Welcome to visit Communications in Theoretical Physics,
Mathematical Physics

On the Riemann–Hilbert problem for the reverse space-time nonlocal Hirota equation with step-like initial data

  • Bei-Bei Hu 1, 2 ,
  • Ling Zhang , 1, 2, * ,
  • Zu-Yi Shen , 1, * ,
  • Ji Lin 3
Expand
  • 1School of Mathematics and Finance, Chuzhou University, Anhui 239000, China
  • 2Applied Mathematics Research Center, Chuzhou University, Anhui 239000, China
  • 3Department of Physics, Zhejiang Normal University, Jinhua 321004, China

*Authors to whom any correspondence should be addressed.

Received date: 2024-07-17

  Revised date: 2024-09-27

  Accepted date: 2024-09-27

  Online published: 2024-11-27

Copyright

© 2024 Institute of Theoretical Physics CAS, Chinese Physical Society and IOP Publishing. All rights, including for text and data mining, AI training, and similar technologies, are reserved.

Abstract

In this paper, we use the Riemann–Hilbert (RH) method to investigate the Cauchy problem of the reverse space-time nonlocal Hirota equation with step-like initial data: q(z, 0) = o(1) as z → −∞ and q(z, 0) = δ + o(1) as z → ∞, where δ is an arbitrary positive constant. We show that the solution of the Cauchy problem can be determined by the solution of the corresponding matrix RH problem established on the plane of complex spectral parameter λ. As an example, we construct an exact solution of the reverse space-time nonlocal Hirota equation in a special case via this RH problem.

Cite this article

Bei-Bei Hu , Ling Zhang , Zu-Yi Shen , Ji Lin . On the Riemann–Hilbert problem for the reverse space-time nonlocal Hirota equation with step-like initial data[J]. Communications in Theoretical Physics, 2025 , 77(2) : 025004 . DOI: 10.1088/1572-9494/ad806e

1. Introduction

It is well known that the nonlinear Schrödinger (NLS) equation [1]
$\begin{eqnarray}{\rm{i}}{q}_{t}+\displaystyle \frac{1}{2}{q}_{{zz}}+| q{| }^{2}q=0,\end{eqnarray}$
is an important nonlinear integrable model with important applications in theoretical physics such as plasma, fluid mechanics, and nonlinear optics. For instance, in nonlinear optics, the NLS equation (1.1) can describe the propagation of waves in Kerr-type media [2]. Although the NLS equation (1.1) can accurately describe the propagation of pulse waves in the picosecond range [3], experiments in the sub-picosecond (i.e. femtosecond) range and short pulses of high-intensity require consideration of higher-order correction terms [4]. Based on this physical reason, Kodama and Hasegawa [5] considered an NLS equation with high-order correction terms, which is also named the high-order (HNLS) NLS equation, it is as follows:
$\begin{eqnarray}\begin{array}{l}{\rm{i}}{q}_{t}+\alpha ({q}_{{zz}}+2| q{| }^{2}q)\\ \quad +\,{\rm{i}}\beta ({{aq}}_{{zzz}}+b| q{| }^{2}{q}_{z}+{cq}| q{| }_{z}^{2})=0,\end{array}\end{eqnarray}$
where q = q(z, t) is a complex valued function of the real variables z and t, α, β and a, b, c are real constants. In fact, in addition to the NLS equation at α = 1, β = 0, equation (1.2) also has the following four known types of nonlinear integrable models:

If $\alpha =\tfrac{1}{2},\beta =1$ and a: b: c = 0: 1: 1, equation (1.2) reduces to the Kaup–Newell equation [6]

$\begin{eqnarray}{\rm{i}}{q}_{t}+\displaystyle \frac{1}{2}{q}_{{zz}}+| q{| }^{2}q+{\rm{i}}(| q{| }^{2}{q}_{z}+q| q{| }_{z}^{2})=0.\end{eqnarray}$

If $\alpha =\tfrac{1}{2},\beta =1$ and a: b: c = 0: 1: 0, equation (1.2) changes to the Chen–Lee–Liu equation [7]

$\begin{eqnarray}{\rm{i}}{q}_{t}+\displaystyle \frac{1}{2}{q}_{{zz}}+| q{| }^{2}q+{\rm{i}}| q{| }^{2}{q}_{z}=0.\end{eqnarray}$

If $\alpha =\tfrac{1}{2},\beta =1$ and a: b: c = 1: 6: 3, equation (1.2) becomes to the Sasa–Satsuma equation [8]

$\begin{eqnarray}\begin{array}{l}{\rm{i}}{q}_{t}+\displaystyle \frac{1}{2}{q}_{{zz}}+| q{| }^{2}q\\ \,+\,{\rm{i}}({q}_{{zzz}}+6| q{| }^{2}{q}_{z}+3q| q{| }_{z}^{2})=0.\end{array}\end{eqnarray}$

If $\alpha =\tfrac{1}{2},\beta =1$ and a: b: c = 1: 6: 0, equation (1.2) is the Hirota equation [9]

$\begin{eqnarray}{\rm{i}}{q}_{t}+\displaystyle \frac{1}{2}{q}_{{zz}}+| q{| }^{2}q+{\rm{i}}({q}_{{zzz}}+6| q{| }^{2}{q}_{z})=0.\end{eqnarray}$

Recently, nonlocal integrable equations have become a research hotspot in soliton theory due to their ability to explain complex phenomena occurring in multi-position systems and explore new physical applications [1024]. For example, in physical applications, the nonlocal modified Korteweg–de Vries (mKdV) equation related to the Alice-Bob system has parity in displacement and antisymmetry in delay time [25, 26]. By using a particular solution of the nonlocal mKdV equation, people can theoretically obtain the characteristics of two related dipole-blocking events in atmospheric and oceanic dynamic systems. In 2019, Cen et al [27] obtained the following reverse space-time nonlocal Hirota equation by discussing the zero curvature condition or AKNS equation for a new class of integrable systems
$\begin{eqnarray}\begin{array}{l}{\rm{i}}{q}_{t}(z,t)+\alpha ({q}_{{zz}}(z,t)-2{q}^{2}(z,t)\bar{q}(-z,-t))\\ \quad +\,{\rm{i}}\beta ({q}_{{zzz}}(z,t)-6q(z,t)\bar{q}(-z,-t){q}_{z}(z,t))\\ \quad =\,0,\,\alpha ,\beta \in {\mathbb{R}},\end{array}\end{eqnarray}$
and they used the Darboux–Crum transformation method to obtain multiple types of solutions for the nonlocal Hirota equation (1.7). Subsequently, Zuo and Zhang [28] used the bilinear derivative method to construct exact solutions for the nonlocal Hirota equation (1.7). In 2022, Xia et al [29] constructed soliton solutions for the nonlocal Hirota equation (1.7) using the N-fold Darboux transformation method and provided corresponding dynamic behavior analysis. Meanwhile, Zhuang et al constructed multi-soliton solutions for the nonlocal Hirota equation (1.7) using the Riemann–Hilbert (RH) method [30]. Specially, Peng and Chen [31] used the RH method and physics-informed neural networks (PINN) to discuss N-double pole solutions for the nonlocal Hirota equation (1.7) with nonzero boundary conditions etc [3234].
With the rapid development of soliton theory, the RH method has become a powerful tool for studying nonlinear partial differential equations. It can be well used to analyze local and nonlocal integrable equations, such as the initial value problems [3538], the initial boundary value problems [3944], the soliton solutions [4547], and the large time asymptotic behavior [4853]. In this paper, we will use the RH method to discuss the Cauchy problem of the nonlocal Hirota equation (1.7) with the following step-like initial value
$\begin{eqnarray}{q}_{0}(z)\to 0,\,z\to -\infty ,\end{eqnarray}$
$\begin{eqnarray}{q}_{0}(z)\to \delta ,\,z\to \infty ,\end{eqnarray}$
sufficiently fast, where q0(z) = q(z, 0) and δ > 0 is an arbitrary constant. In addition, we assume that the solution q(z, t) of Cauchy problem admits the following boundary conditions for all t > 0:
$\begin{eqnarray}q(z,t)=o(1),\,z\to -\infty ,\end{eqnarray}$
$\begin{eqnarray}q(z,t)=\delta +o(1),\,z\to \infty .\end{eqnarray}$
Our paper is organized as follows. In section 2, we present the Jost function solutions for the large z behavior of the Lax pair equations. In section 3, we investigate the properties of the spectral functions v(λ) and uj(λ), j = 1, 2. In section 4, we establish the RH problem to represent the solution of the Cauchy problem (1.7), (1.8a)–(1.9b), and obtain the exact solution of the nonlocal Hirota equation (1.7) in a special case. In section 5, we give our conclusions and discussions.

