Welcome to visit Communications in Theoretical Physics,
Mathematical Physics

Residual symmetry and interactions between solitons and periodic waves of the Drinfeld–Sokolov–Satsuma–Hirota system

  • Jie-tong Li ,
  • Jun Yu ,
  • Xi-zhong Liu ,
Expand
  • Institute of Nonlinear Science, Shaoxing University, Shaoxing 312000, China

Author to whom any correspondence should be addressed.

Received date: 2024-06-10

  Accepted date: 2024-09-19

  Online published: 2024-11-08

Copyright

© 2025 Institute of Theoretical Physics CAS, Chinese Physical Society and IOP Publishing. All rights, including for text and data mining, AI training, and similar technologies, are reserved.

Abstract

In this paper, the Drinfeld–Sokolov–Satsuma–Hirota (DSSH) system is studied by using residual symmetry and the consistent Riccati expansion (CRE) method, respectively. The residual symmetry of the DSSH system is localized to Lie point symmetry in a properly prolonged system, based on which we get a new Bäcklund transformation for this system. New symmetry reduction solutions of the DSSH system are obtained by applying the classical Lie group approach on the prolonged system. Moreover, the DSSH system proves to be CRE integrable and new interesting interaction solutions between solitons and periodic waves are generated and analyzed.

Cite this article

Jie-tong Li , Jun Yu , Xi-zhong Liu . Residual symmetry and interactions between solitons and periodic waves of the Drinfeld–Sokolov–Satsuma–Hirota system[J]. Communications in Theoretical Physics, 2025 , 77(1) : 015001 . DOI: 10.1088/1572-9494/ad7cec

1. Introduction

The development of mathematics has often benefited from problems found in physics, and every major revolution in physics has been associated with the introduction of new mathematical knowledge. For example, theoretical mechanics and calculus theory [1]; electromagnetic theory and fiber bundles theory [2]; gravitational waves and Riemannian geometry [3]; quantum theory and quantum mechanics (the development of quantum mechanics builds on linear algebra in mathematics) [4]. We often use mathematical tools to describe some physical problems, for example, using nonlinear partial differential equations (PDEs) and nonlinear evolution equations (NLEEs) to describe phenomena in optics, fluid mechanics, plasma physics, biology, engineering, applied physics [5], etc. Obviously, finding solutions of nonlinear partial differential equations is an extremely complex and important task.
With the rapid development of nonlinear science in the past few decades, many effective and reliable methods have been developed to solve exact solutions of nonlinear PDEs such as inverse scattering transform [6], Hirota's bilinear method [7], Darboux transformation [8], Painlevé analysis [9, 10], Lie symmetry analysis [11], the homogeneous balance method [12], the Jacobian elliptic function expansion method [13], etc. But these traditional methods face great challenges in tackling many nonlinear problems because of the complexity and variability of nonlinear phenomena.
Symmetry analysis [14, 15] plays an important role in both simplifying nonlinear PDEs and obtaining their exact solutions. Thanks to Lie's first theorem, one can find finite transformation corresponding to a Lie point symmetry group. Using the classical Lie group method, we could get both Lie symmetry group and symmetry reduction solutions for many integrable systems in a standard way. However, nonlocal symmetry [16, 17], which plays an important role in the study of nonlinear systems, cannot be obtained in a unified way. Nonetheless, we can obtain nonlocal symmetries for some nonlinear systems through different ways such as inverse recursion operators [18], Lax pairs [19], Bäcklund transformation [20], conformal invariance [21], potential symmetries [22], etc.
Recently, Lou found that for a Painlevé integrable system the residue of a truncated Painlevé expansion with respect to a singular manifold is actually a nonlocal symmetry of the system , which is called residual symmetry. For many nonlinear systems, it is interesting that residual symmetry could be localized into a Lie point symmetry in a prolonged system by introducing appropriate new dependent variables. In real nature, interaction solutions between solitons and nonlinear waves often occur under various physical backgrounds and many of which are observed experimentally [23]. It is found that symmetry reduction solutions related to residual symmetry include this type of interaction solution [24]. Moreover, a localization procedure for nonlocal symmetry can also used to get Nth Bäcklund transformations for many integrable equations [25, 26]. In another aspect, Lou generalized the Riccati expansion method to the consistent Riccati expansion (CRE) method and defined a new integrable property called CRE integrable [27]. It turns out that the CRE method is effective for obtaining interaction solutions between solitons and periodic waves [28, 29].
The coupled nonlinear evolution equation system, the Drinfeld–Sokolov–Satsuma–Hirota (DSSH) system, independently, was proposed by Drinfeld and Sololov [30], and by Satsuma and Hirota [31], which takes the form
$\begin{eqnarray}{u}_{t}=\displaystyle \frac{1}{2}{u}_{{xxx}}-3{{uu}}_{x}+3{v}_{x},\end{eqnarray}$
and
$\begin{eqnarray}{v}_{t}=-{v}_{{xxx}}+3{{uv}}_{x},\end{eqnarray}$
where u, v are two long wave functions with different dispersion relation [32]. The DSSH system is a special case of the four-reduced Kadomstev–Petviashvili hierarchy [31] and it is a basic model for representing many physical phenomena in shallow water and coastal regions [33]. In recent years, the DSSH system has been studied in many different aspects. In [32], the authors obtained its trigonometric function traveling wave solutions, hyperbolic function traveling wave solutions and rational function traveling wave solutions by using the modified polynomial expansion method. In [33], the authors found analytical solutions by using the enhanced modifed extended tanh method (eMETEM) and the unified Riccati equation expansion (UREEM). In [34], the authors discussed nonlocal symmetry of this system and obtained its similarity reductions by using the classical Lie group approach. In [35], the authors constructed an explicit Bäcklund transformation of this system by using the Weiss method of truncated singular expansions and found some special solutions under this transformation. In [36], the authors obtained soliton solutions, multiple soliton solutions, multiple singular soliton solutions and plane periodic solutions by using the Cole–Hopf transformation method, the tanh–coth method and the Exp-function method, respectively. In [37], the authors constructed a Darboux transformation of this system to obtain several types of solutions including soliton solutions, periodic solutions, rational solutions. In [38], the authors considered the iterations of the Darboux transformation obtained in [37] and obtained new solutions of the DSSH system given in terms of determinants.
The paper is organized as follows. In section 2, residual symmetries of the DSSH system (1) and (2) are obtained and localized in a prolonged system which leads to a new Bäcklund transformation of the system by using Lie's first theorem. In section 3, by applying the classical Lie group approach to the prolonged DSSH system, the general form of Lie point symmetry group and corresponding symmetry reduction solutions are obtained. In section 4, some new Bäcklund transformations of the DSSH system are generated by using the CRE and consistent tanh expansion (CTE) method, from which interaction solutions between solitons and periodic waves are illustrated. The last section is devoted to a short summary.

