Welcome to visit Communications in Theoretical Physics,
Quantum Physics and Quantum Information

Unified monogamy relations for the generalized W-class states beyond qubits

  • Zhong-Xi Shen ,
  • Wen Zhou ,
  • Dong-Ping Xuan ,
  • Zhi-Xi Wang ,
  • Shao-Ming Fei , *
Expand
  • School of Mathematical Sciences, Capital Normal University, Beijing 100048, China

*Author to whom any correspondence should be addressed.

Received date: 2024-06-22

  Revised date: 2024-08-28

  Accepted date: 2024-09-03

  Online published: 2024-11-15

Copyright

© 2024 Institute of Theoretical Physics CAS, Chinese Physical Society and IOP Publishing

Abstract

The monogamy of entanglement stands as an indispensable feature within multipartite quantum systems. We study monogamy relations with respect to any partitions for the generalized W-class (GW) states based on the unified-(q, s) entanglement (UE). We provide the monogamy relation based on the squared UE for a reduced density matrix of a qudit GW state, as well as tighter monogamy relations based on the αth (α ≥ 2) power of UE. Furthermore, for an n-qudit system ABC1...Cn−2, a generalized monogamy relation and an upper bound satisfied by the βth (0 ≤ β ≤ 1) power of the UE for the GW states under the partition AB and C1...Cn−2 are established. In particular, two partition-dependent residual entanglements for the GW states are analyzed in detail.

Cite this article

Zhong-Xi Shen , Wen Zhou , Dong-Ping Xuan , Zhi-Xi Wang , Shao-Ming Fei . Unified monogamy relations for the generalized W-class states beyond qubits[J]. Communications in Theoretical Physics, 2025 , 77(2) : 025104 . DOI: 10.1088/1572-9494/ad766d