2. The spectral analysis

Similar to [29, 30], we consider the matrix Lax pair of the reverse space-time nonlocal Hirota equation (1.7) as follows
$\begin{eqnarray}{\varphi }_{z}=M(z,t,\lambda )\varphi =(-{\rm{i}}\lambda J+Q)\varphi ,\end{eqnarray}$
$\begin{eqnarray}{\varphi }_{t}=N(z,t,\lambda )\varphi =[-(4{\rm{i}}\beta {\lambda }^{3}+2{\rm{i}}\alpha {\lambda }^{2})J+P]\varphi ,\end{eqnarray}$
where
$\begin{eqnarray}\begin{array}{rcl}J & = & \left(\begin{array}{cc}1 & 0\\ 0 & -1\end{array}\right),Q(z,t)=\left(\begin{array}{cc}0 & q(z,t)\\ \bar{q}(-z,-t) & 0\end{array}\right),\\ P(z,t,\lambda ) & = & \left(\begin{array}{cc}A & B\\ C & -A\end{array}\right),\end{array}\end{eqnarray}$
with
$\begin{eqnarray*}\begin{array}{rcl}A & = & -2{\rm{i}}\beta q(z,t)\bar{q}(-z,-t)\lambda -{\rm{i}}\alpha q(z,t)\bar{q}(-z,-t)\\ & & +\beta ({q}_{z}(z,t)\bar{q}(-z,-t)-q(z,t){\bar{q}}_{z}(-z,-t)),\\ B & = & 4\beta q(z,t){\lambda }^{2}+(2{\rm{i}}\beta {q}_{z}(z,t)+2\alpha q(z,t))\lambda \\ & & +{\rm{i}}\alpha {q}_{z}(z,t)-\beta ({q}_{{zz}}(z,t)-2{q}^{2}(z,t)\bar{z}(-z,-t)),\\ C & = & 4\beta \bar{q}(-z,-t){\lambda }^{2}+(-2{\rm{i}}\beta {\bar{q}}_{z}(-z,-t)\\ & & +2\alpha \bar{q}(-z,-t))\lambda \\ & & -{\rm{i}}\alpha {\bar{q}}_{z}(-z,-t)+\beta (-{\bar{q}}_{{zz}}(-z,-t)\\ & & +2q(z,t){\bar{q}}^{2}(-z,-t)),\end{array}\end{eqnarray*}$
where $\lambda \in {\mathbb{C}}$ is a spectral parameter, α and β are real constants. Then, we have
$\begin{eqnarray}{\varphi }_{z}+{\rm{i}}\lambda J\varphi =Q\varphi ,\end{eqnarray}$
$\begin{eqnarray}{\varphi }_{t}+(4{\rm{i}}\beta {\lambda }^{3}+2{\rm{i}}\alpha {\lambda }^{2})J\varphi =P\varphi .\end{eqnarray}$
To obtain the asymptotic spectrum problem, on the one hand, we introduce the following symbols:
$\begin{eqnarray}\begin{array}{rcl}{Q}_{+} & = & \left(\begin{array}{cc}0 & \delta \\ 0 & 0\end{array}\right),\,{Q}_{-}=\left(\begin{array}{cc}0 & 0\\ \delta & 0\end{array}\right),\\ {P}_{+} & = & \left(\begin{array}{cc}0 & (4\beta {\lambda }^{2}+2\alpha \lambda )\delta \\ 0 & 0\end{array}\right),\\ {P}_{-} & = & \left(\begin{array}{cc}0 & 0\\ (4\beta {\lambda }^{2}+2\alpha \lambda )\delta & 0\end{array}\right).\end{array}\end{eqnarray}$
It is easy to obtain that
$\begin{eqnarray}Q(z,t)\to {Q}_{\pm },\,P(z,t,\lambda )\to {P}_{\pm },\,z\to \pm \infty .\end{eqnarray}$
On the other hand, we introduce the following symbols, similarly
$\begin{eqnarray}{U}_{+}=-{\rm{i}}\lambda J+{Q}_{+}=\left(\begin{array}{cc}-{\rm{i}}\lambda & \delta \\ 0 & {\rm{i}}\lambda \end{array}\right),\end{eqnarray}$
$\begin{eqnarray}{U}_{-}=-{\rm{i}}\lambda J+{Q}_{-}=\left(\begin{array}{cc}-{\rm{i}}\lambda & 0\\ \delta & {\rm{i}}\lambda \end{array}\right),\end{eqnarray}$
$\begin{eqnarray}\begin{array}{rcl}{V}_{+} & = & -(4{\rm{i}}\beta {\lambda }^{3}+2{\rm{i}}\alpha {\lambda }^{2})J+{P}_{+}\\ & = & \left(\begin{array}{cc}-(4{\rm{i}}\beta {\lambda }^{3}+2{\rm{i}}\alpha {\lambda }^{2}) & (4\beta {\lambda }^{2}+2\alpha \lambda )\delta \\ 0 & 4{\rm{i}}\beta {\lambda }^{3}+2{\rm{i}}\alpha {\lambda }^{2}\end{array}\right),\end{array}\end{eqnarray}$
$\begin{eqnarray}\begin{array}{rcl}{V}_{-} & = & -(4{\rm{i}}\beta {\lambda }^{3}+2{\rm{i}}\alpha {\lambda }^{2})J+{P}_{-}\\ & = & \left(\begin{array}{cc}-(4{\rm{i}}\beta {\lambda }^{3}+2{\rm{i}}\alpha {\lambda }^{2}) & 0\\ (4\beta {\lambda }^{2}+2\alpha \lambda )\delta & 4{\rm{i}}\beta {\lambda }^{3}+2{\rm{i}}\alpha {\lambda }^{2}\end{array}\right),\end{array}\end{eqnarray}$
naturally, we have
$\begin{eqnarray}{U}_{\pm }(z,t,\lambda )={H}_{\pm }(\lambda )(-{\rm{i}}\lambda J){H}_{\pm }^{-1}(\lambda ),\end{eqnarray}$
$\begin{eqnarray}{V}_{\pm }(z,t,\lambda )={H}_{\pm }(\lambda )[-(4{\rm{i}}\beta {\lambda }^{3}+2{\rm{i}}\alpha {\lambda }^{2})J]{H}_{\pm }^{-1}(\lambda ),\end{eqnarray}$
and
$\begin{eqnarray}{\varphi }_{\pm }(z,t,\lambda )={H}_{\pm }(\lambda ){{\rm{e}}}^{-[{\rm{i}}\lambda z+(4{\rm{i}}\beta {\lambda }^{3}+2{\rm{i}}\alpha {\lambda }^{2})t]J},\end{eqnarray}$
where
$\begin{eqnarray}{H}_{+}(\lambda )=\left(\begin{array}{cc}1 & \displaystyle \frac{\delta }{2{\rm{i}}\lambda }\\ 0 & 1\end{array}\right),\quad {H}_{-}(\lambda )=\left(\begin{array}{cc}1 & 0\\ \displaystyle \frac{\delta }{2{\rm{i}}\lambda } & 1\end{array}\right).\end{eqnarray}$
For the linear spectrum problem equations (2.3a)–(2.3b), we make the function transformation as follows
$\begin{eqnarray}{\phi }_{\pm }(z,t,\lambda )={\varphi }_{\pm }(z,t,\lambda ){{\rm{e}}}^{[{\rm{i}}\lambda z+(4{\rm{i}}\beta {\lambda }^{3}+2{\rm{i}}\alpha {\lambda }^{2})t]J},\end{eqnarray}$
then, we have
$\begin{eqnarray}{\phi }_{\pm }\to {H}_{\pm },\quad {as}\quad z\to \pm \infty ,\end{eqnarray}$
and obtain asymptotic Lax pair as follows:
$\begin{eqnarray}{\left({H}_{\pm }^{-1}{\phi }_{\pm }\right)}_{z}+{\rm{i}}\lambda [J,{H}_{\pm }^{-1}{\phi }_{\pm }]={H}_{\pm }^{-1}{\rm{\Delta }}{Q}_{\pm }{\phi }_{\pm },\end{eqnarray}$
$\begin{eqnarray}\begin{array}{l}{\left({H}_{\pm }^{-1}{\phi }_{\pm }\right)}_{t}+(4{\rm{i}}\beta {\lambda }^{3}+2{\rm{i}}\alpha {\lambda }^{2})[J,{H}_{\pm }^{-1}{\phi }_{\pm }]\\ \quad =\,{H}_{\pm }^{-1}{\rm{\Delta }}{P}_{\pm }{\phi }_{\pm },\end{array}\end{eqnarray}$
where
$\begin{eqnarray*}{\rm{\Delta }}{Q}_{\pm }=Q-{Q}_{\pm }\quad {\rm{and}}\quad {\rm{\Delta }}{P}_{\pm }=P-{P}_{\pm }.\end{eqnarray*}$
Therefore, the asymptotic spectrum problem equations (2.12a)–(2.12b) can be written in fully differential form
$\begin{eqnarray}\begin{array}{l}{\rm{d}}({{\rm{e}}}^{{\rm{i}}\omega (\lambda )\hat{J}}{H}_{\pm }^{-1}{\phi }_{\pm })={{\rm{e}}}^{{\rm{i}}\omega (\lambda )\hat{J}}\\ \,\times \,[{H}_{\pm }^{-1}({\rm{\Delta }}{Q}_{\pm }{\rm{d}}z+{\rm{\Delta }}{P}_{\pm }{\rm{d}}t){\phi }_{\pm }],\end{array}\end{eqnarray}$
where $\hat{J}$ is a matrix operator (see [42]) and ω(λ) = λz + (4βλ3 + 2αλ2)t.
Noting φ = φ1 and φ+ = φ2, and integrating equation (2.13) along two special paths (– ∞ , t) → (z, t) and (+ ∞ , t) → (z, t), we can obtain two Jost function solutions for equations (2.12a)–(2.12b) as follows
$\begin{eqnarray}\begin{array}{l}{\phi }_{1}(z,t,\lambda )={H}_{-}(\lambda )+{\displaystyle \int }_{-\infty }^{z}{D}_{-}(z,x,t,\lambda )\\ \quad \times \,{\rm{\Delta }}{Q}_{-}(x,t,\lambda ){\phi }_{1}(x,t,\lambda ){{\rm{e}}}^{{\rm{i}}\lambda (z-x)J}{\rm{d}}x,\end{array}\end{eqnarray}$
$\begin{eqnarray}\begin{array}{l}{\phi }_{2}(z,t,\lambda )={H}_{+}(\lambda )+{\displaystyle \int }_{+\infty }^{z}{D}_{+}(z,x,t,\lambda )\\ \quad \times {\rm{\Delta }}{Q}_{+}(x,t,\lambda ){\phi }_{2}(x,t,\lambda ){e}^{{\rm{i}}\lambda (z-x)J}{\rm{d}}x,\end{array}\end{eqnarray}$
where ${D}_{\pm }(z,x,t,\lambda )={\varphi }_{\pm }(z,t,\lambda ){\left[{\varphi }_{\pm }\left(x,t,\lambda \right)\right]}^{-1}$.