2. Residual symmetry and its localization

By balancing the dispersion term and highest order nonlinear term, the truncated Painlevé expansion of the DSSH system is taken as
$\begin{eqnarray}u=\displaystyle \frac{{u}_{0}}{{\phi }^{2}}+\displaystyle \frac{{u}_{1}}{\phi }+{u}_{2},\end{eqnarray}$
$\begin{eqnarray}v=\displaystyle \frac{{v}_{0}}{\phi }+{v}_{1},\end{eqnarray}$
where φ is a singular manifold and u0, u1, u2, v0, v1 are functions of x, t, which are determined by substituting equations (3) and (4) into (1) and (2) and vanishing all different powers of $\tfrac{1}{\phi }$, the results are
$\begin{eqnarray}{u}_{0}=2{\phi }_{x}^{2},{u}_{1}=-2{\phi }_{{xx}},\end{eqnarray}$
$\begin{eqnarray}{u}_{2}=-\displaystyle \frac{2{\phi }_{t}{\phi }_{x}-4{\phi }_{x}{\phi }_{{xxx}}+3{\phi }_{{xx}}^{2}}{6{\phi }_{x}^{2}},\end{eqnarray}$
and
$\begin{eqnarray}\begin{array}{rcl}{v}_{0} & = & -\displaystyle \frac{1}{3{\phi }_{x}^{2}}(2{\phi }_{{xt}}{\phi }_{x}^{2}-{\phi }_{{xxxx}}{\phi }_{x}^{2}\\ & & -2{\phi }_{t}{\phi }_{x}{\phi }_{{xx}}+4{\phi }_{{xx}}{\phi }_{{xxx}}{\phi }_{x}-3{\phi }_{{xx}}^{3}),\end{array}\end{eqnarray}$
$\begin{eqnarray}\begin{array}{rcl}{v}_{1} & = & -\displaystyle \frac{1}{144{\phi }_{x}^{4}}\left\{24({\phi }_{5x}-2{\phi }_{{xxt}}){\phi }_{x}^{3}\right.\\ & & +[64{\phi }_{{xxx}}{\phi }_{t}-100{\phi }_{{xxx}}^{2}\\ & & +48({\phi }_{{xt}}-2{\phi }_{4x}){\phi }_{{xx}}-16{\phi }_{t}^{2}]{\phi }_{x}^{2}\\ & & \left.+(324{\phi }_{{xx}}^{2}{\phi }_{{xxx}}-72{\phi }_{{xx}}^{2}{\phi }_{t}){\phi }_{x}-153{\phi }_{{xx}}^{4}\right\}.\end{array}\end{eqnarray}$
Then the DSSH system is reduced to its Schwarzian form
$\begin{eqnarray}{C}_{t}(3K+C){C}_{x}+2{K}_{t}+2(K-C){K}_{x}-{C}_{{xxx}}=0,\end{eqnarray}$
where $C=\tfrac{{\phi }_{{xxx}}}{{\phi }_{x}}-\tfrac{3}{2}\tfrac{{\phi }_{{xx}}^{2}}{{\phi }_{x}^{2}}$, $K=\tfrac{{\phi }_{t}}{{\phi }_{x}}$ are Schwarzian variables.
After substituting equations (5) and (6) into (3) and equations (7) and (8) into (4), respectively, we get a new Bäcklund transformation for the DSSH system.
Theorem 1. If φ is a solution of the Schwartzian equation (9), then
$\begin{eqnarray}u=-\displaystyle \frac{{\phi }_{t}}{3{\phi }_{x}}+\displaystyle \frac{2{\phi }_{x}^{2}}{{\phi }^{2}}-\displaystyle \frac{2{\phi }_{{xx}}}{\phi }+\displaystyle \frac{2{\phi }_{{xxx}}}{3{\phi }_{x}}-\displaystyle \frac{{\phi }_{{xx}}^{2}}{2{\phi }_{x}^{2}},\end{eqnarray}$
$\begin{eqnarray}\begin{array}{rcl}v & = & -\displaystyle \frac{1}{3{\phi }_{x}^{2}\phi }(2{\phi }_{{xt}}{\phi }_{x}^{2}-{\phi }_{{xxxx}}{\phi }_{x}^{2}-2{\phi }_{t}{\phi }_{x}{\phi }_{{xx}}\\ & & +4{\phi }_{{xx}}{\phi }_{{xxx}}{\phi }_{x}-3{\phi }_{{xx}}^{3})\\ & & -\displaystyle \frac{1}{144{\phi }_{x}^{4}}\left\{24({\phi }_{5x}-2{\phi }_{{xxt}}){\phi }_{x}^{3}\right.\\ & & +[64{\phi }_{{xxx}}{\phi }_{t}-100{\phi }_{{xxx}}^{2}\\ & & +48({\phi }_{{xt}}-2{\phi }_{4x}){\phi }_{{xx}}-16{\phi }_{t}^{2}]{\phi }_{x}^{2}\\ & & \left.+(324{\phi }_{{xx}}^{2}{\phi }_{{xxx}}-72{\phi }_{{xx}}^{2}{\phi }_{t}){\phi }_{x}-153{\phi }_{{xx}}^{4}\right\},\end{array}\end{eqnarray}$
is a solution of the DSSH system. It is clear that any equations of Schwarzian form are invariant under Möbious transformation
$\begin{eqnarray}\phi \longrightarrow \displaystyle \frac{a\phi +b}{c\phi +d},{ac}\ne {bd},\end{eqnarray}$
which means that these types of equations have symmetries σφ = d1, σφ = d2φ and
$\begin{eqnarray}{\sigma }_{\phi }={d}_{3}{\phi }^{2},\end{eqnarray}$
where d1, d2 and d3 are arbitrary constants. It is interesting that u1 and v0 in equations (5) and (7) satisfy linearized equations of equations (1) and (2) which can be easily verified, so it is a symmetry of the DSSH system which is called residual symmetry.
It is obvious that a residual symmetry is nonlocal which cannot be used directly by Lie's first fundamental theorem to generate its finite transformation. To concur this difficulty we localize the residual symmetry in a new prolonged DSSH system by introducing five new dependent variables
$\begin{eqnarray}g\equiv {\phi }_{x},h\equiv {g}_{x},m\equiv {h}_{x},n\equiv {m}_{x},p\equiv {u}_{x}.\end{eqnarray}$
By fixing the symmetry of φ as σφ = φ2 and using the equations in the prolonged DSSH system, it can be verified that the Lie point symmetry
$\begin{eqnarray}{\sigma }_{u}=2h,\end{eqnarray}$
$\begin{eqnarray}{\sigma }_{v}=-\displaystyle \frac{2{g}^{3}p-{g}^{2}n+2{ghm}-{h}^{3}}{{g}^{2}},\end{eqnarray}$
$\begin{eqnarray}{\sigma }_{\phi }={\phi }^{2},\end{eqnarray}$
$\begin{eqnarray}{\sigma }_{g}=2g\phi ,\end{eqnarray}$
$\begin{eqnarray}{\sigma }_{h}=2{g}^{2}+2h\phi ,\end{eqnarray}$
$\begin{eqnarray}{\sigma }_{m}=6{gh}+2m\phi ,\end{eqnarray}$
$\begin{eqnarray}{\sigma }_{n}=8{gm}+6{h}^{2}+2n\phi ,\end{eqnarray}$
$\begin{eqnarray}{\sigma }_{p}=2m,\end{eqnarray}$
satisfies the linearized system of (1), (2), (9) and (14), which means the residual symmetry is successfully localized in the prolonged DSSH system. Meanwhile, the symmetry of (15a) can also be expressed in vector form as
$\begin{eqnarray}\begin{array}{rcl}V & = & 2h{\partial }_{u}-\displaystyle \frac{2{g}^{3}p-{g}^{2}n+2{ghm}-{h}^{3}}{{g}^{2}}\\ & & \times {\partial }_{v}+{\phi }^{2}{\partial }_{\phi }+2g\phi {\partial }_{g}+(2{g}^{2}+2h\phi ){\partial }_{h}\\ & & +(6{gh}+2m\phi ){\partial }_{m}+(8{gm}+6{h}^{2}+2n\phi ){\partial }_{n}+2m{\partial }_{p}.\end{array}\end{eqnarray}$
According to Lie's first fundamental theorem, after solving the corresponding initial value problem of (16), which is
$\begin{eqnarray}\displaystyle \frac{{\rm{d}}\hat{u}(\epsilon )}{{\rm{d}}\epsilon }=2\hat{h}(\epsilon ),\quad \hat{u}(0)=u,\end{eqnarray}$
$\begin{eqnarray}\begin{array}{rcl}\displaystyle \frac{{\rm{d}}\hat{v}(\epsilon )}{{\rm{d}}\epsilon } & = & -\displaystyle \frac{2\hat{g}{\left(\epsilon \right)}^{3}\hat{p}(\epsilon )-\hat{g}{\left(\epsilon \right)}^{2}\hat{n}(\epsilon )+2\hat{g}(\epsilon )\hat{h}(\epsilon )\hat{m}(\epsilon )-\hat{h}{\left(\epsilon \right)}^{3}}{\hat{g}{\left(\epsilon \right)}^{2}},\\ \hat{v}(0) & = & v,\end{array}\end{eqnarray}$
$\begin{eqnarray}\displaystyle \frac{{\rm{d}}\hat{g}(\epsilon )}{{\rm{d}}\epsilon }=2\hat{\phi }(\epsilon )\hat{g}(\epsilon ),\quad \hat{g}(0)=g,\end{eqnarray}$
$\begin{eqnarray}\displaystyle \frac{{\rm{d}}\hat{\phi }(\epsilon )}{{\rm{d}}\epsilon }=\hat{\phi }{\left(\epsilon \right)}^{2},\quad \hat{\phi }(0)=\phi ,\end{eqnarray}$
$\begin{eqnarray}\displaystyle \frac{{\rm{d}}\hat{h}(\epsilon )}{{\rm{d}}\epsilon }=2\hat{g}{\left(\epsilon \right)}^{2}+2\hat{h}(\epsilon )\hat{\phi }(\epsilon ),\quad \hat{h}(0)=h,\end{eqnarray}$
$\begin{eqnarray}\displaystyle \frac{{\rm{d}}\hat{m}(\epsilon )}{{\rm{d}}\epsilon }=6\hat{g}(\epsilon )\hat{h}(\epsilon )+2\hat{m}(\epsilon )\hat{\phi }(\epsilon ),\quad \hat{m}(0)=m,\end{eqnarray}$
$\begin{eqnarray}\displaystyle \frac{{\rm{d}}\hat{n}(\epsilon )}{{\rm{d}}\epsilon }=8\hat{g}(\epsilon )m+6\hat{h}{\left(\epsilon \right)}^{2}+2\hat{n}(\epsilon )\hat{\phi }(\epsilon ),\quad \hat{n}(0)=n,\end{eqnarray}$
$\begin{eqnarray}\displaystyle \frac{{\rm{d}}\hat{p}(\epsilon )}{{\rm{d}}\epsilon }=2\hat{m}(\epsilon ),\quad \hat{p}(0)=p,\end{eqnarray}$
we get the following theorem.
Theorem 2. If {u, v, φ, g, h, m, n, p} is a solution of the prolonged system (1), (2), (9), (14), then so is $\{\hat{u},\hat{v},\hat{\phi },\hat{g},\hat{h},\hat{m},\hat{n},\hat{p}\}$ with
$\begin{eqnarray}\hat{u}=u+\displaystyle \frac{2{\epsilon }^{2}{g}^{2}-2{\epsilon }^{2}h\phi +2\epsilon h}{{\left(\epsilon \phi -1\right)}^{2}},\end{eqnarray}$
$\begin{eqnarray}\hat{v}=u+\displaystyle \frac{2{\epsilon }^{2}{g}^{2}-2{\epsilon }^{2}h\phi +2\epsilon h}{{\left(\epsilon \phi -1\right)}^{2}},\end{eqnarray}$
$\begin{eqnarray}\hat{\phi }=-\displaystyle \frac{\phi }{\epsilon \phi -1},\end{eqnarray}$
$\begin{eqnarray}\hat{g}=\displaystyle \frac{g}{{\left(\epsilon \phi -1\right)}^{2}},\end{eqnarray}$
$\begin{eqnarray}\hat{h}=-\displaystyle \frac{2\epsilon {g}^{2}-\epsilon h\phi +h}{{\left(\epsilon \phi -1\right)}^{3}},\end{eqnarray}$
$\begin{eqnarray}\hat{m}=\displaystyle \frac{{\epsilon }^{2}m{\phi }^{2}+(-6{\epsilon }^{2}{gh}-2\epsilon m)\phi +6{\epsilon }^{2}{g}^{3}+6\epsilon {hg}+m}{{\left(\epsilon \phi -1\right)}^{4}},\end{eqnarray}$
$\begin{eqnarray}\begin{array}{rcl}\hat{n} & = & -\displaystyle \frac{1}{{\left(\epsilon \phi -1\right)}^{5}}[-{\epsilon }^{3}n{\phi }^{3}+(8{\epsilon }^{3}{gm}+6{\epsilon }^{3}{h}^{2}+3{\epsilon }^{2}n)\\ & & \times {\phi }^{2}+(-36{\epsilon }^{3}{g}^{2}h-16{\epsilon }^{2}{gm}-12{\epsilon }^{2}{h}^{2}-3\epsilon n)\\ & & \times \phi +24{\epsilon }^{3}{g}^{4}+36{\epsilon }^{2}{{hg}}^{2}+8\epsilon {mg}+6\epsilon {h}^{2}+n],\end{array}\end{eqnarray}$
$\begin{eqnarray}\hat{p}=p-\displaystyle \frac{2\epsilon (2{\epsilon }^{2}{g}^{3}-3{\epsilon }^{2}{gh}\phi +{\epsilon }^{2}m{\phi }^{2}+3\epsilon {gh}-2\epsilon m\phi +m)}{{\left(\epsilon \phi -1\right)}^{3}},\end{eqnarray}$
where ε is an arbitrary group parameter.

