{\left({\omega }^{{t}_{1}}| 1\rangle +{\omega }^{2{t}_{1}}| 2\rangle \right)}_{{\rm{B}}}\otimes | 111{\rangle }_{{abc}}]| 4{\rangle }_{{\rm{C}}}.$ | t1 = 0, 1, 2. |