Let ${\phi }_{j}(z,t,\lambda )=({\phi }_{j}^{\left(1\right)}(z,t,\lambda ),{\phi }_{j}^{\left(2\right)}(z,t,\lambda ))$, $j=1,2$, then the column vectors ${\phi }_{j}^{\left(1\right)}(z,t,\lambda )$ and ${\phi }_{j}^{\left(2\right)}(z,t,\lambda )$ meet the following properties:

(i) ${\phi }_{1}^{\left(1\right)}(z,t,\lambda )$ and ${\phi }_{2}^{\left(2\right)}(z,t,\lambda )$ are continuous in $\lambda \in {\overline{{\mathbb{C}}}}_{+}\setminus \{0\}$ and are analytical and well-defined for $\lambda \in {{\mathbb{C}}}_{+}$.

(ii) ${\phi }_{1}^{\left(2\right)}(z,t,\lambda )$ and ${\phi }_{2}^{\left(1\right)}(z,t,\lambda )$ are continuous in $\lambda \in {\overline{{\mathbb{C}}}}_{-}$ and are analytical and well-defined for $\lambda \in {{\mathbb{C}}}_{-}$.

(iii) The asymptotic properties for $\lambda \to \infty $

$\begin{eqnarray}{\phi }_{1}^{\left(1\right)}(z,t,\lambda )=\left(\begin{array}{c}1\\ 0\end{array}\right)+O\left(\displaystyle \frac{1}{\lambda }\right),\,\lambda \in {{\mathbb{C}}}_{+},\end{eqnarray}$
$\begin{eqnarray}{\phi }_{2}^{\left(2\right)}(z,t,\lambda )=\left(\begin{array}{c}0\\ 1\end{array}\right)+O\left(\displaystyle \frac{1}{\lambda }\right),\,\lambda \in {{\mathbb{C}}}_{+},\end{eqnarray}$
$\begin{eqnarray}{\phi }_{1}^{\left(2\right)}(z,t,\lambda )=\left(\begin{array}{c}0\\ 1\end{array}\right)+O\left(\displaystyle \frac{1}{\lambda }\right),\,\lambda \in {{\mathbb{C}}}_{-},\end{eqnarray}$
$\begin{eqnarray}{\phi }_{2}^{\left(1\right)}(z,t,\lambda )=\left(\begin{array}{c}1\\ 0\end{array}\right)+O\left(\displaystyle \frac{1}{\lambda }\right),\,\lambda \in {{\mathbb{C}}}_{-}.\end{eqnarray}$

(iv) The determinant properties

$\begin{eqnarray*}\begin{array}{l}\det {\phi }_{j}(z,t,\lambda )=1,\\ j=1,2,z\in {\mathbb{R}},t\geqslant 0,\lambda \in {\mathbb{R}}.\end{array}\end{eqnarray*}$

(v) The matrix-valued functions ${\varphi }_{j}(z,t,\lambda ),j\,=\,1,2$ represented by

$\begin{eqnarray}{\varphi }_{j}(z,t,\lambda )={\phi }_{j}(z,t,\lambda ){{\rm{e}}}^{-{\rm{i}}\omega (\lambda )J},\lambda \in {\mathbb{R}}\setminus \{0\},\end{eqnarray}$
admit the boundary conditions as follows:
$\begin{eqnarray}{\varphi }_{1}(z,t,\lambda )\to {\varphi }_{-}(z,t,\lambda ),\lambda \to -\infty ,\end{eqnarray}$
$\begin{eqnarray}{\varphi }_{2}(z,t,\lambda )\to {\varphi }_{+}(z,t,\lambda ),\lambda \to +\infty ,\end{eqnarray}$
and they are also Jost function solutions of equations (2.3a)–(2.3b).

(vi) The symmetry properties

$\begin{eqnarray}E\overline{{\phi }_{1}(-z,-t,-\overline{\lambda })}{E}^{-1}={\phi }_{2}(z,t,\lambda ),\lambda \in {\mathbb{R}}\setminus \{0\},\end{eqnarray}$
where $E=\left(\begin{array}{cc}0 & 1\\ 1 & 0\end{array}\right).$

(vii) As $\lambda \to 0$, ${\phi }_{j}^{\left(1\right)}(z,t,\lambda )$ and ${\phi }_{j}^{\left(2\right)}(z,t,\lambda )$ have the following asymptotic properties

$\begin{eqnarray}{\phi }_{1}^{\left(1\right)}(z,t,\lambda )=\displaystyle \frac{1}{\lambda }\left(\begin{array}{c}{m}_{1}(z,t)\\ {m}_{2}(z,t)\end{array}\right)+O(1),\end{eqnarray}$
$\begin{eqnarray}{\phi }_{1}^{\left(2\right)}(z,t,\lambda )=\displaystyle \frac{2{\rm{i}}}{\delta }\left(\begin{array}{c}{m}_{1}(z,t)\\ {m}_{2}(z,t)\end{array}\right)+O(\lambda ),\end{eqnarray}$
$\begin{eqnarray}{\phi }_{2}^{\left(1\right)}(z,t,\lambda )=-\displaystyle \frac{2{\rm{i}}}{\delta }\left(\begin{array}{c}\overline{{m}_{2}}(-z,-t)\\ \overline{{m}_{1}}(-z,-t)\end{array}\right)+O(\lambda ),\end{eqnarray}$
$\begin{eqnarray}{\phi }_{2}^{\left(2\right)}(z,t,\lambda )=-\displaystyle \frac{1}{\lambda }\left(\begin{array}{c}\overline{{m}_{2}}(-z,-t)\\ \overline{{m}_{1}}(-z,-t)\end{array}\right)+O(1),\end{eqnarray}$
where ${m}_{1}(z,t)$ and ${m}_{2}(z,t)$ satisfy the following linear Volterra integral equation
$\begin{eqnarray}{m}_{1}(z,t)={\int }_{-\infty }^{z}q(x,t){m}_{2}(x,t){\rm{d}}x,\end{eqnarray}$
$\begin{eqnarray}{m}_{2}(z,t)=-\displaystyle \frac{{\rm{i}}\delta }{2}+{\int }_{-\infty }^{z}(\bar{q}(-x,-t)-2\delta ){m}_{1}(x,t){\rm{d}}x.\end{eqnarray}$

Noting the construction of ${\{{\phi }_{j}(z,t,\lambda )\}}_{1}^{2}$ given by equations (2.14a)–(2.14b), we can obtain properties (i)-(v). Considering the symmetries of $M(z,t,\lambda ),N(z,t,\lambda )$, we can get property (vi). Now, we prove the last property (vii). According to the structure of singularity of H± at $\lambda =0$ and from equations (2.14a)–(2.14b), when $\lambda \to 0$, we have

$\begin{eqnarray}{\phi }_{1}^{\left(1\right)}(z,t,\lambda )=\displaystyle \frac{1}{\lambda }\left(\begin{array}{c}{m}_{1}(z,t)\\ {m}_{2}(z,t)\end{array}\right)+O(1),\end{eqnarray}$
$\begin{eqnarray}{\phi }_{1}^{\left(2\right)}(z,t,\lambda )=\left(\begin{array}{c}\widetilde{{m}_{1}}(z,t)\\ \widetilde{{m}_{2}}(z,t)\end{array}\right)+O(\lambda ),\end{eqnarray}$
$\begin{eqnarray}{\phi }_{2}^{\left(1\right)}(z,t,\lambda )=\left(\begin{array}{c}\widetilde{{n}_{1}}(z,t)\\ \widetilde{{n}_{2}}(z,t)\end{array}\right)+O(\lambda ),\end{eqnarray}$
$\begin{eqnarray}{\phi }_{2}^{\left(2\right)}(z,t,\lambda )=\displaystyle \frac{1}{\lambda }\left(\begin{array}{c}{n}_{1}(z,t)\\ {n}_{2}(z,t)\end{array}\right)+O(1).\end{eqnarray}$
Substituting equations (2.21a)–(2.21b) and (2.21c)–(2.21d) into equations (2.14a) and (2.14b) respectively, we obtain that ${\{{m}_{j}(z,t)\}}_{1}^{2}$ admits equations (2.20a) and (2.20b), here
$\begin{eqnarray}\widetilde{{m}_{1}}(z,t)={\int }_{-\infty }^{z}q(x,t)\widetilde{{m}_{2}}(x,t){\rm{d}}x,\end{eqnarray}$
$\begin{eqnarray}\widetilde{{m}_{2}}(z,t)=1+{\int }_{-\infty }^{z}(\bar{q}(-x,-t)-2\delta )\widetilde{{m}_{1}}(x,t){\rm{d}}x.\end{eqnarray}$
Comparing equations (2.22a)–(2.22b) with equation (2.20a)–(2.20b), we get
$\begin{eqnarray}\left(\begin{array}{c}\widetilde{{m}_{1}}(z,t)\\ \widetilde{{m}_{2}}(z,t)\end{array}\right)=\displaystyle \frac{2{\rm{i}}}{\delta }\left(\begin{array}{c}{m}_{1}(z,t)\\ {m}_{2}(z,t)\end{array}\right).\end{eqnarray}$
Therefore, based on the symmetric condition equation (2.18), we have
$\begin{eqnarray}\left(\begin{array}{c}{n}_{1}(z,t)\\ {n}_{2}(z,t)\end{array}\right)=\left(\begin{array}{c}-\overline{{m}_{2}}(-z,-t)\\ -\overline{{m}_{1}}(-z,-t)\end{array}\right),\end{eqnarray}$
$\begin{eqnarray}\left(\begin{array}{c}\widetilde{{n}_{1}}(z,t)\\ \widetilde{{n}_{2}}(z,t)\end{array}\right)=\left(\begin{array}{c}\overline{\widetilde{{m}_{2}}}(-z,-t)\\ \overline{\widetilde{{m}_{1}}}(-z,-t)\end{array}\right).\end{eqnarray}$