3. Residual symmetry reduction solutions

In this section, we first investigate the general form of Lie point symmetry of the prolonged DSSH system (1), (2), (9), and (14), which can be written in a vector form as
$\begin{eqnarray}\begin{array}{rcl}V & = & X\displaystyle \frac{\partial }{\partial x}+T\displaystyle \frac{\partial }{\partial t}+U\displaystyle \frac{\partial }{\partial u}+V\displaystyle \frac{\partial }{\partial v}+{\rm{\Phi }}\displaystyle \frac{\partial }{\partial \phi }\\ & & +G\displaystyle \frac{\partial }{\partial g}+H\displaystyle \frac{\partial }{\partial h}+M\displaystyle \frac{\partial }{\partial m}+N\displaystyle \frac{\partial }{\partial n}+P\displaystyle \frac{\partial }{\partial p},\end{array}\end{eqnarray}$
or in function form as
$\begin{eqnarray}{\sigma }_{u}={{Xu}}_{x}+{{Tu}}_{t}-U,\end{eqnarray}$
$\begin{eqnarray}{\sigma }_{v}={{Xv}}_{x}+{{Tv}}_{t}-V,\end{eqnarray}$
$\begin{eqnarray}{\sigma }_{\phi }=X{\phi }_{x}+T{\phi }_{t}-{\rm{\Phi }},\end{eqnarray}$
$\begin{eqnarray}{\sigma }_{g}={{Xg}}_{x}+{{Tg}}_{t}-G,\end{eqnarray}$
$\begin{eqnarray}{\sigma }_{h}={{Xh}}_{x}+{{Th}}_{t}-H,\end{eqnarray}$
$\begin{eqnarray}{\sigma }_{m}={{Xm}}_{x}+{{Tm}}_{t}-M,\end{eqnarray}$
$\begin{eqnarray}{\sigma }_{n}={{Xn}}_{x}+{{Tn}}_{t}-N,\end{eqnarray}$
$\begin{eqnarray}{\sigma }_{p}={{Xp}}_{x}+{{Tp}}_{t}-P,\end{eqnarray}$
which means that the prolonged DSSH system is invariant under the transformation
$\begin{eqnarray}\begin{array}{l}\{x,t,u,v,\phi ,g,h,m,n,p\}\to \{x+\epsilon X,t+\epsilon T,\\ u+\epsilon U,v+\epsilon V,\phi +\epsilon {\rm{\Phi }},g+\epsilon G,h+\epsilon H,\\ m+\epsilon M,n+\epsilon N,p+\epsilon P\}.\end{array}\end{eqnarray}$
By substituting (27a) into the linearized equations of the prolonged DSSH system (1), (2), (9), (14) and vanishing all coefficients of different derivatives of u, v, g, h, m, n, p and φ with respect to x, t, we get many linear equations for the infinitesimals X, T, U, V, G, H, Φ, M, N, P which are over-determined, calculated by Maple, we have
$\begin{eqnarray}\begin{array}{rcl}X & = & \displaystyle \frac{{c}_{1}x}{3}+{c}_{4},T={c}_{1}t+{c}_{2},U=-\displaystyle \frac{2}{3}{c}_{1}u-2{c}_{3}h,\\ V & = & 2{c}_{3}{gp}-\displaystyle \frac{4{c}_{1}}{3}v-\displaystyle \frac{{c}_{3}{h}^{3}}{{g}^{2}}+\displaystyle \frac{2{c}_{3}{hm}}{g}-{c}_{3}n,\\ G & = & -\displaystyle \frac{g}{3}(6{c}_{3}\phi +{c}_{1}-3{c}_{5}),H=-2{c}_{3}{g}^{2}-2{c}_{3}\phi h\\ & & +{c}_{5}h-\displaystyle \frac{2}{3}{c}_{1}h,{\rm{\Phi }}=-{c}_{3}{\phi }^{2}+{c}_{5}\phi +{c}_{6},\\ M & = & -6{c}_{3}{gh}-2{c}_{3}m\phi -{c}_{1}m+{c}_{5}m,\\ N & = & -8{c}_{3}{gm}-2{c}_{3}n\phi +{c}_{5}n-\displaystyle \frac{4}{3}{c}_{1}n-6{c}_{3}{h}^{2},\\ P & = & -{c}_{1}p-2{c}_{3}m,\end{array}\end{eqnarray}$
where ci(i = 1, 2, ⋯ ,6) are arbitrary constants.
The function form of equation (27a) can now be written explicitly as
$\begin{eqnarray}\begin{array}{rcl}{\sigma }_{u} & = & (\displaystyle \frac{{c}_{1}x}{3}+{c}_{4}){u}_{x}+({c}_{1}t+{c}_{2}){u}_{t}+\displaystyle \frac{2}{3}{c}_{1}u+2{c}_{3}h,\\ {\sigma }_{v} & = & (\displaystyle \frac{{c}_{1}x}{3}+{c}_{4}){v}_{x}+({c}_{1}t+{c}_{2}){v}_{t}\\ & & -2{c}_{3}{gp}+\displaystyle \frac{4{c}_{1}}{3}v+\displaystyle \frac{{c}_{3}{h}^{3}}{{g}^{2}}-\displaystyle \frac{2{c}_{3}{hm}}{g}+{c}_{3}n,\\ {\sigma }_{\phi } & = & (\displaystyle \frac{{c}_{1}x}{3}+{c}_{4}){\phi }_{x}+({c}_{1}t+{c}_{2}){\phi }_{t}+{c}_{3}{\phi }^{2}-{c}_{5}\phi -{c}_{6},\\ {\sigma }_{g} & = & (\displaystyle \frac{{c}_{1}x}{3}+{c}_{4}){g}_{x}+({c}_{1}t+{c}_{2}){g}_{t}+\displaystyle \frac{g}{3}(6{c}_{3}\phi +{c}_{1}-3{c}_{5}),\\ {\sigma }_{h} & = & (\displaystyle \frac{{c}_{1}x}{3}+{c}_{4}){h}_{x}+({c}_{1}t+{c}_{2}){h}_{t}\\ & & +2{c}_{3}{g}^{2}+2{c}_{3}\phi h-{c}_{5}h+\displaystyle \frac{2}{3}{c}_{1}h,\\ {\sigma }_{m} & = & (\displaystyle \frac{{c}_{1}x}{3}+{c}_{4}){m}_{x}+({c}_{1}t+{c}_{2}){m}_{t}\\ & & +6{c}_{3}{gh}+2{c}_{3}m\phi +{c}_{1}m-{c}_{5}m,\\ {\sigma }_{n} & = & (\displaystyle \frac{{c}_{1}x}{3}+{c}_{4}){n}_{x}+({c}_{1}t+{c}_{2}){n}_{t}\\ & & +8{c}_{3}{gm}+2{c}_{3}n\phi -{c}_{5}n+\displaystyle \frac{4}{3}{c}_{1}n+6{c}_{3}{h}^{2},\\ {\sigma }_{p} & = & (\displaystyle \frac{{c}_{1}x}{3}+{c}_{4}){p}_{x}+({c}_{1}t+{c}_{2}){p}_{t}+{c}_{1}p+2{c}_{3}m.\end{array}\end{eqnarray}$
By using symmetry constraints σu = σv = σφ = σg =σh = σm = σn = σp = 0 in equation (30) we could get group invariant solutions of the prolonged system (1), (2), (9) and (14). We discuss it in the following two cases:
Case 1. ci ≠ 0 (i = 1, 2, ⋯ ,6). In the case, we get
$\begin{eqnarray}\begin{array}{rcl}\phi & = & \displaystyle \frac{{\delta }_{1}\tanh (\tfrac{{F}_{1}}{2})+{c}_{5}}{2{c}_{3}},{\delta }_{1}=\sqrt{4{c}_{3}{c}_{6}+{c}_{5}^{2}},\\ {F}_{1} & = & \displaystyle \frac{{\delta }_{1}({c}_{1}{\rm{\Phi }}+\mathrm{ln}({c}_{1}t+{c}_{2}))}{{c}_{1}},\end{array}\end{eqnarray}$
$\begin{eqnarray}g=-\displaystyle \frac{2G}{{\left({c}_{1}t+{c}_{2}\right)}^{\tfrac{1}{3}}\left[\cosh ({F}_{1})+1\right]},\end{eqnarray}$
$\begin{eqnarray}h=\displaystyle \frac{2[8{G}^{2}{c}_{3}-H{\delta }_{1}\exp ({F}_{1})-H{\delta }_{1}]}{{\delta }_{1}{\left({c}_{1}t+{c}_{2}\right)}^{\tfrac{2}{3}}(\exp ({F}_{1})+1)(\cosh ({F}_{1})+1)},\end{eqnarray}$
$\begin{eqnarray}m=-\displaystyle \frac{M{\delta }_{1}^{2}\exp (2{F}_{1})-2{\delta }_{1}(12{c}_{3}{GH}-M{\delta }_{1})\exp ({F}_{1})+96{c}_{3}^{2}{G}^{3}-24{c}_{3}H{\delta }_{1}G+M{\delta }_{1}^{2}}{{\delta }_{1}^{2}({c}_{1}t+{c}_{2}){\left(\exp ({F}_{1})+1\right)}^{2}(\cosh ({F}_{1})+1)},\end{eqnarray}$
$\begin{eqnarray}\begin{array}{rcl}n & = & \displaystyle \frac{2}{{\delta }_{1}^{3}{\left({c}_{1}t+{c}_{2}\right)}^{\tfrac{4}{3}}{\left(\exp ({F}_{1})+1\right)}^{3}(\cosh ({F}_{1})+1)}\\ & & \times \left[{\delta }_{1}^{2}(32{c}_{3}{GM}+24{c}_{3}{H}^{2}-3N{\delta }_{1})\exp (2{F}_{1})\right.\\ & & -{\delta }_{1}^{3}\exp (3{F}_{1})N-{\delta }_{1}(576{c}_{3}^{2}{G}^{2}H-64{c}_{3}{GM}{\delta }_{1}\\ & & -48{c}_{3}{H}^{2}{\delta }_{1}+3N{\delta }_{1}^{2})\exp ({F}_{1})+1536{c}_{3}^{3}{G}^{4}\\ & & \left.-576{c}_{3}^{2}{\delta }_{1}{{HG}}^{2}+32{c}_{3}{GM}{\delta }_{1}^{2}+24{c}_{3}{H}^{2}{\delta }_{1}^{2}-N{\delta }_{1}^{3}\right],\end{array}\end{eqnarray}$
$\begin{eqnarray}\begin{array}{rcl}p & = & -\displaystyle \frac{1}{{\delta }_{1}^{3}({c}_{1}t+{c}_{2}){\left(\exp ({F}_{1})+1\right)}^{3}}\\ & & \times \left[{\delta }_{1}^{2}(8{c}_{3}M-3P{\delta }_{1})\exp (2{F}_{1})-P{\delta }_{1}^{3}\exp (3{F}_{1})\right.\\ & & -{\delta }_{1}(96{c}_{3}^{2}{GH}-16{c}_{3}M{\delta }_{1}+3P{\delta }_{1}^{2})\exp ({F}_{1})\\ & & \left.+256{c}_{3}^{3}{G}^{3}-96{c}_{3}^{2}{\delta }_{1}{HG}+8{c}_{3}M{\delta }_{1}^{2}-P{\delta }_{1}^{3}\right],\end{array}\end{eqnarray}$