1. Introduction

Entanglement is a remarkable phenomenon in quantum mechanics, serving as a vital resource for quantum information processing and communication [14]. Significant progresses have been achieved in understanding the roles played by the entanglement in quantum tasks such as quantum teleportation [5], quantum key distribution [6] and quantum computing [7].
The monogamy of entanglement (MoE) is a distinguishing feature of entanglement that sets it apart from classical correlations [8, 9]. A subsystem entangled with one party cannot freely share its entanglement with other parties of the whole system. Since MoE imposes limitations on the potential information accessible to an eavesdropper for extracting the secret key, it holds immense significance in securing various information-theoretic protocols like quantum key distribution [1012]. MoE has also been widely studied in many areas of quantum physics such as quantum information theory [13], condensed-matter physics [14] and even black-hole physics [15].
MoE manifests itself quantitatively in the form of mathematical inequalities. Coffman, Kundu and Wootters (CKW) first characterized the monogamy of an entanglement measure ${ \mathcal E }$ for a three-qubit states ρABC [8], known as the CKW inequality,
$\begin{eqnarray}{ \mathcal E }({\rho }_{A| {BC}})\geqslant { \mathcal E }({\rho }_{{AB}})+{ \mathcal E }({\rho }_{{AC}}),\end{eqnarray}$
where ${\rho }_{{AB}}={\mathrm{tr}}_{C}({\rho }_{{ABC}})$, ${\rho }_{{AC}}={\mathrm{tr}}_{B}({\rho }_{{ABC}})$ are the reduced density matrices of ρABC, ${ \mathcal E }({\rho }_{A| {BC}})$ stands for the entanglement under the bipartition A and BC. Subsequently, Osborne and Verstraete further extend the monogamy inequality by incorporating the squared concurrence for any n-qubit systems [16]. Since then considerable research has been conducted on MoE by focusing on various entanglement measures such as the squared entanglement of formation (EoF) [1719], the squared Rényi-α entropy [20], the squared Tsallis-q entropy [21] and the squared Unified-(r, s) entropy [22]. Studies on monogamy inequalities based on the αth power of entanglement measures for multiqubit systems have been given in [21, 23, 24]. The traditional monogamy inequality (1) provides a lower bound for ‘one-to-group' entanglement, termed as quantum marginal entanglements [25].
Generally, the relation (1) may not hold for multi-qudit systems. In [19, 26, 27] the authors presented counter examples in higher-dimensional systems. There are even additive entanglement measures that do not satisfy any nontrivial monogamous relations in multipartite higher-dimensional systems [28]. Up to now, it appears that only one known entanglement measure, the squashed entanglement, is monogamous for arbitrary dimensional systems [29]. Due to the importance of the study on monogamy relations for higher-dimensional multipartite systems, it is natural to explore the monogamy inequalities for higher-dimensional multipartite states.
With respect to higher-dimensional quantum states, Kim and Sanders extended the GW state from n-qubit to n-qudit systems in 2008, demonstrating that the GW states adhere to the monogamy inequality in terms of squared concurrence [27]. In 2015, Choi and Kim showed that a superposition of the generalized W-class states and the vacuum states (GWV) satisfy the strong monogamy inequality in terms of the squared convex roof extended negativity [30]. In 2016, Kim showed that a partially coherent superposition of a GW state and the vacuum saturates the strong monogamy inequality [31]. In 2020, Shi and Chen presented the monogamy inequalities beyond qubits by using the Tsallis-q entanglement for the GW states [32]. Then, Liang et al adopted a similar methodology to extend the monogamy relations from Tsallis-q entanglement to Rényi-α entanglement for the GWV states [33]. Furthermore, Li et al have recently introduced monogamy relations for multi-qudit GW states by using the unified-(q, s) entanglement [34]. Motivated by these significant advancements, our research aims to further investigate MoE for GW states with arbitrary partitions in higher-dimensional quantum systems.
The unified-(q, s) entanglement is a two-parametric generalization of the entanglement of formation. For selective choices of the two parameters q and s, other entanglement measures such as concurrence, entanglement of formation, Tsallis-q entanglement and Rényi-α entanglement can be regarded as the special cases of the unified-(q, s) entanglement [35]. It has been proven that the unified-(q, s) entanglement satisfies the CKW inequality (1) and its dual inequality [35, 36]. Khan et al presented the monogamy relation based on the squared unified-(q, s) for arbitrary multi-qubit mixed states in the extended (q, s) region [22]. In [37], the authors provided universal entanglement distribution inequalities for multipartite higher-dimensional pure states by utilizing the unified-(q, s) entanglement.
In [38], the authors introduced two partition-dependent residual entanglements (PREs) based on the negativity for several typical multi-qubit states. Furthermore, the authors demonstrated the unique utility of PREs in analyzing the entanglement dynamics of multi-qubit systems, particularly in processing qubit blocks and sub-blocks. PREs can facilitate a comprehensive comprehension of the entanglement dynamics exhibited by GW states with different levels and formats of partitions.
There has been ample quantitative research and characterization of the restricted shareability for multi-qubit entanglement. However, the understanding of entanglement distribution in higher-dimensional systems is still limited and requires further investigation. In this paper, we consider the monogamy relations of the unified-(q, s) entanglement (UE) in higher-dimensional systems. This article is organized as follows. In section 2, we briefly introduce a few definitions of entanglement measures, as well as an overview of the GW states. In section 3, we first provide the extended (q, s) region of the generalized analytic formula of UE. By using the analytical formula, the monogamy relation based on the squared UE for qudit GW states is presented. In section 4, in order to provide a more precise description of the entanglement distribution of GW states, we delve into tighter monogamy relations based on the αth (α ≥ 2) power of UE. In section 5, for n-qudit systems ABC1...CN−2, generalized monogamy relation and upper bound satisfied by the βth (0 ≤ β ≤ 1) power of UE for the GW states under the partition AB and C1...CN−2 are established. Moreover, in section 6, we explore the applications of our results in PREs, and offer valuable insights into the study of entanglement dynamics for GW states. Finally, a conclusion is made in section 7.