3. The spectral functions

Due to the fact that ${\{{\varphi }_{j}(z,t,\lambda )\}}_{1}^{2}$ are the two matrix solutions to the linear spectral problem (2.7a)–(2.7b), which are linearly dependent, there exists a scattering matrix G(λ) that is independent of z and t such that
$\begin{eqnarray}{\varphi }_{1}(z,t,\lambda )={\varphi }_{2}(z,t,\lambda )G(\lambda ),\quad \lambda \in {\mathbb{R}}\setminus \{0\},\end{eqnarray}$
substituting equation (2.16) into equation (3.1) yields
$\begin{eqnarray}\begin{array}{rcl}{\phi }_{1}(z,t,\lambda ) & = & {\phi }_{2}(z,t,\lambda )\\ & & \times \,{{\rm{e}}}^{-[{\rm{i}}\lambda z+(4{\rm{i}}\beta {\lambda }^{3}+2{\rm{i}}\alpha {\lambda }^{2})t]\hat{J}}G(\lambda ),\quad \lambda \in {\mathbb{R}}\setminus \{0\},\end{array}\end{eqnarray}$
from the symmetry relation equation (2.18), we have
$\begin{eqnarray}E\overline{{\varphi }_{1}(-z,-t,-\overline{\lambda })}{E}^{-1}={\varphi }_{2}(z,t,\lambda ),\quad \lambda \in {\mathbb{R}}\setminus \{0\}.\end{eqnarray}$
Then, we can define the scattering matrix G(λ) by spectral functions v(λ) and uj(λ), j = 1, 2 as follows
$\begin{eqnarray}G(\lambda )=\left(\begin{array}{cc}{u}_{1}(\lambda ) & -\overline{v(-\overline{\lambda })}\\ v(\lambda ) & {u}_{2}(\lambda )\end{array}\right),\quad \lambda \in {\mathbb{R}}\setminus \{0\},\end{eqnarray}$
where u1(λ) and u2(λ) are well-defined in $\lambda \in \overline{{{\mathbb{C}}}_{+}}\setminus \{0\}$ and $\lambda \in \overline{{{\mathbb{C}}}_{-}}\setminus \{0\}$, respectively. Moreover, u1(λ) and u2(λ) have the following symmetry
$\begin{eqnarray}\overline{{u}_{1}(-\overline{\lambda })}={u}_{1}(\lambda ),\quad \overline{{u}_{2}(-\overline{\lambda })}={u}_{2}(\lambda ).\end{eqnarray}$

The so-called scattering matrix $G(\lambda )$ given by equation (3.4) is uniquely determined by the initial data ${q}_{0}(\lambda )$.

Introduce the notations:

$\begin{eqnarray*}\begin{array}{rcl}{\theta }_{11}(z,\lambda ) & = & {\left({\phi }_{1}\right)}_{11}(z,0,\lambda ),\\ {\theta }_{12}(z,\lambda ) & = & {\left({\phi }_{1}\right)}_{12}(z,0,\lambda ),\end{array}\end{eqnarray*}$
$\begin{eqnarray*}\begin{array}{rcl}{\theta }_{21}(z,\lambda ) & = & {\left({\phi }_{1}\right)}_{21}(z,0,\lambda ),\\ {\theta }_{22}(z,\lambda ) & = & {\left({\phi }_{1}\right)}_{22}(z,0,\lambda ).\end{array}\end{eqnarray*}$
From equation (2.14a), we have the Volterra integral equations for ${\theta }_{11},{\theta }_{21},{\theta }_{12}$ and ${\theta }_{22}$ as follows:
$\begin{eqnarray}{\theta }_{11}(z,\lambda )=1+{\int }_{-\infty }^{z}{q}_{0}(x){\theta }_{21}(x,\lambda ){\rm{d}}x,\end{eqnarray}$
$\begin{eqnarray}\begin{array}{rcl}{\theta }_{21}(z,\lambda ) & = & \displaystyle \frac{\delta }{2{\rm{i}}\lambda }+{\displaystyle \int }_{-\infty }^{z}{{\rm{e}}}^{2{\rm{i}}\lambda (z-x)}{\theta }_{11}(x,\lambda )({\bar{q}}_{0}(-x)-\delta ){\rm{d}}x\\ & & +\,{\displaystyle \int }_{-\infty }^{z}\displaystyle \frac{\delta }{2{\rm{i}}\lambda }(1-{{\rm{e}}}^{2{\rm{i}}\lambda (z-x)}){q}_{0}(x){\theta }_{21}(x,\lambda ){\rm{d}}x,\end{array}\end{eqnarray}$
$\begin{eqnarray}{\theta }_{12}(z,\lambda )={\int }_{-\infty }^{z}{{\rm{e}}}^{-2{\rm{i}}\lambda (z-x)}{q}_{0}(x){\theta }_{22}(x,\lambda ){\rm{d}}x,\end{eqnarray}$
$\begin{eqnarray}\begin{array}{rcl}{\theta }_{22}(z,\lambda ) & = & 1+{\displaystyle \int }_{-\infty }^{z}({\bar{q}}_{0}(-x)-\delta ){\theta }_{12}(x,\lambda ){\rm{d}}x\\ & & +\,{\displaystyle \int }_{-\infty }^{x}\displaystyle \frac{\delta }{2{\rm{i}}\lambda }({{\rm{e}}}^{-2{\rm{i}}\lambda (z-x)}-1){q}_{0}(x){\theta }_{22}(x,\lambda ){\rm{d}}x.\end{array}\end{eqnarray}$
By solving the systems of these Volterra integral equations, we obtain of the spectral functions $v(\lambda )$ and ${u}_{j}(\lambda )$
$\begin{eqnarray}{u}_{1}(\lambda )=\mathop{\mathrm{lim}}\limits_{z\to \infty }\left({\theta }_{11}(z,\lambda )-\displaystyle \frac{\delta }{2{\rm{i}}\lambda }{\theta }_{21}(z,\lambda )\right),\end{eqnarray}$
$\begin{eqnarray}v(\lambda )=\mathop{\mathrm{lim}}\limits_{z\to \infty }{\theta }_{21}(z,\lambda ){{\rm{e}}}^{-2{\rm{i}}\lambda z},\end{eqnarray}$
$\begin{eqnarray}{u}_{2}(\lambda )=\mathop{\mathrm{lim}}\limits_{z\to \infty }{\theta }_{22}(z,\lambda ).\end{eqnarray}$
These equations indicate that $G(\lambda )$ is uniquely determined by the initial value ${q}_{0}(\lambda )$.

The spectral functions $v(\lambda )$ and ${u}_{j}(\lambda ),j=1,2$ can be represented by the following determinant relations:

$\begin{eqnarray}\begin{array}{l}{u}_{1}(\lambda )=\det ({\phi }_{1}^{\left(1\right)}(0,0,\lambda ),{\phi }_{2}^{\left(2\right)}(0,0,\lambda )),\\ \lambda \in \overline{{{\mathbb{C}}}_{+}}\setminus \{0\},\end{array}\end{eqnarray}$
$\begin{eqnarray}\begin{array}{l}v(\lambda )=\det ({\phi }_{2}^{\left(1\right)}(0,0,\lambda ),{\phi }_{1}^{\left(2\right)}(0,0,\lambda )),\\ \lambda \in \overline{{{\mathbb{C}}}_{-}},\end{array}\end{eqnarray}$
$\begin{eqnarray}\begin{array}{l}{u}_{2}(\lambda )=\det ({\phi }_{2}^{\left(1\right)}(0,0,\lambda ),{\phi }_{1}^{\left(1\right)}(0,0,\lambda )),\\ \lambda \in {\mathbb{R}}.\end{array}\end{eqnarray}$

The spectral functions $v(\lambda )$ and ${u}_{j}(\lambda ),j=1,2$ have the following properties

(i) ${u}_{1}(\lambda )$ is analytical for $\lambda \in {{\mathbb{C}}}_{+}$ and continue to $\lambda \in \overline{{{\mathbb{C}}}_{+}}\setminus \{0\}$.

(ii) ${u}_{2}(\lambda )$ is analytical for $\lambda \in {{\mathbb{C}}}_{-}$ and continue to $\lambda \in \overline{{{\mathbb{C}}}_{-}}$.

(iii) ${u}_{j}(k)=1\,+\,O(\tfrac{1}{\lambda }),j\,=\,1,2,$ and $v(\lambda )=O(\tfrac{1}{\lambda }),\lambda \to \infty $.

(iv) $\overline{{u}_{1}(-\overline{\lambda })}={u}_{1}(\lambda ),\lambda \in \overline{{{\mathbb{C}}}_{+}}\setminus \{0\},$ and $\overline{{u}_{2}(-\overline{\lambda })}\,={u}_{2}(\lambda ),\lambda \in \overline{{{\mathbb{C}}}_{-}}$.