$\begin{eqnarray}\begin{array}{rcl}u & = & \displaystyle \frac{1}{{\delta }_{1}^{2}{\left({c}_{1}t+{c}_{2}\right)}^{\tfrac{2}{3}}{\left(\exp ({F}_{1})+1\right)}^{2}}\\ & & \times \left[U{\delta }_{1}^{2}\exp (2{F}_{1})-2{\delta }_{1}(4{c}_{3}H-U{\delta }_{1})\exp ({F}_{1})\right.\\ & & \left.+32{c}_{3}^{2}{G}^{2}-8{c}_{3}H{\delta }_{1}+U{\delta }_{1}^{2}\right],\end{array}\end{eqnarray}$
$\begin{eqnarray}\begin{array}{rcl}v & = & \displaystyle \frac{1}{{\delta }_{1}{\left({c}_{1}t+{c}_{2}\right)}^{\tfrac{4}{3}}{G}^{2}(\exp ({F}_{1})+1)}\\ & & \times \left[8{c}_{3}{G}^{3}P+{{VG}}^{2}{\delta }_{1}\exp ({F}_{1})-4{c}_{3}{H}^{3}+8{c}_{3}{HMG}\right.\\ & & \left.-4{c}_{3}{{NG}}^{2}+{{VG}}^{2}{\delta }_{1}\right],\end{array}\end{eqnarray}$
where U, V, G, H, Φ, M, N, P are group invariant functions of a new group invariant variable $\xi =\tfrac{{c}_{1}x+3{c}_{4}}{{\left({c}_{1}t+{c}_{2}\right)}^{\tfrac{1}{3}}{c}_{1}}$.
By substituting equations (31)–(38) into the prolonged system (1), (2), (9) and (14), we get the following symmetry reduction equations
$\begin{eqnarray}G=-\displaystyle \frac{{\delta }_{1}^{2}{{\rm{\Phi }}}_{\xi }}{4{c}_{3}},\end{eqnarray}$
$\begin{eqnarray}H=\displaystyle \frac{{\delta }_{1}^{2}({\delta }_{1}{{\rm{\Phi }}}_{\xi }^{2}-{{\rm{\Phi }}}_{\xi \xi })}{4{c}_{3}},\end{eqnarray}$
$\begin{eqnarray}M=-\displaystyle \frac{{\delta }_{1}^{2}({{\rm{\Phi }}}_{\xi }^{3}{\delta }_{1}^{2}-3{{\rm{\Phi }}}_{\xi }{{\rm{\Phi }}}_{\xi \xi }{\delta }_{1}+{{\rm{\Phi }}}_{\xi \xi \xi })}{4{c}_{3}},\end{eqnarray}$
$\begin{eqnarray}N=\displaystyle \frac{{\delta }_{1}^{2}({{\rm{\Phi }}}_{\xi }^{4}{\delta }_{1}^{3}-6{{\rm{\Phi }}}_{\xi }^{2}{{\rm{\Phi }}}_{\xi \xi }{\delta }_{1}^{2}+4{{\rm{\Phi }}}_{\xi }{{\rm{\Phi }}}_{\xi \xi \xi }{\delta }_{1}+3{{\rm{\Phi }}}_{\xi \xi }^{2}{\delta }_{1}-{{\rm{\Phi }}}_{4\xi })}{4{c}_{3}},\end{eqnarray}$
$\begin{eqnarray}P={U}_{\xi },\end{eqnarray}$
$\begin{eqnarray}U=\displaystyle \frac{3{{\rm{\Phi }}}_{\xi }^{4}{\delta }_{1}^{2}+(2{c}_{1}\xi -18{\delta }_{1}{{\rm{\Phi }}}_{\xi \xi }){{\rm{\Phi }}}_{\xi }^{2}+(12{{\rm{\Phi }}}_{\xi \xi \xi }-6){{\rm{\Phi }}}_{\xi }-9{{\rm{\Phi }}}_{\xi \xi }^{2}}{18{{\rm{\Phi }}}_{\xi }^{2}},\end{eqnarray}$
$\begin{eqnarray}\begin{array}{rcl}V & = & \displaystyle \frac{1}{1296{{\rm{\Phi }}}_{\xi }^{4}}\left\{9{{\rm{\Phi }}}_{\xi }^{8}{\delta }_{1}^{4}+(-24{c}_{1}{\delta }_{1}^{2}\xi -216{{\rm{\Phi }}}_{\xi \xi }{\delta }_{1}^{3}){{\rm{\Phi }}}_{\xi }^{6}\right.\\ & & +[180{\delta }_{1}^{2}{{\rm{\Phi }}}_{\xi \xi \xi }+72{\delta }_{1}(2{c}_{1}+{\delta }_{1})]{{\rm{\Phi }}}_{\xi }^{5}\\ & & +(16{c}_{1}^{2}{\xi }^{2}+486{{\rm{\Phi }}}_{\xi \xi }^{2}{\delta }_{1}^{2}+216{{\rm{\Phi }}}_{4\xi }{\delta }_{1}){{\rm{\Phi }}}_{\xi }^{4}\\ & & +[(-864{{\rm{\Phi }}}_{\xi \xi \xi }{\delta }_{1}-144{c}_{1}+432{\delta }_{1}){{\rm{\Phi }}}_{\xi \xi }+48{c}_{1}{{\rm{\Phi }}}_{\xi \xi \xi }\xi \\ & & -96{c}_{1}\xi -216{{\rm{\Phi }}}_{5\xi }]{{\rm{\Phi }}}_{\xi }^{3}+(-72{c}_{1}{{\rm{\Phi }}}_{\xi \xi }^{2}\xi +648{{\rm{\Phi }}}_{\xi \xi }^{3}{\delta }_{1}\\ & & +864{{\rm{\Phi }}}_{\xi \xi }{{\rm{\Phi }}}_{4\xi }+900{{\rm{\Phi }}}_{\xi \xi \xi }^{2}-576{{\rm{\Phi }}}_{\xi \xi \xi }+144){{\rm{\Phi }}}_{\xi }^{2}\\ & & \left.+(-2916{{\rm{\Phi }}}_{\xi \xi \xi }+648){{\rm{\Phi }}}_{\xi \xi }^{2}{{\rm{\Phi }}}_{\xi }+1377{{\rm{\Phi }}}_{\xi \xi }^{4}\right\},\end{array}\end{eqnarray}$
where Φ satisfies
$\begin{eqnarray}\begin{array}{l}-9{\delta }_{1}^{4}{{\rm{\Phi }}}_{\xi \xi }{{\rm{\Phi }}}_{\xi }^{8}+(-12{c}_{1}\xi {\delta }_{1}^{2}{{\rm{\Phi }}}_{\xi \xi }+27{{\rm{\Phi }}}_{4\xi }{\delta }_{1}^{2}){{\rm{\Phi }}}_{\xi }^{6}\\ +\,[(36{\delta }_{1}^{2}{{\rm{\Phi }}}_{\xi \xi \xi }+36{\delta }_{1}^{2}){{\rm{\Phi }}}_{\xi \xi }+16{c}_{1}^{2}\xi ]{{\rm{\Phi }}}_{\xi }^{5}\\ +\,(12{c}_{1}\xi {{\rm{\Phi }}}_{4\xi }-36{c}_{1}-18{{\rm{\Phi }}}_{6\xi }){{\rm{\Phi }}}_{\xi }^{4}+\,[(-48{c}_{1}{{\rm{\Phi }}}_{\xi \xi \xi }\xi \\ +\,24{c}_{1}\xi +108{{\rm{\Phi }}}_{5\xi }){{\rm{\Phi }}}_{\xi \xi }+216{{\rm{\Phi }}}_{4\xi }{{\rm{\Phi }}}_{\xi \xi \xi }-\,54{{\rm{\Phi }}}_{4\xi }]{{\rm{\Phi }}}_{\xi }^{3}\\ +\,[36{c}_{1}\xi {{\rm{\Phi }}}_{\xi \xi }^{3}-459{{\rm{\Phi }}}_{4\xi }{{\rm{\Phi }}}_{\xi \xi }^{2}+(-684{{\rm{\Phi }}}_{\xi \xi \xi }^{2}+\,252{{\rm{\Phi }}}_{\xi \xi \xi }-36)\\ \times \,{{\rm{\Phi }}}_{\xi \xi }]{{\rm{\Phi }}}_{\xi }^{2}+(1404{{\rm{\Phi }}}_{\xi \xi \xi }-216){{\rm{\Phi }}}_{\xi \xi }^{3}{{\rm{\Phi }}}_{\xi }-567{{\rm{\Phi }}}_{\xi \xi }^{5}=0.\end{array}\end{eqnarray}$
It is clear that after solving equation (46) for Φ, we can get solutions for G, H, M, N, U, V by equations (39)–(45) and new solutions of the DSSH system can be generated by substituting them into equations (37) and (38). To illustrate this point, we take a special solution of equation (46) as
$\begin{eqnarray}{\rm{\Phi }}={d}_{5}+{d}_{2}\mathrm{ln}({d}_{3}\xi ),\end{eqnarray}$
where d2, d3, d5 are arbitrary constants, which leads to a new solution of the DSSH system
$\begin{eqnarray}u=\displaystyle \frac{2{d}_{3}^{2}\exp (\tfrac{2{d}_{5}}{{d}_{2}}){d}_{2}^{2}}{{\left[{\left({c}_{2}{d}_{2}+3t\right)}^{\tfrac{1}{3}}{d}_{2}^{\tfrac{2}{3}}{d}_{3}\xi \exp (\tfrac{{d}_{5}}{{d}_{2}})+{d}_{2}\right]}^{2}},v=0,\end{eqnarray}$
with ${c}_{1}=\tfrac{3}{{d}_{2}},{c}_{6}=-\tfrac{{c}_{5}^{2}{d}_{2}^{2}-1}{4{d}_{2}^{2}{c}_{3}}$.
Case 2. ci ≠ 0(i = 1, 2, 4, 5) and c3 = c6 = 0.
Using a similar procedure as case 1, we get symmetry reduction solutions
$\begin{eqnarray}\phi =\displaystyle \frac{{\delta }_{2}\tanh (\tfrac{{F}_{2}}{2})}{{c}_{3}},{\delta }_{2}=\sqrt{{c}_{3}{c}_{6}},{F}_{2}=\displaystyle \frac{2{\delta }_{2}({\rm{\Phi }}+t)}{{c}_{2}},\end{eqnarray}$
$\begin{eqnarray}g=-\displaystyle \frac{2G}{\cosh ({F}_{2})+1},\end{eqnarray}$
$\begin{eqnarray}h=-\displaystyle \frac{2({{Hc}}_{6}\exp ({F}_{2})-4{G}^{2}{\delta }_{2}+{{Hc}}_{6})}{{c}_{6}(\exp ({F}_{2})+1)(\cosh ({F}_{2})+1)},\end{eqnarray}$
$\begin{eqnarray}\begin{array}{rcl}m & = & -\displaystyle \frac{2}{{c}_{6}^{2}{\left(\exp ({F}_{2})+1\right)}^{2}(\cosh ({F}_{2})+1)}\\ & & \times \left[(-12{HG}{\delta }_{2}{c}_{6}+2{{Mc}}_{6}^{2})\exp ({F}_{2})\right.\\ & & \left.+{c}_{6}^{2}\exp (2{F}_{2})M+{{Mc}}_{6}^{2}-12G{\delta }_{2}(-2{G}^{2}{\delta }_{2}+{{Hc}}_{6})\right],\end{array}\end{eqnarray}$