2. Preliminaries

We recall some relevant entanglement measures and introduce the concept of GW states. Let HA and HB denote a finite dimensional complex inner product vector space associated with quantum subsystems A and B, respectively. For a bipartite pure state ∣ψABHAHB, the concurrence C(∣ψAB) is defined by [39]
$\begin{eqnarray}C(| \psi {\rangle }_{{AB}})=\sqrt{2[1-\mathrm{tr}({\rho }_{A}^{2})]},\end{eqnarray}$
where ${\rho }_{A}={\mathrm{tr}}_{B}(| \psi {\rangle }_{{AB}}\langle \psi | )$ is the reduced density matrix of subsystem A. For any mixed state ρABHAHB, the concurrence is given via the convex roof extension
$\begin{eqnarray}C({\rho }_{{AB}})=\mathop{\min }\limits_{\{{p}_{i},| {\psi }_{i}\rangle \}}\displaystyle \sum _{i}{p}_{i}C(| {\psi }_{i}\rangle ),\end{eqnarray}$
where the minimum is taken over all possible pure decompositions of ρAB = ∑ipiψiABψi∣.
For a bipartite pure state ∣ψABHAHB, the unified-(q, s) entanglement is given by
$\begin{eqnarray}{U}_{q,s}\left(| \psi {\rangle }_{{AB}}\right)={U}_{q,s}({\rho }_{A})=\displaystyle \frac{1}{(1-q)s}\left[{\left(\mathrm{tr}{\rho }^{q}\right)}^{s}-1\right].\end{eqnarray}$
For a mixed state ρAB, the unified-(q,s) entanglement is given via the convex-roof extension [35],
$\begin{eqnarray}{U}_{q,s}\left({\rho }_{{AB}}\right):= \min \displaystyle \sum _{i}{p}_{i}{U}_{q,s}({\left|{\psi }_{i}\right\rangle }_{{AB}}),\end{eqnarray}$
with the minimum taking over all possible pure state decompositions of ${\rho }_{{AB}}={\sum }_{i}{p}_{i}{\left|{\psi }_{i}\right\rangle }_{{AB}}\left\langle {\psi }_{i}\right|$.
As the unified-(q,s) entropy converges to the Rényi-α and Tsallis-q entropies when s tends to 0 and 1, respectively, one has
$\begin{eqnarray}\mathop{\mathrm{lim}}\limits_{s\to 0}{U}_{q,s}\left({\rho }_{{AB}}\right)={{ \mathcal R }}_{\alpha }\left({\rho }_{{AB}}\right),\end{eqnarray}$
where ${{ \mathcal R }}_{\alpha }\left({\rho }_{{AB}}\right)$ is the Rényi-α (α = q) entanglement of ρAB, and
$\begin{eqnarray}\mathop{\mathrm{lim}}\limits_{s\to 1}{U}_{q,s}\left({\rho }_{{AB}}\right)={{ \mathcal T }}_{q}\left({\rho }_{{AB}}\right),\end{eqnarray}$
where ${{ \mathcal T }}_{q}\left({\rho }_{{AB}}\right)$ is the Tsallis-q entanglement of ρAB. When q tends to 1,
$\begin{eqnarray}\mathop{\mathrm{lim}}\limits_{q\to 1}{U}_{q,s}\left({\rho }_{{AB}}\right)={E}_{f}\left({\rho }_{{AB}}\right),\end{eqnarray}$
where Ef(ρAB) is the EoF of ρAB. Thus unified-(q,s) entanglement is a two-parameter generalization of EoF.
Moreover, for a bipartite pure state ∣ψAB with Schmidt-rank 2, we have