(v) ${u}_{1}(\lambda ){u}_{2}(\lambda )+v(\lambda )\overline{v(-\overline{\lambda })}=1,\,\lambda \in {\mathbb{R}}\setminus \{0\}$.

(vi) ${u}_{1}(\lambda )=\tfrac{{\delta }^{2}{u}_{2}(0)}{4{\lambda }^{2}}+O(\tfrac{1}{\lambda }),$ and $v(\lambda )=-\tfrac{\delta {u}_{2}(0)}{2{\rm{i}}\lambda }\,+O(1)$, if $\lambda \to 0$.

In fact, the properties (i)-(v) of proposition 3.3 can be derived from the definition of scattering matrix $G(\lambda )$ and the symmetry relations of spectral functions ${u}_{j}(\lambda )$. Now, we only prove the last property (vi), as $\lambda \to 0$, substituting equations (2.19a)–(2.19b) into equations (3.8a)–(3.8b) yields

$\begin{eqnarray}{u}_{1}(\lambda )=\displaystyle \frac{1}{{\lambda }^{2}}(| {m}_{2}(0,0){| }^{2}-| {m}_{1}(0,0){| }^{2})+O\left(\displaystyle \frac{1}{\lambda }\right),\end{eqnarray}$
$\begin{eqnarray}v(\lambda )=-\displaystyle \frac{2{\rm{i}}}{\lambda \delta }(| {m}_{2}(0,0){| }^{2}-| {m}_{1}(0,0){| }^{2})+O(1),\end{eqnarray}$
$\begin{eqnarray}{u}_{2}(\lambda )=\displaystyle \frac{4}{{\delta }^{2}}(| {m}_{2}(0,0){| }^{2}-| {m}_{1}(0,0){| }^{2})+O(\lambda ),\end{eqnarray}$
from equation (3.9c), we get
$\begin{eqnarray}| {m}_{2}(0,0){| }^{2}-| {m}_{1}(0,0){| }^{2}=\displaystyle \frac{{\delta }^{2}{u}_{2}(0)}{4},\end{eqnarray}$
therefore, substituting equation (3.10) into equations (3.9a)–(3.9b), we can obtain property (vi) naturally.

Take into account that equations (3.8a)–(3.8c) are true for any (z,t), which means that the conservation laws holds for the Jost solutions:

$\begin{eqnarray}{m}_{2}(z,t)\overline{{m}_{2}}(-z,-t)+{m}_{1}(z,t)\overline{{m}_{1}}(-z,-t)={\rm{const}}.\end{eqnarray}$

If ${q}_{0}(z)$ is the following pure-step initial value:

$\begin{eqnarray}{q}_{0}(z)=\left\{\begin{array}{l}0,\,z\lt 0,\\ \delta ,\,z\gt 0,\end{array}\right.\end{eqnarray}$
then, the so-called scattering matrix $G(\lambda )$ can be given by:
$\begin{eqnarray}G(\lambda )={H}_{+}^{-1}(\lambda ){H}_{-}(\lambda )=\left(\begin{array}{cc}1+\tfrac{{\delta }^{2}}{4{\lambda }^{2}} & -\tfrac{\delta }{2{\rm{i}}\lambda }\\ \tfrac{\delta }{2{\rm{i}}\lambda } & 1\end{array}\right).\end{eqnarray}$

4. The basic Riemann–Hilbert problem

To obtain the RH problem of the reverse space-time nonlocal Hirota equation (1.7), we need use the Jost function solutions φj(z, t, λ) to define a 2 × 2 matrix-valued function K(z, t, λ) as follows:
$\begin{eqnarray}K(z,t,\lambda )=\left\{\begin{array}{l}\left(\tfrac{{\phi }_{1}^{\left(1\right)}(z,t,\lambda )}{{u}_{1}(\lambda )},{\phi }_{2}^{\left(2\right)}(z,t,\lambda )\right),\lambda \in {{\mathbb{C}}}_{+},\\ \left({\phi }_{2}^{\left(1\right)}(z,t,\lambda ),\tfrac{{\phi }_{1}^{\left(2\right)}(z,t,\lambda )}{{u}_{2}(\lambda )}\right),\lambda \in {{\mathbb{C}}}_{-},\end{array}\right.\end{eqnarray}$
which is a piece-wise meromorphic function relative to ${\mathbb{R}}$ and
$\begin{eqnarray}\det K(z,t,\lambda )=1,\quad K(z,t,\lambda )={\mathbb{I}}+O\left(\displaystyle \frac{1}{\lambda }\right),\quad \lambda \to \infty ,\end{eqnarray}$
where ${\mathbb{I}}$ is a 2 × 2 unit matrix.
Therefore, the scattering condition equation (3.2) means that the boundary values
$\begin{eqnarray*}\begin{array}{rcl}{K}_{+}(z,t,\lambda ) & = & \mathop{\mathrm{lim}}\limits_{\lambda ^{\prime} \to \lambda ,\,\lambda ^{\prime} \in {{\mathbb{C}}}_{+}}K(z,t,\lambda ^{\prime} ),\quad \lambda \in {\mathbb{R}},\\ {K}_{-}(z,t,\lambda ) & = & \mathop{\mathrm{lim}}\limits_{\lambda ^{\prime} \to \lambda ,\,\lambda ^{\prime} \in {{\mathbb{C}}}_{-}}K(z,t,\lambda ^{\prime} ),\quad \lambda \in {\mathbb{R}},\end{array}\end{eqnarray*}$
enjoys the jump condition as follows
$\begin{eqnarray}{K}_{+}(z,t,\lambda )={K}_{-}(z,t,\lambda )S(z,t,\lambda ),\,\lambda \in {\mathbb{R}},\end{eqnarray}$
where S(z, t, λ) is the jump matrix defined by
$\begin{eqnarray}S(z,t,\lambda )=\left(\begin{array}{cc}1+{\xi }_{1}(\lambda ){\xi }_{2}(\lambda ) & {\xi }_{2}(\lambda ){{\rm{e}}}^{-2{\rm{i}}\omega (\lambda )}\\ {\xi }_{1}(\lambda ){{\rm{e}}}^{2{\rm{i}}\omega (\lambda )} & 1\end{array}\right),\end{eqnarray}$
and ξj(λ), j = 1, 2 are the reflection coefficients given by
$\begin{eqnarray}{\xi }_{1}(\lambda )=\displaystyle \frac{v(\lambda )}{{u}_{1}(\lambda )},\quad {\xi }_{2}(\lambda )=\displaystyle \frac{\overline{v(-\overline{\lambda })}}{{u}_{2}(\lambda )}.\end{eqnarray}$
Moreover, from proposition 3.3, we know that the reflection coefficients ξ1(λ) and ξ2(λ) have the symmetry property
$\begin{eqnarray}{\xi }_{1}(-\overline{\lambda }){\xi }_{2}(-\overline{\lambda })=\overline{{\xi }_{1}(\lambda )}\overline{{\xi }_{2}(\lambda )},\,\lambda \in {\mathbb{R}}\setminus \{0\},\end{eqnarray}$
and the determinant property
$\begin{eqnarray}1+{\xi }_{1}(\lambda ){\xi }_{2}(\lambda )=\displaystyle \frac{1}{{u}_{1}(\lambda ){u}_{2}(\lambda )},\,\lambda \in {\mathbb{R}}\setminus \{0\}.\end{eqnarray}$

The equation (4.4) is true. In fact substituting the scattering matrix $G(\lambda )$ given in equation (3.4) into equation (3.2) yields

$\begin{eqnarray}\begin{array}{l}{u}_{1}(\lambda ){\phi }_{2}^{\left(1\right)}(z,t,\lambda )+v(\lambda ){{\rm{e}}}^{2{\rm{i}}\omega (\lambda )}\\ \times \,{\phi }_{2}^{\left(2\right)}(z,t,\lambda )={\phi }_{1}^{\left(1\right)}(z,t,\lambda ),\end{array}\end{eqnarray}$
$\begin{eqnarray}\begin{array}{l}-\overline{v(-\overline{\lambda }}){{\rm{e}}}^{-2{\rm{i}}\omega (\lambda )}{\phi }_{2}^{\left(1\right)}(z,t,\lambda )+{u}_{2}(\lambda )\\ \times \,{\phi }_{2}^{\left(2\right)}(z,t,\lambda )={\phi }_{1}^{\left(2\right)}(z,t,\lambda ).\end{array}\end{eqnarray}$
These equations and the jump relation equation (4.3) implies that
$\begin{eqnarray}\begin{array}{l}\left(\displaystyle \frac{{\phi }_{1}^{\left(1\right)}(z,t,\lambda )}{{u}_{1}(\lambda )},{\phi }_{2}^{\left(2\right)}(z,t,\lambda )\right)\\ \quad =\,\left({\phi }_{2}^{\left(1\right)}(z,t,\lambda ),\displaystyle \frac{{\phi }_{1}^{\left(2\right)}(z,t,\lambda )}{{u}_{2}(\lambda )}\right)S(z,t,\lambda ),\end{array}\end{eqnarray}$
from which, the jump matrix $S(z,t,\lambda )$ defined by equation (4.4) just holds.