$\begin{eqnarray}\begin{array}{rcl}n & = & -\displaystyle \frac{2}{{c}_{6}^{3}{\left(\exp ({F}_{2})+1\right)}^{3}(\cosh ({F}_{2})+1)}\\ & & \times \left[{c}_{6}(144{{HG}}^{2}{\delta }_{2}^{2}-32{c}_{6}{GM}{\delta }_{2}-24{c}_{6}{H}^{2}{\delta }_{2}\right.\\ & & +3{{Nc}}_{6}^{2})\exp ({F}_{2})+{c}_{6}^{2}(-16{GM}{\delta }_{2}-12{H}^{2}{\delta }_{2}+3{c}_{6}N)\\ & & \times \exp (2{F}_{2})-192{\delta }_{2}^{3}{G}^{4}\\ & & +144{{HG}}^{2}{\delta }_{2}^{2}{c}_{6}+{c}_{6}^{3}\exp (3{F}_{2})N-16{{Mc}}_{6}^{2}G{\delta }_{2}\\ & & \left.-12{c}_{6}^{2}{H}^{2}{\delta }_{2}+{{Nc}}_{6}^{3}\right],\end{array}\end{eqnarray}$
$\begin{eqnarray}\begin{array}{rcl}p & = & \displaystyle \frac{1}{{c}_{6}^{3}}\left[4{G}^{3}{\tanh }^{3}(\displaystyle \frac{1}{2}{F}_{2}){\delta }_{2}^{3}+6G{\delta }_{2}^{2}(-2{G}^{2}{\delta }_{2}+{{Hc}}_{6})\right.\\ & & \times {\tanh }^{2}(\displaystyle \frac{1}{2}{F}_{2})+2{\delta }_{2}(6{\delta }_{2}^{2}{G}^{3}\\ & & \left.-6{HG}{\delta }_{2}{c}_{6}+{{Mc}}_{6}^{2})\tanh (\displaystyle \frac{1}{2}{F}_{2})+{c}_{6}^{3}P\right],\end{array}\end{eqnarray}$
$\begin{eqnarray}\begin{array}{rcl}u & = & \displaystyle \frac{1}{{c}_{6}^{2}}\left[2{G}^{2}{\tanh }^{2}(\displaystyle \frac{1}{2}{F}_{2}){\delta }_{2}^{2}+2{\delta }_{2}\right.\\ & & \left.\times (-2{G}^{2}{\delta }_{2}+{{Hc}}_{6})\tanh (\displaystyle \frac{1}{2}{F}_{2})+{c}_{6}^{2}U\right],\end{array}\end{eqnarray}$
$\begin{eqnarray}\begin{array}{rcl}v & = & \displaystyle \frac{1}{{c}_{6}^{4}{G}^{2}(\exp ({F}_{2})+1)}\\ & & \times \left[16{G}^{6}{\delta }_{2}^{4}-24{c}_{6}{G}^{4}H{\delta }_{2}^{3}+4{c}_{6}^{2}{\delta }_{2}({c}_{6}P+2M{\delta }_{2}){G}^{3}\right.\\ & & +{c}_{6}^{3}({c}_{6}\exp ({F}_{2})V+{c}_{6}V-2N{\delta }_{2})\\ & & \left.\times {G}^{2}+4{c}_{6}^{3}{GHM}{\delta }_{2}-2{c}_{6}^{3}{H}^{3}{\delta }_{2}\right],\end{array}\end{eqnarray}$
where U, V, G, H, Φ, M, N, P are group invariant functions of a new group invariant variable $\xi =\tfrac{({c}_{1}-{c}_{5})x\,+\,2{c}_{7}}{{\left({c}_{1}t+{c}_{2}\right)}^{\tfrac{{c}_{1}-{c}_{5}}{2{c}_{1}}}({c}_{1}-{c}_{5})}$. The corresponding symmetry reduction equations are
$\begin{eqnarray}G=-\displaystyle \frac{{c}_{6}{{\rm{\Phi }}}_{\xi }}{{c}_{2}},\end{eqnarray}$
$\begin{eqnarray}H=-\displaystyle \frac{-2{c}_{6}^{\tfrac{3}{2}}\sqrt{{c}_{3}}{{\rm{\Phi }}}_{\xi }^{2}+{c}_{2}{c}_{6}{{\rm{\Phi }}}_{\xi \xi }}{{c}_{2}^{2}},\end{eqnarray}$
$\begin{eqnarray}M=-\displaystyle \frac{-6{c}_{2}{{\rm{\Phi }}}_{\xi }{c}_{6}^{\tfrac{3}{2}}\sqrt{{c}_{3}}{{\rm{\Phi }}}_{\xi \xi }+4{c}_{3}{c}_{6}^{2}{{\rm{\Phi }}}_{\xi }^{3}+{c}_{2}^{2}{c}_{6}{{\rm{\Phi }}}_{\xi \xi \xi }}{{c}_{2}^{3}},\end{eqnarray}$
$\begin{eqnarray}\begin{array}{rcl}N & = & -\displaystyle \frac{{c}_{6}}{{c}_{2}^{4}}(-8{\delta }_{2}^{3}{{\rm{\Phi }}}_{\xi }^{4}-8{c}_{2}^{2}{\delta }_{2}{{\rm{\Phi }}}_{\xi }{{\rm{\Phi }}}_{\xi \xi \xi }-6{c}_{2}^{2}{\delta }_{2}{{\rm{\Phi }}}_{\xi \xi }^{2}\\ & & +24{c}_{2}{\delta }_{2}^{2}{{\rm{\Phi }}}_{\xi }^{2}{{\rm{\Phi }}}_{\xi \xi }+{c}_{2}^{3}{{\rm{\Phi }}}_{4\xi }),\end{array}\end{eqnarray}$
$\begin{eqnarray}\begin{array}{rcl}P & = & \displaystyle \frac{1}{3{c}_{2}^{2}{{\rm{\Phi }}}_{\xi }^{3}}[-14{\delta }_{2}^{2}{{\rm{\Phi }}}_{\xi }^{4}{{\rm{\Phi }}}_{\xi \xi }+2{c}_{2}^{2}{{\rm{\Phi }}}_{\xi }^{2}{{\rm{\Phi }}}_{4\xi }\\ & & +(-5{c}_{2}^{2}{{\rm{\Phi }}}_{\xi \xi \xi }+{c}_{2}^{2}){{\rm{\Phi }}}_{\xi \xi }{{\rm{\Phi }}}_{\xi }+3{c}_{2}^{2}{{\rm{\Phi }}}_{\xi \xi }^{3}],\end{array}\end{eqnarray}$
$\begin{eqnarray}U=\displaystyle \frac{-8{\delta }_{2}^{2}{{\rm{\Phi }}}_{\xi }^{4}+4{c}_{2}^{2}{{\rm{\Phi }}}_{\xi }{{\rm{\Phi }}}_{\xi \xi \xi }-3{c}_{2}^{2}{{\rm{\Phi }}}_{\xi \xi }^{2}+2{c}_{2}{c}_{4}4{{\rm{\Phi }}}_{\xi }^{2}-2{c}_{2}^{2}{{\rm{\Phi }}}_{\xi }}{6{c}_{2}^{2}{{\rm{\Phi }}}_{\xi }^{2}},\end{eqnarray}$
$\begin{eqnarray}\begin{array}{rcl}V & = & -\displaystyle \frac{1}{144{c}_{2}^{4}{{\rm{\Phi }}}_{\xi }^{4}}\left\{-16{{\rm{\Phi }}}_{\xi }^{8}{\delta }_{2}^{4}+(192{c}_{2}{{\rm{\Phi }}}_{\xi \xi }{\delta }_{2}^{3}+32{c}_{2}{c}_{4}{\delta }_{2}^{2}){{\rm{\Phi }}}_{\xi }^{6}\right.\\ & & +(-80{c}_{2}^{2}{{\rm{\Phi }}}_{\xi \xi \xi }{\delta }_{2}^{2}-32{c}_{2}^{2}{\delta }_{2}^{2}){{\rm{\Phi }}}_{\xi }^{5}\\ & & +(-216{c}_{2}^{2}{{\rm{\Phi }}}_{\xi \xi }^{2}{\delta }_{2}^{2}-48{c}_{2}^{3}{{\rm{\Phi }}}_{4\xi }{\delta }_{2}-16{c}_{2}^{2}{c}_{4}^{2}){{\rm{\Phi }}}_{\xi }^{4}\\ & & +[(192{c}_{2}^{3}{{\rm{\Phi }}}_{\xi \xi \xi }{\delta }_{2}-96{c}_{2}^{3}{\delta }_{2}){{\rm{\Phi }}}_{\xi \xi }+24{c}_{2}^{4}{{\rm{\Phi }}}_{5\xi }\\ & & -16{c}_{2}^{3}{c}_{4}{{\rm{\Phi }}}_{\xi \xi \xi }+32{c}_{2}^{3}{c}_{4}]{{\rm{\Phi }}}_{\xi }^{3}+(-144{c}_{2}^{3}{{\rm{\Phi }}}_{\xi \xi }^{3}{\delta }_{2}\\ & & -96{c}_{2}^{4}{{\rm{\Phi }}}_{\xi \xi }{{\rm{\Phi }}}_{4\xi }-100{c}_{2}^{4}{{\rm{\Phi }}}_{\xi \xi \xi }^{2}+24{c}_{2}^{3}{c}_{4}{{\rm{\Phi }}}_{\xi \xi }^{2}\\ & & +64{c}_{2}^{4}{{\rm{\Phi }}}_{\xi \xi \xi }-16{c}_{2}^{4}){{\rm{\Phi }}}_{\xi }^{2}\\ & & \left.+(324{c}_{2}^{4}{{\rm{\Phi }}}_{\xi \xi \xi }-72{c}_{2}^{4}){{\rm{\Phi }}}_{\xi \xi }^{2}{{\rm{\Phi }}}_{\xi }-153{c}_{2}^{4}{{\rm{\Phi }}}_{\xi \xi }^{4}\right\},\end{array}\end{eqnarray}$
where Φ satisfies
$\begin{eqnarray}\begin{array}{l}-9{\left({c}_{5}^{2}+4{\delta }_{2}^{2}\right)}^{2}{{\rm{\Phi }}}_{\xi \xi }{{\rm{\Phi }}}_{\xi }^{8}+[-12{c}_{1}\xi ({c}_{5}^{2}+4{\delta }_{2}^{2}){{\rm{\Phi }}}_{\xi \xi }\\ +(27{c}_{5}^{2}+108{\delta }_{2}^{2}){{\rm{\Phi }}}_{4\xi }]{{\rm{\Phi }}}_{\xi }^{6}+\left\{[(36{c}_{5}^{2}+144{\delta }_{2}^{2}){{\rm{\Phi }}}_{\xi \xi \xi }\right.\\ \left.+144{\delta }_{2}^{2}+36{c}_{5}^{2}]{{\rm{\Phi }}}_{\xi \xi }+16{c}_{1}^{2}\xi \right\}{{\rm{\Phi }}}_{\xi }^{5}\\ +\,(12{c}_{1}\xi {{\rm{\Phi }}}_{4\xi }-36{c}_{1}-18{{\rm{\Phi }}}_{6\xi }){{\rm{\Phi }}}_{\xi }^{4}\\ +\,[(-48{c}_{1}{{\rm{\Phi }}}_{\xi \xi \xi }\xi +24{c}_{1}\xi \\ +\,108{{\rm{\Phi }}}_{5\xi }){{\rm{\Phi }}}_{\xi \xi }\\ +\,216{{\rm{\Phi }}}_{4\xi }{{\rm{\Phi }}}_{\xi \xi \xi }-54{{\rm{\Phi }}}_{4\xi }]{{\rm{\Phi }}}_{\xi }^{3}+(36{c}_{1}\xi {{\rm{\Phi }}}_{\xi \xi }^{3}-459{{\rm{\Phi }}}_{4\xi }{{\rm{\Phi }}}_{\xi \xi }^{2}\\ +\,(-684{{\rm{\Phi }}}_{\xi \xi \xi }^{2}+252{{\rm{\Phi }}}_{\xi \xi \xi }-36){{\rm{\Phi }}}_{\xi \xi }){{\rm{\Phi }}}_{\xi }^{2}\\ +\,(1404{{\rm{\Phi }}}_{\xi \xi \xi }-216){{\rm{\Phi }}}_{\xi \xi }^{3}{{\rm{\Phi }}}_{\xi }-567{{\rm{\Phi }}}_{\xi \xi }^{5}=0.\end{array}\end{eqnarray}$
It is clear that when Φ is solved from equation (64), new exact solutions of equations (1) and (2) could be derived from equations (55) and (56) with equations (57)–(63).