$\begin{eqnarray}{U}_{\tfrac{1}{2},2}\left({\rho }_{{AB}}\right)=C\left({\rho }_{{AB}}\right),\end{eqnarray}$
for $q=\tfrac{1}{2}$ and s = 2, and
$\begin{eqnarray}{U}_{\mathrm{2,1}}\left({\rho }_{{AB}}\right)=\displaystyle \frac{1}{2}{C}^{2}\left({\rho }_{{AB}}\right),\end{eqnarray}$
for q = 2 and s = 1.
For any two-qubit mixed state and any bipartite pure state with Schmidt-rank 2, one has [36]
$\begin{eqnarray}{U}_{q,s}\left({\left|\psi \right\rangle }_{{AB}}\right)={f}_{q,s}\left(C({\left|\psi \right\rangle }_{{AB}})\right),\end{eqnarray}$
where fq,s(x) is a differential function,
$\begin{eqnarray}{f}_{q,s}(x)=\displaystyle \frac{{\left({\left(1+\sqrt{1-{x}^{2}}\right)}^{q}+{\left(1-\sqrt{1-{x}^{2}}\right)}^{q}\right)}^{s}-{2}^{{qs}}}{(1-q)s{2}^{{qs}}},\end{eqnarray}$
with q ≥ 1, 0 ≤ s ≤ 1 and qs ≤ 3.
Based on an extended (q, s)-region with $q\geqslant (\sqrt{9{s}^{2}-24s+28}-(2+3s))/(2(2-3s))$, 0 ≤ s ≤ 1, ${qs}\leqslant (5+\sqrt{13})/2$, the authors in [22] proved that the analytic formula (11) of the unified-(q, s) entanglement still holds in parameter region
$\begin{eqnarray*}{ \mathcal R }=\left\{(q,s)\left|\begin{array}{c}\displaystyle \frac{\sqrt{9{s}^{2}-24s+28}-(2+3s)}{2(2-3s)}\leqslant q,\\ q\leqslant (5+\sqrt{13})/2s,\,0\leqslant s\leqslant 1\end{array}\right.\right\}.\end{eqnarray*}$
The n-qubit W-class states and n-qudit GW states are given by [27]
$\begin{eqnarray}\begin{array}{l}{\left|W\right\rangle }_{{A}_{1}{A}_{2}...{A}_{n}}\\ =\,{a}_{1}\left|10\cdots 0\right\rangle +{a}_{2}\left|01\cdots 0\right\rangle \,+...+\,{a}_{n}\left|00\cdots 1\right\rangle ,\end{array}\end{eqnarray}$
and
$\begin{eqnarray}\begin{array}{l}{\left|{W}_{n}^{d}\right\rangle }_{{A}_{1}\cdots {A}_{n}}\\ =\,\displaystyle \sum _{i=1}^{d-1}({a}_{1i}\left|i0\cdots 0\right\rangle +{a}_{2i}\left|0i\cdots 0\right\rangle \,+\cdots +\,{a}_{{ni}}\left|00\cdots 0i\right\rangle ),\end{array}\end{eqnarray}$
with the normalization conditions ${\sum }_{i=1}^{n}| {a}_{i}{| }^{2}=1$ and ${\sum }_{s=1}^{n}{\sum }_{i=1}^{d-1}| {a}_{{si}}{| }^{2}=1$, respectively. Equation (14) includes n-qubit W-class states in equation (13) as a special case of d = 2. The GW state can be viewed as a special case of the coherent superposition of a generalized W-class state and vacuum state (GWV),
$\begin{eqnarray}\begin{array}{rcl}{\left|\varphi \right\rangle }_{{A}_{1}{A}_{2}...{A}_{n}} & = & \sqrt{p}{\left|{W}_{n}^{d}\right\rangle }_{{A}_{1}\cdots {A}_{n}}\\ & & +\sqrt{1-p}{\left|0\right\rangle }_{{A}_{1}\cdots {A}_{n}}^{\otimes n},\end{array}\end{eqnarray}$
where 0 ≤ p ≤ 1.