Looking back at equations (3.9a)–(3.9c), it is not difficult to find that the behavior of K(z, t, λ) as λ → 0 mainly depends on whether u2(0) ≠ 0 or u2(0) = 0. Therefore, we have the following assumptions:

Assume that

Case I ${u}_{2}(0)\ne 0$: ${u}_{1}(\lambda )$ has one simple zero located on the imaginary axis in $\overline{{{\mathbb{C}}}_{+}}$, such as $\lambda ={\rm{i}}{\lambda }_{1},{\lambda }_{1}\in {\mathbb{R}}\setminus \{0\};$ ${u}_{2}(\lambda )$ possesses no zeros in $\overline{{{\mathbb{C}}}_{-}}$.

Case II ${u}_{2}(0)=0$: ${u}_{1}(\lambda )$ has one simple zero located on the imaginary axis in $\overline{{{\mathbb{C}}}_{+}}$, such as $\lambda ={\rm{i}}{\lambda }_{1},{\lambda }_{1}\in {\mathbb{R}}\setminus \{0\};$ ${u}_{2}(\lambda )$ possesses one simple zero in $\overline{{{\mathbb{C}}}_{-}}$ at $\lambda =0$ (such that ${\dot{u}}_{2}(0)\ne 0$). Furthermore, we assume that ${\mathrm{lim}}_{\lambda \to 0}\lambda {u}_{1}(\lambda )\ne 0$.

With the symmetric relation equation (3.5), it holds that $\mu := {\mathrm{lim}}_{\lambda \to 0}\lambda {u}_{1}(\lambda )$ is purely imaginary. Furthermore, if ${u}_{1}(\lambda )$ possesses one simple zero, then $\mathrm{Im}\lambda \lt 0$ in the Case II.

Considering the singularities of ${\{{\phi }_{j}(z,t,\lambda )\}}_{1}^{2}$ and the spectral function u1(λ) at λ = 0 (see proposition 2.1), we can discuss the behavior of K(z, t, λ) at λ = 0 as follows:

In Case I

$\begin{eqnarray}\begin{array}{rcl}{K}_{+}(z,t,\lambda ) & = & \left(\begin{array}{cc}-\displaystyle \frac{4{m}_{1}(z,t)}{{\delta }^{2}{u}_{2}(0)} & -\overline{{m}_{2}}(-z,-t)\\ -\displaystyle \frac{4{m}_{2}(z,t)}{{\delta }^{2}{u}_{2}(0)} & -\overline{{m}_{1}}(-z,-t)\end{array}\right)\\ & & \times ({\mathbb{I}}+O(\lambda ))\left(\begin{array}{cc}\lambda & 0\\ 0 & \displaystyle \frac{1}{\lambda }\end{array}\right),\lambda \to {\rm{i}}0,\end{array}\end{eqnarray}$
$\begin{eqnarray}\begin{array}{rcl}{K}_{-}(z,t,\lambda ) & = & \displaystyle \frac{2{\rm{i}}}{\delta }\left(\begin{array}{cc}-\overline{{m}_{2}}(-z,-t) & \displaystyle \frac{1}{{u}_{2}(0)}{m}_{1}(z,t)\\ -\overline{{m}_{1}}(-z,-t) & \displaystyle \frac{1}{{u}_{2}(0)}{m}_{2}(z,t)\end{array}\right)\\ & & +\,O(\lambda ),\lambda \to -{\rm{i}}0.\end{array}\end{eqnarray}$

In Case II

$\begin{eqnarray}\begin{array}{rcl}{K}_{+}(z,t,\lambda ) & = & \left(\begin{array}{cc}\displaystyle \frac{{m}_{1}(z,t)}{\mu } & -\overline{{m}_{2}}(-z,-t)\\ \displaystyle \frac{{m}_{2}(z,t)}{\mu } & -\overline{{m}_{1}}(-z,-t)\end{array}\right)\\ & & \times ({\mathbb{I}}+O(\lambda ))\left(\begin{array}{cc}1 & 0\\ 0 & \displaystyle \frac{1}{\lambda }\end{array}\right),\lambda \to {\rm{i}}0,\end{array}\end{eqnarray}$
$\begin{eqnarray}\begin{array}{rcl}{K}_{-}(z,t,\lambda ) & = & \displaystyle \frac{2{\rm{i}}}{\delta }\left(\begin{array}{cc}-\overline{{m}_{2}}(-z,-t) & \displaystyle \frac{{m}_{1}(z,t)}{{\dot{u}}_{2}(0)}\\ -\overline{{m}_{1}}(-z,-t) & \displaystyle \frac{{m}_{2}(z,t)}{{\dot{u}}_{2}(0)}\end{array}\right)\\ & & \times \,({\mathbb{I}}+O(\lambda ))\left(\begin{array}{cc}1 & 0\\ 0 & \displaystyle \frac{1}{\lambda }\end{array}\right),\lambda \to -{\rm{i}}0.\end{array}\end{eqnarray}$
In addition, if u1(iλ1) = 0 and ${\dot{u}}_{1}({\rm{i}}{\lambda }_{1})\ne 0$ with ${\lambda }_{1}\in {\mathbb{R}}\setminus \{0\}$, then the piece-wise meromorphic function K(z, t, λ) satisfies the following residue condition
$\begin{eqnarray}{\mathrm{Res}}_{\lambda ={\rm{i}}{\lambda }_{1}}{K}^{\left(1\right)}(z,t,\lambda )=\displaystyle \frac{{g}_{1}}{{\dot{u}}_{1}({\rm{i}}{\lambda }_{1})}{{\rm{e}}}^{-2{\rm{i}}\omega ({\rm{i}}{\lambda }_{1})}{K}^{\left(2\right)}(z,t,{\rm{i}}{\lambda }_{1}),\end{eqnarray}$
where
$\begin{eqnarray*}{\phi }_{1}^{\left(1\right)}(0,0,{\rm{i}}{\lambda }_{1})={g}_{1}{\phi }_{2}^{\left(2\right)}(0,0,{\rm{i}}{\lambda }_{1})\,{and}\,| {g}_{1}| =1.\end{eqnarray*}$

The residue condition equation (4.12) is true. In fact, it follows from equation (4.1), equation (3.2) and (3.4) that

$\begin{eqnarray}\begin{array}{rcl}{\mathrm{Res}}_{\lambda ={\rm{i}}{\lambda }_{1}}\displaystyle \frac{{\phi }_{1}^{\left(1\right)}(z,t,\lambda )}{{u}_{1}(\lambda )} & = & \mathop{\mathrm{lim}}\limits_{\lambda \to {\rm{i}}{\lambda }_{1}}(\lambda -{\rm{i}}{\lambda }_{1})\displaystyle \frac{{\phi }_{1}^{\left(1\right)}(z,t,\lambda )}{{u}_{1}(\lambda )}\\ & = & \displaystyle \frac{{\phi }_{1}^{\left(1\right)}(z,t,\lambda )}{{\dot{u}}_{1}(\lambda )}.\end{array}\end{eqnarray}$
By using ${u}_{1}({\rm{i}}{\lambda }_{1})=0$, we have
$\begin{eqnarray}{\phi }_{1}^{\left(1\right)}(z,t,\lambda )=v(\lambda ){{\rm{e}}}^{-2{\rm{i}}\omega ({\rm{i}}{\lambda }_{1})}{K}^{\left(2\right)}(z,t,\lambda ).\end{eqnarray}$
From equations (4.13) and (4.14), we obtain
$\begin{eqnarray}\begin{array}{l}{\mathrm{Res}}_{\lambda ={\rm{i}}{\lambda }_{1}}{K}^{\left(1\right)}(z,t,\lambda )\\ \quad =\,\displaystyle \frac{v({\rm{i}}{\lambda }_{1})}{{\dot{u}}_{1}({\rm{i}}{\lambda }_{1})}{{\rm{e}}}^{-2{\rm{i}}\omega ({\rm{i}}{\lambda }_{1})}{K}^{\left(2\right)}(z,t,{\rm{i}}{\lambda }_{1}).\end{array}\end{eqnarray}$
these equations will lead to the residue condition equation (4.12).

Now, let us summarize the results of the above discussion, then we get the following representation theorem.

Assume that ${q}_{0}(z),z\in {\mathbb{R}}$ satisfies the following integral inequality

$\begin{eqnarray*}{\int }_{-\infty }^{0}| {q}_{0}(z)| {\rm{d}}z+{\int }_{0}^{\infty }| {q}_{0}(z)-\delta | {\rm{d}}z\lt \infty .\end{eqnarray*}$
Let $G(\lambda )$ be defined by equation (3.4), where the spectral functions ${u}_{1}(\lambda )$, ${u}_{2}(\lambda )$, $v(\lambda )$ associated with initial value ${q}_{0}(z)$ are defined by equations (3.6a)–(3.6d) and (3.7a)–(3.7c), as well as ${u}_{1}(\lambda )$, ${u}_{2}(\lambda )$ satisfy the following assumptions:

${u}_{1}(\lambda )$ has a single, simple, pure imaginary zero $\lambda ={\rm{i}}{\lambda }_{1},{\lambda }_{1}\in {\mathbb{R}}\setminus \{0\}$ in $\overline{{{\mathbb{C}}}_{+}}$ (see Case I).

${u}_{2}(\lambda )$ has no zeros in $\overline{{{\mathbb{C}}}_{-}}$ and, if ${u}_{2}(0)=0$, then $\lambda =0$ is a simple zero of ${u}_{2}(\lambda )$ (see Case II).

Consider the following matrix RH problem for the reverse space-time nonlocal Hirota equation (1.7) and find that a 2 × 2 matrix-valued function $K(z,t,\lambda )$ (see equation (4.1)) admits the following conditions:

(i) $K(z,t,\lambda )$ is a piece-wise meromorphic function in ${\mathbb{C}}\setminus {\mathbb{R}}$.