4. CRE integrability and new interaction solutions

In this section, we further investigate the integrability of the DSSH system by using the CRE method. To this end, by homogeneous balance analysis, we consider the Riccati expansions of equations (1) and (2) as
$\begin{eqnarray}\begin{array}{rcl}u & = & {u}_{0}+{u}_{1}R(\phi )+{u}_{2}{R}^{2}(\phi ),\\ v & = & {v}_{0}+{v}_{1}R(\phi ),(\phi =\phi (x,y,t)),\end{array}\end{eqnarray}$
where u0, u1, u2, v0, v1 are functions of (x, t) to be determined and R(w) is a solution of the Riccati equation
$\begin{eqnarray}{R}_{\phi }={a}_{0}+{a}_{1}R+{a}_{2}{R}^{2}.\end{eqnarray}$
Substituting equation (65) with equation (66) into the DSSH system (1) and equation (2) and vanishing different powers of R(φ), we get
$\begin{eqnarray}{u}_{2}=2{a}_{2}^{2}{\phi }_{x}^{2},{u}_{1}=2{\phi }_{x}^{2}{a}_{1}{a}_{2}+2{\phi }_{{xx}}{a}_{2},\end{eqnarray}$
$\begin{eqnarray}{u}_{0}=-\displaystyle \frac{-4{\phi }_{x}{\phi }_{{xxx}}+3{\phi }_{{xx}}^{2}-6{\phi }_{x}^{2}{\phi }_{{xx}}{a}_{1}+2{\phi }_{t}{\phi }_{x}+(-8{a}_{0}{a}_{2}-{a}_{1}^{2}){\phi }_{x}^{4}}{6{\phi }_{x}^{2}},\end{eqnarray}$
and
$\begin{eqnarray}{v}_{1}=\displaystyle \frac{{\phi }_{4x}{\phi }_{x}^{2}-4{\phi }_{{xx}}{\phi }_{{xxx}}{\phi }_{x}-2{\phi }_{x}^{2}{\phi }_{{xt}}+3{\phi }_{{xx}}^{3}+({\phi }_{x}^{4}{\delta }_{3}+2{\phi }_{t}{\phi }_{x}){\phi }_{{xx}}}{3{\phi }_{x}^{2}},\end{eqnarray}$
$\begin{eqnarray}\begin{array}{rcl}{v}_{0} & = & \displaystyle \frac{1}{144{\phi }_{x}^{4}}[-24{\phi }_{5x}{\phi }_{x}^{3}+(-24{\phi }_{x}^{4}{a}_{1}+96{\phi }_{x}^{2}{\phi }_{{xx}}){\phi }_{4x}\\ & & +48{\phi }_{{xxt}}{\phi }_{x}^{3}+100{\phi }_{x}^{2}{\phi }_{{xxx}}^{2}\\ & & +(-20{\phi }_{x}^{5}{\delta }_{3}+96{\phi }_{{xx}}{\phi }_{x}^{3}{a}_{1}-64{\phi }_{t}{\phi }_{x}^{2}-324{\phi }_{x}{\phi }_{{xx}}^{2}){\phi }_{{xxx}}\\ & & +(48{\phi }_{x}^{4}{a}_{1}-48{\phi }_{x}^{2}{\phi }_{{xx}}){\phi }_{{xt}}+153{\phi }_{{xx}}^{4}\\ & & -72{\phi }_{{xx}}^{3}{a}_{1}{\phi }_{x}^{2}+(-54{\phi }_{x}^{4}{\delta }_{3}+72{\phi }_{t}{\phi }_{x}){\phi }_{{xx}}^{2}\\ & & +(-24{\phi }_{x}^{6}{a}_{1}{\delta }_{3}-48{\phi }_{t}{\phi }_{x}^{3}{a}_{1}){\phi }_{{xx}}\\ & & +{\phi }_{x}^{8}{\delta }_{3}^{2}-8{\phi }_{t}{\phi }_{x}^{5}{\delta }_{3}+16{\phi }_{x}^{2}{\phi }_{t}^{2}].\end{array}\end{eqnarray}$
It can be verified that all the equations obtained by vanishing different powers of R(φ) are consistent with each other, which means that the DSSH system is integrable in the sense of having a CRE expansion [27], and φ satisfies the following equation
$\begin{eqnarray}\begin{array}{rcl} & & -2{\phi }_{x}^{5}{C}_{t}+[3{\delta }_{3}{\phi }_{x}^{7}+(6K+2C){\phi }_{x}^{5}]{C}_{x}\\ & & -4{\phi }_{x}^{5}{K}_{t}+(-4K+4C){\phi }_{x}^{5}{K}_{x}+2{\phi }_{x}^{5}{C}_{{xxx}}\\ & & +15{\phi }_{x}^{4}{\delta }_{3}{\phi }_{{xx}}^{3}+[{\phi }_{x}^{8}{\delta }_{3}^{2}+4{\delta }_{3}(K+4C){\phi }_{x}^{6}]{\phi }_{{xx}}=0,\end{array}\end{eqnarray}$
where ${\delta }_{3}=4{a}_{0}{a}_{2}-{a}_{1}^{2}$ and $K=\tfrac{{\phi }_{{xxx}}}{{\phi }_{x}}-\tfrac{3}{2}\tfrac{{\phi }_{{xx}}^{2}}{{\phi }_{x}^{2}}$, $C=\tfrac{{\phi }_{t}}{{\phi }_{x}}$ are Schwarzian variables.
After substituting equations (67)–(70) into equation (65), we get a new Bäcklund transformation for the DSSH system.
Theorem 3. If φ is a solution of equation (71), then
$\begin{eqnarray}u={u}_{0}+{u}_{1}R(\phi )+{u}_{2}{R}^{2}(\phi ),\end{eqnarray}$
$\begin{eqnarray}v={v}_{0}+{v}_{1}R(\phi ),\end{eqnarray}$
with u0, u1, u2, v0 and v1 being given by equations (67)–(70) and R = R(φ) being a solution of the Riccati equation (66), is a solution of the DSSH system (1) and (2).
As a sepcial case of CRE, we consider CTE of the DSSH system by taking $R(\phi )=\tanh (\phi )$ in equation (65), which becomes
$\begin{eqnarray}\begin{array}{rcl}u & = & {u}_{2}{\tanh }^{2}(w)+{u}_{1}\tanh (w)+{u}_{0},\\ v & = & {v}_{1}\tanh (w)+{v}_{0}.\end{array}\end{eqnarray}$
By substituting equation (74) into equations (1) and (2) and vanishing different powers of $\tanh (\phi )$, we get
$\begin{eqnarray}\begin{array}{rcl}{u}_{2} & = & 2{\phi }_{x}^{2},{u}_{1}=-2{\phi }_{{xx}},\\ {u}_{0} & = & -\displaystyle \frac{8{\phi }_{x}^{4}+2{\phi }_{t}{\phi }_{x}-4{\phi }_{x}{\phi }_{{xxx}}+3{\phi }_{{xx}}^{2}}{6{\phi }_{x}^{2}},\end{array}\end{eqnarray}$
$\begin{eqnarray}\begin{array}{rcl}{v}_{1} & = & \displaystyle \frac{1}{3{\phi }_{x}^{2}}[{\phi }_{4x}{\phi }_{x}^{2}-4{\phi }_{{xx}}{\phi }_{{xxx}}{\phi }_{x}\\ & & -2{\phi }_{x}^{2}{\phi }_{{xt}}+3{\phi }_{{xx}}^{3}+(-4{\phi }_{x}^{4}+2{\phi }_{t}{\phi }_{x}){\phi }_{{xx}}],\end{array}\end{eqnarray}$
and
$\begin{eqnarray}\begin{array}{rcl}{v}_{0} & = & \displaystyle \frac{1}{144{\phi }_{x}^{4}}[-24{\phi }_{5x}{\phi }_{x}^{3}+96{\phi }_{x}^{2}{\phi }_{{xx}}{\phi }_{4x}+48{\phi }_{{xxt}}{\phi }_{x}^{3}\\ & & +100{\phi }_{x}^{2}{\phi }_{{xxx}}^{2}+(80{\phi }_{x}^{5}-64{\phi }_{t}{\phi }_{x}^{2}-324{\phi }_{x}{\phi }_{{xx}}^{2}){\phi }_{{xxx}}\\ & & -48{\phi }_{{xx}}{\phi }_{{xt}}{\phi }_{x}^{2}+153{\phi }_{{xx}}^{4}+(216{\phi }_{x}^{4}+72{\phi }_{t}{\phi }_{x}){\phi }_{{xx}}^{2}\\ & & +16{\phi }_{x}^{8}+32{\phi }_{t}{\phi }_{x}^{5}+16{\phi }_{x}^{2}{\phi }_{t}^{2}],\end{array}\end{eqnarray}$
and φ satisfy
$\begin{eqnarray}\begin{array}{l}-\,2{C}_{t}{\phi }_{x}^{3}+[-12{\phi }_{x}^{5}+(6K+2C){\phi }_{x}^{3}]{C}_{x}-4{\phi }_{x}^{3}{K}_{t}\\ +(-4K+4C){\phi }_{x}^{3}{K}_{x}+\,2{\phi }_{x}^{3}{C}_{{xxx}}-60{\phi }_{x}^{2}{\phi }_{{xx}}^{3}\\ +\,[16{\phi }_{x}^{6}+(-16K-64C){\phi }_{x}^{4}]{\phi }_{{xx}}=0.\end{array}\end{eqnarray}$
Similar to theorem 3, we get a new Bäcklund transformation for equation (1) and (2).
Theorem 4. If φ satisfies equation (78) then
$\begin{eqnarray}\begin{array}{rcl}u & = & {u}_{2}{\tanh }^{2}(w)+{u}_{1}\tanh (w)+{u}_{0},\\ v & = & {v}_{1}\tanh (w)+{v}_{0}\end{array}\end{eqnarray}$
with u0, u1, u2, v0, and v1 being given by equations (75)–(77), is a new solution of the DSSH system (1) and (2).
To give some concrete solutions, we assume that the solution of equation (78) has the following form
$\begin{eqnarray}\phi ={kx}+\omega t+g,\end{eqnarray}$
where k, ω are arbitrary constants and g is an arbitrary function of x and t. We consider two special cases:
Case 1. For equation (78), we take a solution
$\begin{eqnarray}\phi ={k}_{2}x+{\omega }_{2}t+d,\end{eqnarray}$
with k2, ω2, d being arbitrary constants. Using theorem 4, we get a new soliton solution of the DSSH system
$\begin{eqnarray}\begin{array}{rcl}u & = & 2{k}_{2}^{2}\tanh {\left({k}_{2}x+{\omega }_{2}t\right)}^{2}-\displaystyle \frac{4}{3}{k}_{2}^{2}-\displaystyle \frac{{\omega }_{2}}{3{k}_{2}},\\ v & = & \displaystyle \frac{{k}_{2}^{4}}{9}+\displaystyle \frac{2}{9}{k}_{2}{\omega }_{2}+\displaystyle \frac{{\omega }_{2}^{2}}{9{k}_{2}^{2}}.\end{array}\end{eqnarray}$