3. Monogamy of the unified-(q, s) entanglement

Consider an n-qudit GW state ${\left|{W}_{n}^{d}\right\rangle }_{{A}_{1}\cdots {A}_{n}}$ given in (14). We first present a functional relation between UE and concurrence, from which we derive the related monogamy relations. We need the following lemmas.
[Lemma 1]. [22] The function fq,s(C) with $(q,s)\in { \mathcal R }$ is a monotonically increasing and convex function of concurrence C.
Set y2 = x and denote gq,s(y2) = fq,s(x). Then for any two-qubit mixed states and any bipartite pure states with Schmidt-rank 2, equations (11) and (12) can be rephrased as
$\begin{eqnarray}{U}_{q,s}\left({\left|\psi \right\rangle }_{{AB}}\right)={g}_{q,s}\left({C}^{2}({\left|\psi \right\rangle }_{{AB}})\right),\end{eqnarray}$
where $(q,s)\in { \mathcal R }$ and the function gq,s(y) has the form
$\begin{eqnarray}{g}_{q,s}(y):= \displaystyle \frac{{\left({\left(1+\sqrt{1-y}\right)}^{q}+{\left(1-\sqrt{1-y}\right)}^{q}\right)}^{s}-{2}^{{qs}}}{(1-q)s{2}^{{qs}}}.\end{eqnarray}$
[Lemma 2]. [22] The function ${g}_{q,s}^{2}({C}^{2})$ with $(q,s)\in { \mathcal R }$ is a monotonically increasing and convex function of the squared concurrence C2.
[Lemma 3]. [30] Let ${\rho }_{{A}_{{j}_{1}}{A}_{{j}_{2}}\cdots {A}_{{j}_{m}}}$ be an m-qudit reduced density matrix of the n-qudit GWV state (15) ${\left|\varphi \right\rangle }_{{A}_{1}\cdots {A}_{n}}$, 2 ≤ mn − 1. For any pure state decomposition of ${\rho }_{{A}_{{j}_{1}}{A}_{{j}_{2}}\cdots {A}_{{j}_{m}}}$ such that
$\begin{eqnarray}{\rho }_{{A}_{{j}_{1}}{A}_{{j}_{2}}\cdots {A}_{{j}_{m}}}=\displaystyle \sum _{k}{q}_{k}{\left|{\phi }_{k}\right\rangle }_{{A}_{{j}_{1}}{A}_{{j}_{2}}\cdots {A}_{{j}_{m}}}\left\langle {\phi }_{k}\right|,\end{eqnarray}$
${\left|{\phi }_{k}\right\rangle }_{{A}_{{j}_{1}}{A}_{{j}_{2}}\cdots {A}_{{j}_{m}}}$ is a superposition of an m-qudit generalized W-class state and vacuum.
Since each GWV state is a Schmidt-rank 2 pure state under any partition, we see that for any pure state decomposition $\{{p}_{i},{\left|{\phi }_{i}\right\rangle }_{{A}_{{j}_{1}}{A}_{{j}_{2}}\cdots {A}_{{j}_{i}}| {A}_{{j}_{i+1}}\cdots {A}_{{j}_{m}}}\}$ of a reduced density matrix ${\rho }_{{A}_{{j}_{1}}{A}_{{j}_{2}}\cdots {A}_{{j}_{m}}}$, ${\left|{\phi }_{i}\right\rangle }_{{A}_{{j}_{1}}{A}_{{j}_{2}}\cdots {A}_{{j}_{i}}| {A}_{{j}_{i+1}}\cdots {A}_{{j}_{m}}}$ is a pure state with Schmidt-rank 2. We have the following theorem.
[Theorem 1]. Let ${\rho }_{{A}_{{j}_{1}}\cdots {A}_{{j}_{m}}}$ be a reduced density matrix of an n-qudit GW state given by (14). We have
$\begin{eqnarray}{U}_{q,s}^{2}({\rho }_{{A}_{{j}_{1}}| {A}_{{j}_{2}}\cdots {A}_{{j}_{m}}})={g}_{q,s}^{2}({C}^{2}({\rho }_{{A}_{{j}_{1}}| {A}_{{j}_{2}}\cdots {A}_{{j}_{m}}})),\end{eqnarray}$
for $(q,s)\in { \mathcal R }$.