(ii) ${K}_{\pm }(z,t,\lambda )=K(z,t,\lambda \pm {\rm{i}}0),\lambda \in {\mathbb{R}}\setminus \{0\}$ satisfies the jump condition as follows

$\begin{eqnarray*}{K}_{+}(z,t,\lambda )={K}_{-}(z,t,\lambda )S(z,t,\lambda ),\,\lambda \in {\mathbb{R}}\setminus \{0\},\end{eqnarray*}$
where the jump matrix $S(z,t,\lambda )$ is defined in terms of the reflection coefficients ${\xi }_{j}(\lambda ),j\,=\,1,2$ by equation (4.4).

(iii) $K(z,t,\lambda )={\mathbb{I}}+O(\tfrac{1}{\lambda }),\,\lambda \to \infty $.

(iv) $K(z,t,\lambda )$ satisfies the residue relation equation (4.12).

Assume that $K(z,t,\lambda )$ is the solution of the above 2 × 2 matrix RH problem. Then, $K(z,t,\lambda )$ exists and is unique. Define $q(z,t)$ and $\overline{q}(-z,-t)$ in terms of $K(z,t,\lambda )$ by
$\begin{eqnarray}q(z,t)=2{\rm{i}}\mathop{\mathrm{lim}}\limits_{\lambda \to \infty }\lambda {K}_{12}(z,t,\lambda ),\end{eqnarray}$
$\begin{eqnarray}\overline{q}(-z,-t)=2{\rm{i}}\mathop{\mathrm{lim}}\limits_{\lambda \to \infty }\lambda {K}_{21}(z,t,\lambda ).\end{eqnarray}$
Therefore, $q(z,t)$ and $\overline{q}(-z,-t)$ solve the reverse space-time nonlocal Hirota equation (1.7) with step-like initial data:
$\begin{eqnarray*}\begin{array}{rcl}{q}_{0}(z) & \to & 0,\,z\to -\infty ,\\ {q}_{0}(z) & \to & \delta ,\,z\to \infty ,\end{array}\end{eqnarray*}$
where ${q}_{0}(z)=q(z,0)$ and $\delta \gt 0$ is a constant.

Following [37], we can prove that the solution $K(z,t,\lambda )$ of the RH problem (i)-(iv) defined by theorem 4.5 is unique. Now, we prove equations (4.16a)–(4.16b). For $\lambda \to \infty $, we consider the solutions ${\phi }_{\pm }(z,t,\lambda )$ of equations (2.12a)–(2.12b) of the Laurent expansion form

$\begin{eqnarray}\begin{array}{rcl}{\phi }_{\pm }(z,t,\lambda ) & = & {\phi }_{\pm }^{\left(0\right)}+\displaystyle \frac{{\phi }_{\pm }^{\left(1\right)}}{\lambda }+\displaystyle \frac{{\phi }_{\pm }^{\left(2\right)}}{{\lambda }^{2}}\\ & & +\,O(\displaystyle \frac{1}{{\lambda }^{3}}),\lambda \to \infty ,\end{array}\end{eqnarray}$
where ${\phi }_{\pm }^{\left(m\right)}$, $m=0,1,2$ are independent of λ. By using equation (2.9), we obtain
$\begin{eqnarray}{H}_{\pm }^{-1}(\lambda )={\mathbb{I}}-\displaystyle \frac{1}{2{\rm{i}}\lambda }{Q}_{\pm },\end{eqnarray}$
substituting equations (4.18)–(4.19) into equation (2.12a) and comparing the coefficients of ${\lambda }^{j}$, we get
$\begin{eqnarray}O({\lambda }^{1}):-{\rm{i}}[J,{\phi }_{\pm }^{\left(0\right)}]=0,\end{eqnarray}$
$\begin{eqnarray}O({\lambda }^{0}):{\phi }_{\pm ,z}^{\left(0\right)}+{\rm{i}}[J,{\phi }_{\pm }^{\left(1\right)}+\displaystyle \frac{{\rm{i}}}{2}{Q}_{\pm }{\phi }_{\pm }^{\left(0\right)}]=(Q-{Q}_{\pm }){\phi }_{\pm }^{\left(0\right)}.\end{eqnarray}$
By using equations (4.20a)–(4.20b) and (4.1), we have the limit form of $q(z,t)$ and $q(-z,-t)$ given by equations (4.16a)–(4.16b).

The solution $K(z,t,\lambda )$ of the RH problem (i)-(iv) given by theorem 4.5 has a symmetric relationship as follows:

$\begin{eqnarray}K(z,t,\lambda )=\left\{\begin{array}{l}E\overline{{K}_{+}(-z,-t,-\overline{\lambda })}{E}^{-1}\left(\begin{array}{cc}\tfrac{1}{{u}_{1}(\lambda )} & 0\\ 0 & {u}_{1}(\lambda )\end{array}\right),\,\lambda \in \overline{{{\mathbb{C}}}_{+}}\setminus \{0\},\\ E\overline{{K}_{-}(-z,-t,-\overline{\lambda })}{E}^{-1}\left(\begin{array}{cc}{u}_{2}(\lambda ) & 0\\ 0 & \tfrac{1}{{u}_{2}(\lambda )}\end{array}\right),\,\lambda \in \overline{{{\mathbb{C}}}_{-}}\setminus \{0\}.\end{array}\right.\end{eqnarray}$

From the symmetry of the jump matrix $S(z,t,\lambda )$ defined by equation (4.4), we have

$\begin{eqnarray}\begin{array}{rcl}E\overline{S(-z,-t,-\overline{\lambda })}{E}^{-1} & = & \left(\begin{array}{cc}{u}_{2}(\lambda ) & 0\\ 0 & \tfrac{1}{{u}_{2}(\lambda )}\end{array}\right)S(z,t,\lambda )\\ & & \times \,\left(\begin{array}{cc}\tfrac{1}{{u}_{1}(\lambda )} & 0\\ 0 & {u}_{1}(\lambda )\end{array}\right),\,\lambda \in {\mathbb{R}}\setminus \{0\},\end{array}\end{eqnarray}$
which will lead to the symmetry relation equation (4.21).

Let ${g}_{1}=1$, we assume that the spectral functions $v(\lambda )$ and ${u}_{j}(\lambda ),j\,=\,1,2$ related to some initial value ${q}_{0}(z)$ meet the following conditions:

$v(\lambda )=0$ for all $\lambda \in {\mathbb{R}}$.

${u}_{2}(\lambda )$ possesses one simple zero in $\overline{{{\mathbb{C}}}_{-}}$ with $\lambda =0$ .

${u}_{1}(\lambda )$ possesses one simple zero in $\overline{{{\mathbb{C}}}_{+}}$ with $\lambda ={\rm{i}}{\lambda }_{1}$, where ${\lambda }_{1}\gt 0$.

Then, ${\lambda }_{1}$ has a unique and definite value ${\lambda }_{1}=\tfrac{\delta }{2}$, and the RH problem (i)-(iv) given by theorem 4.5 has a unique solution, as well as the related exact solution $q(z,t)$ is defined by
$\begin{eqnarray}q(z,t)=\displaystyle \frac{\delta }{1-{{\rm{e}}}^{-\delta z-({\rm{i}}\alpha {\delta }^{2}-\beta {\delta }^{3})t}}.\end{eqnarray}$

In fact, it is not difficult to find that the exact solution (4.23) is smooth except only one point (0, 0) on (z,t)-plane. Furthermore, it is also easy to see that the exact solution given by equation (4.23) satisfies the step-like initial data (1.8a)–(1.8b).

5. Discussions and conclusions

In this paper, we use the RH method to investigate the Cauchy problem (1.7)–(1.9b) of the reverse space-time nonlocal Hirota equation with step-like initial data. Firstly, we present the asymptotic form of Lax pairs (2.12a)–(2.12b) and their Jost solutions φj(z, t, λ) for the reverse space-time nonlocal Hirota equation. Secondly, we discuss the properties of the scattering matrix G(λ) and the spectral function (the entries of the scattering matrix G(λ)). Finally, we construct the relevant matrix RH problem (see theorem 4.5) and provide a solution to the Cauchy problem (1.7)–(1.9b). The theoretical method in this paper can be applied to study the Cauchy problem of other integrable equations with step-like initial data. In addition, the long-time asymptotic analysis of solutions to the Cauchy problem with step-like initial data for nonlocal integrable NLS equation has recently been reported [51]. Therefore, our future research is to discuss these issues.

Conflict of interest

The authors declare that they have no conflict of interest.

This work is supported by the National Natural Science Foundation of China under Grant No. 12147115, the Discipline (Subject) Leader Cultivation Project of Universities in Anhui Province under Grant Nos. DTR2023052 and DTR2024046, the Natural Science Research Project of Universities in Anhui Province under Grant No. 2024AH040202, the Young Top Notch Talents and Young Scholars of High End Talent Introduction and Cultivation Action Project in Anhui Province, the Scientific Research Foundation Funded Project of Chuzhou University under Grant Nos. 2022qd022 and 2022qd038.