Case 2. We consider a special solution of (78) as
$\begin{eqnarray}\phi ={k}_{0}x+{\omega }_{0}t+W(X),X={k}_{1}x+{\omega }_{1}t,\end{eqnarray}$
with arbitrary constants k0, ω0, k1, ω1. By substituting (83) into (78), we find W1(X) ≡ W(X)X satisfies the following elliptic function equation
$\begin{eqnarray}{W}_{1X}^{2}={C}_{0}+{C}_{1}{W}_{1}+{C}_{2}{W}_{1}^{2}+{C}_{3}{W}_{1}^{3}+{C}_{4}{W}_{1}^{4},\end{eqnarray}$
with
$\begin{eqnarray*}{C}_{0}=\displaystyle \frac{{k}_{0}[486{k}_{0}^{5}{k}_{1}+(459{C}_{2}{k}_{1}^{3}+108{\omega }_{1}){k}_{0}^{3}+108{C}_{1}{k}_{0}^{2}{k}_{1}^{4}+(8{C}_{2}^{2}{k}_{1}^{5}+32{C}_{2}{k}_{1}^{2}{\omega }_{1}){k}_{0}+32{C}_{1}{C}_{2}{k}_{1}^{6}]}{6(8{C}_{2}{k}_{1}^{2}+27{k}_{0}^{2}){k}_{1}^{5}},\end{eqnarray*}$
$\begin{eqnarray*}{\omega }_{0}=-\displaystyle \frac{{k}_{0}(24{C}_{2}^{2}{k}_{1}^{4}+449{C}_{2}{k}_{0}^{2}{k}_{1}^{2}+270{k}_{0}^{4})}{4(8{C}_{2}{k}_{1}^{2}+27{k}_{0}^{2})},\end{eqnarray*}$
$\begin{eqnarray}\begin{array}{rcl}{C}_{3} & = & -\displaystyle \frac{1}{6{k}_{0}^{2}{k}_{1}^{2}(8{C}_{2}{k}_{1}^{2}+27{k}_{0}^{2})}\\ & & \times [-1134{k}_{0}^{5}{k}_{1}+(-813{C}_{2}{k}_{1}^{3}-108{\omega }_{1}){k}_{0}^{3}\\ & & +54{C}_{1}{k}_{0}^{2}{k}_{1}^{4}+(-56{C}_{2}^{2}{k}_{1}^{5}-32{C}_{2}{k}_{1}^{2}{\omega }_{1}){k}_{0}\\ & & +16{C}_{1}{C}_{2}{k}_{1}^{6}],\end{array}\end{eqnarray}$
$\begin{eqnarray*}{C}_{4}=4.\end{eqnarray*}$
Using theorem 4, we have a new solution for the DSSH system
$\begin{eqnarray}\begin{array}{rcl}u & = & \displaystyle \frac{1}{6{\left({k}_{0}+{W}_{1}{k}_{1}\right)}^{2}}[12({W}_{1}^{4}{k}_{1}^{4}+4{W}_{1}^{3}{k}_{0}{k}_{1}^{3}\\ & & +6{W}_{1}^{2}{k}_{0}^{2}{k}_{1}^{2}+4{W}_{1}{k}_{0}^{3}{k}_{1}+{k}_{0}^{4}){\tanh }^{2}({k}_{0}x+{\omega }_{0}t+W)\\ & & -12({W}_{1}^{2}{W}_{1,X}{k}_{1}^{4}+2{W}_{1}{W}_{1,X}{k}_{0}{k}_{1}^{3}+{W}_{1,X}{k}_{0}^{2}{k}_{1}^{2})\\ & & \times \tanh ({k}_{0}x+{\omega }_{0}t+W)+4({W}_{1}{k}_{1}^{4}+{k}_{0}{k}_{1}^{3}){W}_{1,{XX}}\\ & & -8{W}_{1}^{4}{k}_{1}^{4}-32{W}_{1}^{3}{k}_{0}{k}_{1}^{3}-2{k}_{1}(24{k}_{0}^{2}{k}_{1}+{\omega }_{1}){W}_{1}^{2}\\ & & -2(16{k}_{0}^{3}{k}_{1}+{k}_{0}{\omega }_{1}+{k}_{1}{\omega }_{0})\\ & & \times {W}_{1}-3{W}_{1,X}^{2}{k}_{1}^{4}-8{k}_{0}^{4}-2{k}_{0}{\omega }_{0}],\end{array}\end{eqnarray}$
$\begin{eqnarray}\begin{array}{rcl}v & = & -\displaystyle \frac{1}{144{\left({k}_{0}+{W}_{1}{k}_{1}\right)}^{4}}\left\{-153{W}_{1,X}^{4}{k}_{1}^{8}\right.\\ & & -144\tanh ({k}_{0}x+{\omega }_{0}t+W){k}_{1}^{6}{\left({W}_{1}{k}_{1}+{k}_{0}\right)}^{2}{W}_{1,X}^{3}\\ & & +[324{k}_{1}^{7}({W}_{1}{k}_{1}+{k}_{0}){W}_{1,{XX}}-24{k}_{1}^{3}({W}_{1}{k}_{1}+{k}_{0})\\ & & \times (9{W}_{1}^{3}{k}_{1}^{4}+27{W}_{1}^{2}{k}_{0}{k}_{1}^{3}+27{W}_{1}{k}_{0}^{2}{k}_{1}^{2}+9{k}_{0}^{3}{k}_{1}\\ & & +{W}_{1}{k}_{1}{\omega }_{1}-2{k}_{0}{\omega }_{1}+3{k}_{1}{\omega }_{0})]{W}_{1,X}^{2}\\ & & +[192\tanh ({k}_{0}x+{\omega }_{0}t+W){k}_{1}^{5}{\left({W}_{1}{k}_{1}+{k}_{0}\right)}^{3}{W}_{1,{XX}}\\ & & -96{k}_{1}^{6}{\left({W}_{1}{k}_{1}+{k}_{0}\right)}^{2}{W}_{1,{XXX}}+96\tanh ({k}_{0}x+{\omega }_{0}t+W){k}_{1}\\ & & \times {\left({W}_{1}{k}_{1}+{k}_{0}\right)}^{3}(2{W}_{1}^{3}{k}_{1}^{4}+6{W}_{1}^{2}{k}_{0}{k}_{1}^{3}+6{W}_{1}{k}_{0}^{2}{k}_{1}^{2}+2{k}_{0}^{3}{k}_{1}\\ & & +{k}_{0}{\omega }_{1}-{k}_{1}{\omega }_{0})]{W}_{1,X}-100{k}_{1}^{6}{\left({W}_{1}{k}_{1}+{k}_{0}\right)}^{2}{W}_{1,{XX}}^{2}\\ & & -16{k}_{1}^{2}{\left({W}_{1}{k}_{1}+{k}_{0}\right)}^{2}(5{W}_{1}^{3}{k}_{1}^{4}+15{W}_{1}^{2}{k}_{0}{k}_{1}^{3}\\ & & +15{W}_{1}{k}_{0}^{2}{k}_{1}^{2}+5{k}_{0}^{3}{k}_{1}-{W}_{1}{k}_{1}{\omega }_{1}+3{k}_{0}{\omega }_{1}-4{k}_{1}{\omega }_{0}){W}_{1,{XX}}\\ & & -48\tanh ({k}_{0}x+{\omega }_{0}t+W){k}_{1}^{4}{\left({W}_{1}{k}_{1}+{k}_{0}\right)}^{4}{W}_{1,{XXX}}\\ & & +24{k}_{1}^{5}{\left({W}_{1}{k}_{1}+{k}_{0}\right)}^{3}{W}_{1,{XXXX}}-16{\left({W}_{1}{k}_{1}+{k}_{0}\right)}^{2}\\ & & \left.\times {\left({W}_{1}^{3}{k}_{1}^{3}+3{k}_{1}^{2}{k}_{0}{W}_{1}^{2}+3{k}_{1}{k}_{0}^{2}{W}_{1}+{k}_{0}^{3}+{W}_{1}{\omega }_{1}+{\omega }_{0}\right)}^{2}\right\},\end{array}\end{eqnarray}$
which could be used to describe interaction behaviors between kink soliton and elliptic waves. To illustrate this property, we take a cnoidal solution of (84) as
$\begin{eqnarray}{W}_{1}={\mu }_{0}+{\mu }_{1}\mathrm{sn}({MX},N),\end{eqnarray}$
with arbitrary constants μ0, μ1, M and N. By substituting equation (88) into equation (84) with equation (85) and setting all coefficients of $\mathrm{sn}({MX},N)$ to zero, we have
$\begin{eqnarray}\begin{array}{rcl}{C}_{1} & = & \displaystyle \frac{8{c}_{0}[({p}^{2}+1){k}_{0}^{2}+(2{c}_{0}{p}^{2}+2{c}_{0}){k}_{1}{k}_{0}+({c}_{0}^{2}{p}^{2}-{c}_{0}^{2}){k}_{1}^{2}]}{{k}_{1}^{2}},\\ {C}_{2} & = & -\displaystyle \frac{4[({p}^{2}+1){k}_{0}^{2}+(2{c}_{0}{p}^{2}+2{c}_{0}){k}_{1}{k}_{0}+({c}_{0}^{2}{p}^{2}-5{c}_{0}^{2}){k}_{1}^{2}]}{{k}_{1}^{2}},\\ {b}_{1} & = & -\displaystyle \frac{2({c}_{0}{k}_{1}+{k}_{0})}{{k}_{1}},\\ {c}_{1} & = & -\displaystyle \frac{p({c}_{0}{k}_{1}+{k}_{0})}{{k}_{1}},\\ {\omega }_{1} & = & \displaystyle \frac{{k}_{1}}{2{k}_{0}[(32{p}^{2}+5){k}_{0}^{2}+(64{p}^{2}+64){c}_{0}{k}_{1}{k}_{0}+(32{p}^{2}-160){c}_{0}^{2}{k}_{1}^{2}]}\\ & & \times [(448{p}^{4}-730{p}^{2}-611){k}_{0}^{5}+(2048{p}^{4}-908{p}^{2}-1660){c}_{0}{k}_{1}{k}_{0}^{4}\\ & & +(3712{p}^{4}-3082{p}^{2}+2962){c}_{0}^{2}{k}_{1}^{2}{k}_{0}^{3}\\ & & +(3328{p}^{4}-7896{p}^{2}-1576){c}_{0}^{3}{k}_{1}^{3}{k}_{0}^{2}\\ & & +(1472{p}^{4}-6528{p}^{2}+8128){c}_{0}^{4}{k}_{1}^{4}{k}_{0}\\ & & +256(p-1)(p+1)({p}^{2}-5){c}_{0}^{5}{k}_{1}^{5}].\end{array}\end{eqnarray}$
Figure 1 displays the interaction solution u of (86) with equations (84), (88), where the parameters being fixed by equation (90), while $v=\tfrac{350251225}{22581504}$ under this selection of parameters.
$\begin{eqnarray}\begin{array}{rcl}{C}_{0} & = & \displaystyle \frac{7}{768},{C}_{1}=\displaystyle \frac{31}{144},{C}_{2}=-\displaystyle \frac{29}{144},{C}_{3}=-\displaystyle \frac{8}{3},\\ {b}_{1} & = & -\displaystyle \frac{5}{6},{c}_{0}=\displaystyle \frac{1}{6},{c}_{1}=-\displaystyle \frac{5}{24},{k}_{0}=\displaystyle \frac{1}{4},{k}_{1}=1,\\ {\omega }_{0} & = & \displaystyle \frac{25045}{8448},{\omega }_{1}=\displaystyle \frac{69635}{6336},p=\displaystyle \frac{1}{2}.\end{array}\end{eqnarray}$
Figure 1. The interaction solution (86) with (84)–(89) where the parameters are fixed by equation (90): (a) the three dimensional plot; (b) the density plot; (c) the one dimensional plot with t = 0; (d) the one dimensional plot with x = 0.
It can be seen from figure 1 that a solitary wave propagates on background cnoidal waves with a definite speed which can be used to describe relevant phenomena in real nature.