For convenience, we denote ${\rho }_{{A}_{{j}_{1}}| {A}_{{j}_{2}}\cdots {A}_{{j}_{m}}}$ as ${\rho }_{{AB}}$. There exists a pure state decomposition $\{{q}_{i},\left|{\phi }_{i}\right\rangle \}$ such that

$\begin{eqnarray*}C({\rho }_{{AB}})=\displaystyle \sum _{i}{q}_{i}C({\left|{\phi }_{i}\right\rangle }_{{AB}}),\end{eqnarray*}$
in which all $C({\left|{\phi }_{i}\right\rangle }_{{AB}})$ are equal [32]. Hence, we have
$\begin{eqnarray}\begin{array}{rcl}{g}_{q,s}^{2}({C}^{2}({\rho }_{{AB}})) & = & {f}_{q,s}^{2}(C({\rho }_{{AB}}))\\ & = & {f}_{q,s}^{2}\left(\displaystyle \sum _{i}{q}_{i}C({\left|{\phi }_{i}\right\rangle }_{{AB}})\right)\\ & = & \displaystyle \sum _{i}{q}_{i}{f}_{q,s}^{2}\left(C({\left|{\phi }_{i}\right\rangle }_{{AB}})\right)\\ & = & \displaystyle \sum _{i}{q}_{i}{U}_{q,s}^{2}\left(C({\left|{\phi }_{i}\right\rangle }_{{AB}})\right)\\ & \geqslant & {U}_{q,s}^{2}({\rho }_{{AB}}),\end{array}\end{eqnarray}$
where the third equality is due to that $C({\left|{\phi }_{i}\right\rangle }_{{AB}})$ are equal for all i, the fourth equality is due to (11) and the last inequality holds by the definition of UE.

Next, we prove that ${g}_{q,s}^{2}({C}^{2}({\rho }_{{AB}}))\leqslant {U}_{q,s}^{2}({\rho }_{{AB}})$. Let $\{{p}_{i},\left|{\omega }_{i}\right\rangle \}$ be the optimal pure state decomposition of ${U}_{q,s}({\rho }_{{AB}})$. Then

$\begin{eqnarray}\begin{array}{rcl}{U}_{q,s}^{2}({\rho }_{{AB}}) & = & {\left[\displaystyle \sum _{i}{p}_{i}{U}_{q,s}({\left|{\omega }_{i}\right\rangle }_{{AB}})\right]}^{2}\\ & = & {\left[\displaystyle \sum _{i}{p}_{i}{f}_{q,s}\left(C({\left|{\omega }_{i}\right\rangle }_{{AB}})\right)\right]}^{2}\\ & \geqslant & {\left[{f}_{q,s}(\displaystyle \sum _{i}{p}_{i}C({\left|{\omega }_{i}\right\rangle }_{{AB}}))\right]}^{2}\\ & \geqslant & {f}_{q,s}^{2}(C({\rho }_{{AB}}))\\ & = & {g}_{q,s}^{2}({C}^{2}({\rho }_{{AB}})),\end{array}\end{eqnarray}$
where the second equality is due to (11), the third inequality is due to the fact that ${f}_{q,s}$ is a convex function of concurrence for $(q,s)\in { \mathcal R }$ in lemma 1, and the fourth inequality is by the definition of concurrence and the monotonicity of ${f}_{q,s}$. Inequalities (20) and (21) give rise to (19).