1
Zakharov V E, Shabat A B 1972 Exact theory of two-dimensional self-focusing and one-dimensional self-modulation of waves in nonlinear media Sov. Phys. JETP 34 62 69 http://www.jetp.ras.ru/cgi-bin/dn/e_034_01_0062.pdf

2
Shukla P K, Eliasson B 2010 Nonlinear aspects of quantum plasma physics Phys.-Usp. 53 51 76

DOI

3
Mollenauer L F, Stolen R H, Gordon J P 1980 Experimental observation of picosecond pulse narrowing and solitons in optical fibers Phys. Rev. Lett. 45 1095

DOI

4
Mitschke F M, Mollenauer L F 1986 Discovery of the soliton self-frequency shift Opt. Lett. 11 659 661

DOI

5
Kodama Y, Hasegawa A 1987 Nonlinear pulse propagation in a monomode dielectric guide IEEE J. Quantum Electron. 23 510 524

DOI

6
Kaup D J, Newell A C 1978 An exact solution for a derivative nonlinear Schrödinger equation J. Math. Phys. 19 789 801

DOI

7
Chen H, Lee Y, Liu C 1979 Integrability of nonlinear Hamiltonian systems by inverse scattering method Phys. Scr. 20 490

DOI

8
Sasa N, Satsuma J 1991 New-type of soliton solutions for a higher-order nonlinear Schrödinger equation J. Phys. Soc. Jpn. 60 409 417

DOI

9
Hirota R 1973 Exact envelope-soliton solutions of a nonlinear wave equation J. Math. Phys. 14 805 809

DOI

10
Ablowitz M J, Musslimani Z H 2013 Integrable nonlocal nonlinear Schrödinger equation Phys. Rev. Lett. 110 064105

DOI

11
Ablowitz M J, Musslimani Z H 2017 Integrable nonlocal nonlinear equations Stud. Appl. Math. 139 7 59

DOI

12
Ablowitz M J, Feng B F, Luo X D, Musslimani Z H 2018 Reverse space-time nonlocal dine-Gordon/dinh-Gordon equations with nonzero boundary conditions Stud. Appl. Math. 141 267 307

DOI

13
Rao J G, Cheng Y, He J S 2015 Rational and semirational solutions of the nonlocal Davey–Stewartson equations Stud. Appl. Math. 139 568 598

DOI

14
Ji J L, Zhu Z N 2017 On a nonlocal modified Korteweg–de Vries equation: Integrability, Darboux transformation and soliton solutions Commun. Nonlinear Sci. Numer. Simul. 42 699 708

DOI

15
Yu F J, Fan R 2020 Nonstandard bilinearization and interaction phenomenon for PT-symmetric coupled nonlocal nonlinear Schrödinger equations Appl. Math. Lett. 103 106209

DOI

16
Li J, Xia T C 2021 N-soliton solutions for the nonlocal Fokas-Lenells equation via RHP Appl. Math. Lett. 113 106850

DOI

17
Luo J H, Fan E G 2022 $\bar{\partial }$-dressing method for the nonlocal mKdV equation J. Geom. Phys. 177 104550

DOI

18
Ma W X 2022 Nonlocal integrable mKdV equations by two nonlocal reductions and their soliton solutions J. Geom. Phys. 177 104522

DOI

19
Ablowitz M J, Luo X D, Musslimani Z H, Zhu Y 2022 Integrable nonlocal derivative nonlinear Schrödinger equations Inverse Prob. 38 065003

DOI

20
Xiang X B, Zhao S L, Shi Y 2023 Solutions and continuum limits to nonlocal discrete sine-Gordon equations: Bilinearization reduction method Stud. Appl. Math. 150 1274 1303

DOI

21
Zhou F, Rao J G, Mihalache D, He J S 2023 The multiple double-pole solitons and multiple negaton-type solitons in the space-shifted nonlocal nonlinear Schrödinger equation Appl. Math. Lett. 146 108796

DOI

22
Rao J G, Mihalache D, Zhou F, He J S, Chen S A 2024 Dark and antidark solitons on continuous and doubly periodic backgrounds in the space-shifted nonlocal nonlinear Schrödinger equation Chaos Soliton Fract. 182 114846

DOI

23
Rao J G, Mihalache D, Ma M J, He J S 2024 The coupled space-shifted nonlocal nonlinear Schrödinger equation: Multiple bright-dark double-pole solitons, multiple negaton-type solitons, and their associated mixed solitons Phys. Lett. A 493 129244

DOI

24
Zhao Y, Fan E G 2024 Existence of global solutions to the nonlocal Schrödinger equation on the line Stud. Appl. Math. 152 111 146

DOI

25
Su J J, Zhang S 2021 Nth-order rogue waves for the AB system via the determinants Appl. Math. Lett. 112 106714

DOI

26
Lou S Y 2020 Multi-place physics and multi-place nonlocal systems Commun. Theor. Phys. 72 057001

DOI

27
Cen J, Correa F, Fring A 2019 Integrable nonlocal Hirota equations J. Math. Phys. 60 081508

DOI

28
Zuo D W, Zhang G F 2019 Exact solutions of the nonlocalHhirota equations Appl. Math. Lett. 93 66 71

DOI

29
Xia Y R, Yao R X, Xin X P 2022 Darboux transformation and soliton solutions of a nonlocal Hirota equation Chin. Phys. B 31 020401

DOI

30
Zhuang Y D, Zhang Y, Zhang H Y, Xia P 2022 Multi-soliton solutions for the three types of nonlocal Hirota equations via Riemann–Hilbert approach Commun. Theor. Phys. 74 115004

DOI

31
Peng W Q, Chen Y 2022 N-double poles solutions for nonlocal Hirota equation with nonzero boundary conditions using Riemann–Hilbert method and PINN algorithm Physica D 435 133274

DOI

32
Liu J Z, Yan X Y, Jin M, Xin X P 2023 Darboux transformation, infinite conservation laws, and exact solutions for the nonlocal Hirota equation with variable coefficients Chin. Phys. B 32 120401

DOI

33
Zhao D, Zha Q L 2024 Generalized perturbation (n, Nn) fold Darboux transformation for a nonlocal Hirota equation with variable coefficients Phys. Scr. 99 25228

DOI

34
Khare A, Saxena A 2024 New solutions of nonlocal NLS, mKdV and Hirota equations Ann. Phys. 460 169561

DOI

35
Liu L L, Zhang W G 2021 On a Riemann–Hilbert problem for the focusing nonlocal mKdV equation with step-like initial data Appl. Math. Lett. 116 107009

DOI

36
Hu B B, Shen Z Y, Zhang L, Fang F 2024 Riemann–Hilbert approach to the focusing and defocusing nonlocal derivative nonlinear Schrödinger equation with step-like initial data Appl. Math. Lett. 148 108885

DOI

37
Hu B B, Shen Z Y, Zhang L 2024 Nonlocal Kundu–Eckhaus equation: integrability, Riemann–Hilbert approach and Cauchy problem with step-like initial data Lett. Math. Phys. 114 55

DOI

38
Zhang L, Hu B B, Shen Z Y 2024 Riemann–Hilbert approach to the focusing and defocusing nonlocal complex modified Korteweg-de Vries equation with step-like initial data J. Math. Phys. 65 013507

DOI

39
Ai L P, Xu J 2019 On a Riemann-Hilbert problem for the Fokas–Lenells equation Appl. Math. Lett. 87 57 63

DOI

40
Chen S Y, Yan Z Y 2019 The Hirota equation: Darboux transform of the Riemann–Hilbert problem and higher-order rogue waves Appl. Math. Lett. 95 65 71

DOI

41
Hu B B, Zhang L, Xia T C, Zhang N 2020 On the Riemann–Hilbert problem of the Kundu equation Appl. Math. Comput. 381 125262

DOI

42
Hu B B, Zhang L, Zhang N 2021 On the Riemann–Hilbert problem for the mixed Chen–Lee–Liu derivative nonlinear Schrödinger equation J. Comput. Appl. Math. 390 113393

DOI

43
Hu B B, Lin J, Zhang L 2022 On the Riemann–Hilbert problem for the integrable three-coupled Hirota system with a 4 ×4 matrix lax pair Appl. Math. Comput. 428 127202

DOI

44
Hu B B, Zhang L, Lin J 2022 The initial-boundary value problems of the new two-component generalized Sasa–Satsuma equation with a 4 × 4 matrix Lax pair Anal. Math. Phys. 12 109

DOI

45
Feng B F, Luo X D, Ablowitz M J, Musslimani Z H 2018 General soliton solution to a nonlocal nonlinear Schrödinger equation with zero and nonzero boundary conditions Nonlinearity 31 5385 5409

DOI

46
Zhang Y S, Xu S W 2020 The soliton solutions for the Wadati–Konno–Ichikawa equation Appl. Math. Lett. 99 105995

DOI

47
Hu B B, Zhang L, Lin J 2022 Dynamic behaviors of soliton solutions for a three-coupled Lakshmanan-Porsezian-Daniel model Nonlinear Dyn. 107 2773 2785

DOI

48
Rybalko Y, Shepelsky D 2019 Long-time asymptotics for the integrable nonlocal nonlinear Schrödinger equation J. Math. Phys. 60 031504

DOI

49
He F J, Fan E G, Xu J 2019 Long-time asymptotics for the nonlocal mKdV equation Commun. Theor. Phys. 71 475 488

DOI

50
Rybalko Y, Shepelsky D 2021 Curved wedges in the long-time asymptotics for the integrable nonlocal nonlinear Schrödinger equation Stud. Appl. Math. 147 872 903

DOI

51
Rybalko Y, Shepelsky D 2021 Long-time asymptotics for the nonlocal nonlinear Schrödinger equation with step-like initial data J. Differ. Equations 270 694 724

DOI

52
Rybalko Y, Shepelsky D 2021 Asymptotic stage of modulation instability for the nonlocal nonlinear Schrödinger equation Physica D 428 133060

DOI

53
Cheng Q Y, Yang Y L, Fan E G 2021 Long-time asymptotic behavior of a mixed Schrödinger equation with weighted Sobolev initial data J. Math. Phys. 62 093507

DOI

Outlines

/