5. Conclusion

In this paper, the DSSH system is investigated by using residual symmetry and the CRE method, respectively. The residual symmetry of the DSSH system is localized into a Lie point symmetry in a prolonged system wherein five new dependent variables are introduced. By applying the classic Lie group method to the prolonged DSSH system, new symmetry reduction solutions are obtained. The DSSH system proves to be CRE integrable and some non-auto Bäcklund transformations of it are derived. In addition, some new interesting interaction solutions between solitons and periodic waves are obtained. We hope that our results will provide some assistance in the study of physical phenomena in shallow water and coastal areas.

Conflict of interest statement

We declare that we have no financial and personal relationships with other people or organizations that can inappropriately influence our work, there is no professional or other personal interest of any nature or kind in any product, service and/or company that could be construed as influencing the position presented in, or the review of, the manuscript entitled.

This work was supported by the National Natural Science Foundation of China under Grant Nos. 12175148 and 11975156.

1
Santilli R M 2013 Foundations of Theoretical Mechanics I: The Inverse Problem in Newtonian Mechanics Springer

2
Husemoller D 1975 Fiber Bundles Springer

3
Le Tiec A, Novak J 2017 Theory of gravitational waves An Overview of Gravitational Waves: Theory, Sources and Detection World Scientific

4
Dirac P A M 1926 On the theory of quantum mechanics Proc. R. Soc. Lon. Ser. A. 112 661 677

5
Ali A, Ahmad J, Javed S 2024 Dynamic investigation to the generalized Yu-Toda-Sasa-Fukuyama equation using Darboux transformation Opt. Quantum Electron. 56 166

DOI

6
Ablowitz M J, Kaup D J, Newell A C, Segur H 1974 The inverse scattering transform-Fourier analysis for nonlinear problems Stud. Appl. Math. 53 249 315

DOI

7
Hietarinta J 2005 Hirota's bilinear method and soliton solutions Physics AUC 15 31 37

8
Ma W-X, Zhang Y-J 2018 Darboux transformations of integrable couplings and applications Rev. Math. Phys. 30 1850003

DOI

9
Lakshmanan M, Sahadevan R 1993 Painlevé analysis, Lie symmetries, and integrability of coupled nonlinear oscillators of polynomial type Phys. Rep. 224 1 93

10
Tian B, Gao Y-T 1995 Truncated Painlevé expansion and a wide-ranging type of generalized variable-coefficient Kadomtsev-Petviashvili equations Phys. Lett. A 209 297 304

DOI

11
Tian S-F, Xu M-J, Zhang T-T 2021 A symmetry-preserving difference scheme and analytical solutions of a generalized higher-order beam equation Proc. R. Soc. A 477 20210455

DOI

12
Fan E, Zhang H 1998 A note on the homogeneous balance method Phys. Lett. A 246 403 406

DOI

13
Yan Z 2003 The extended Jacobian elliptic function expansion method and its application in the generalized Hirota-Satsuma coupled KdV system Chaos, Solitons Fractals 15 575 583

DOI

14
Cantwell B J 2002 Introduction to Symmetry Analysis Cambridge University Press

15
X-z Liu, Yu J 2022 A nonlocal Boussinesq equation: multiple-soliton solutions and symmetry analysis Chin. Phys. B 31 050201

DOI

16
Lou S Y, Hu X, Chen Y 2012 Nonlocal symmetries related to Bäcklund transformation and their applications J. Phys. A: Math. Theor. 45 155209

DOI

17
Ren B, Liu X-Z, Liu P 2015 Nonlocal symmetry reductions, CTE method and exact solutions for higher-order KdV equation Commun. Theor. Phys. 63 125

DOI

18
Lou S-Y, Chen W-Z 1993 Inverse recursion operator of the AKNS hierarchy Phys. Lett. A 179 271 274

DOI

19
Ponce G 1993 Lax pairs and higher order models for water waves J. Differ. Equ. 102 360 381

DOI

20
Yin Y-H, X, Ma W-X 2022 Bäcklund transformation, exact solutions and diverse interaction phenomena to a (3+ 1)-dimensional nonlinear evolution equation Nonlinear Dyn. 108 4181 4194

DOI

21
Lou S-Y 1997 Conformal invariance and integrable models J. Phys. A: Math. Gen. 30 4803

DOI

22
Pucci E, Saccomandi G 1993 Potential symmetries and solutions by reduction of partial differential equations J. Phys. A: Math. Gen. 26 681

DOI

23
Stemzel R L, Kim H C, Wong A Y 1974 Development of ‘cavitons' and trapping of rf field Phys. Rev. Lett. 33 886

DOI

24
Hu X-R, Lou S-Y, Chen Y 2012 Explicit solutions from eigenfunction symmetry of the Korteweg-de Vries equation Phys. Rev. E 85 056607

DOI

25
Liu X-Z, Yu J, Lou Z-M 2018 New bäcklund transformations of the (2. 1)-dimensional bogoyavlenskii equation via localization of residual symmetries Comput. Math. Appl. 76 1669 1679

DOI

26
Cheng W, Xu T 2019 N-th bäcklund transformation and soliton-cnoidal wave interaction solution to the combined kdv-negative-order kdv equation Appl. Math. Lett. 94 21 29

DOI

27
Lou S Y 2015 Consistent Riccati expansion for integrable systems Stud. Appl. Math. 134 372 402

DOI

28
Liu X-Z, Li J-T, Yu J 2023 Residual symmetry, CRE integrability and interaction solutions of two higher-dimensional shallow water wave equations Chin. Phys. B 32 110206

DOI

29
Liu X-Z, Yu J, Lou Z-M 2018 Residual symmetry, CRE integrability and interaction solutions of the (3+1)-dimensional breaking soliton equation Phys. Scr. 93 085201

DOI

30
Drinfeld V G, Sokolov V V 1981 Equations of Korteweg-de Vries type, and simple Lie algebras Doklady Akademii Nauk volume 258 Russian Academy of Sciences 11 16

31
Satsuma J, Hirota R 1982 A coupled KdV equation is one case of the four-reduction of the KP hierarchy J. Phys. Soc. Jpn. 51 3390 3397

DOI

32
Lu J 2021 Explicit solutions for the coupled nonlinear Drinfeld-Sokolov-Satsuma-Hirota system Res. Phys. 24 104128

DOI

33
Cakicioglu H, Cinar M, Secer A, Ozisik M, Bayram M 2023 On obtaining analytical soliton solutions of Drinfeld-Sokolov-Satsuma-Hirota equation via two efficient methods Phys. Scr. 99 015220

DOI

34
Huang L, Chen Y 2017 Nonlocal symmetry and similarity reductions for the Drinfeld-Sokolov-Satsuma-Hirota system Appl. Math. Lett. 64 177 184

DOI

35
Karasu A, Sakovich S Y 2001 Bäcklund transformation and special solutions for the Drinfeld-Sokolov-Satsuma-Hirota system of coupled equations J. Phys. A: Math. Gen. 34 7355

DOI

36
Wazwaz A-M 2009 The Cole-Hopf transformation and multiple soliton solutions for the integrable sixth-order Drinfeld-Sokolov-Satsuma-Hirota equation Appl. Math. Comput. 207 248 255

DOI

37
Geng X, Li R 2015 Darboux transformation of the Drinfeld-Sokolov-Satsuma-Hirota system and exact solutions Ann. Phys. 361 215 225

DOI

38
Wang Y, Niu X-X, Liu Q P 2022 On the Darboux transformations of the Drinfeld-Sokolov-Satsuma-Hirota coupled KdV system Rep. Math. Phys. 90 49 62

Outlines

/