The following lemma will be used to derive the monogamy relation of UE.
[Lemma 4]. [27] For any n-qudit GW states (14) and a partition P = {P1,…,Pr} of the subsystems S = {A1, A2,…,An}, rn, ${C}^{2}({\rho }_{{P}_{s}| {P}_{1}\cdots {\widehat{P}}_{s}\cdots {P}_{r}})={\sum }_{k\ne s}{C}^{2}({\rho }_{{P}_{s}{P}_{k}})={\sum }_{k\ne s}{[{C}^{a}({\rho }_{{P}_{s}{P}_{k}})]}^{2}$ and $C({\rho }_{{P}_{s}{P}_{k}})={C}^{a}({\rho }_{{P}_{s}{P}_{k}})$ for all ks, where $({P}_{1}\cdots {\widehat{P}}_{s}\cdots {P}_{r})$ denotes that the partite Ps is removed from the partition, ${P}_{s}\cap {P}_{k}=\varnothing $ for sk and ⋃s Ps = S.
[Theorem 2]. Let ${\rho }_{{A}_{{j}_{1}}{A}_{{j}_{2}}\cdots {A}_{{j}_{m}}}$ be the reduced density matrix of an n-qudit GW state (14) and {P1, P2, ⋯ ,Pr} a partition of $\{{A}_{{j}_{1}},{A}_{{j}_{2}},\cdots ,{A}_{{j}_{m}}\},$ rmn. We have the following monogamy inequality,
$\begin{eqnarray}{U}_{q,s}^{2}({\rho }_{{P}_{1}| {P}_{2}\cdots {P}_{r}})\geqslant \displaystyle \sum _{i=2}^{r}{U}_{q,s}^{2}({\rho }_{{P}_{1}{P}_{i}}),\end{eqnarray}$
for $(q,s)\in { \mathcal R }$.

For $(q,s)\in { \mathcal R }$, we have

$\begin{eqnarray}\begin{array}{rcl}{U}_{q,s}^{2}({\rho }_{{P}_{1}| {P}_{2}\cdots {P}_{k}}) & = & {g}_{q,s}^{2}({C}^{2}({\rho }_{{P}_{1}| {P}_{2}\cdots {P}_{r}}))\\ & = & {g}_{q,s}^{2}(\displaystyle \sum _{i=2}^{r}{C}^{2}({\rho }_{{P}_{1}{P}_{i}}))\\ & \geqslant & \displaystyle \sum _{i=2}^{r}{g}_{q,s}^{2}({C}^{2}({\rho }_{{P}_{1}{P}_{i}}))\\ & = & \displaystyle \sum _{i=2}^{r}{U}_{q,s}^{2}({\rho }_{{P}_{1}{P}_{i}}),\end{array}\end{eqnarray}$
where the first equality is due to theorem 1, the second equality is by lemma 4, the inequality is due to that the function ${g}_{q,s}^{2}({{ \mathcal C }}^{2})$ is a convex function in lemma 2 for $(q,s)\in { \mathcal R }$, and the last equality is obtained by theorem 1.

When s tends to 1, (22) is reduced to the monogamy inequality of Tsallis-q entanglement given in [32], ${{ \mathcal T }}_{q}^{2}({\rho }_{{P}_{1}| {P}_{2}\cdots {P}_{r}})\geqslant {\sum }_{i\,=\,2}^{r}{{ \mathcal T }}_{q}^{2}({\rho }_{{P}_{1}{P}_{i}})$. When s tends to 0, (22) reduces to the monogamy inequality of Rényi-α entanglement, ${{ \mathcal R }}_{\alpha }^{2}({\rho }_{{P}_{1}| {P}_{2}\cdots {P}_{r}})\geqslant {\sum }_{i\,=\,2}^{r}{{ \mathcal R }}_{\alpha }^{2}({\rho }_{{P}_{1}{P}_{i}})$. When q tends to 1, (22) reduces to the monogamy inequality of EoF, ${E}_{f}^{2}({\rho }_{{P}_{1}| {P}_{2}\cdots {P}_{r}})\geqslant {\sum }_{i\,=\,2}^{r}{E}_{f}^{2}({\rho }_{{P}_{1}{P}_{i}})$.
Next, we generalize theorem 2 to the α-th power of UE for GW states for α ≥ 2 and α ≤ 0. For r = 3, we can always have ${U}_{q,s}^{2}({\rho }_{{P}_{1}{P}_{3}})\leqslant {U}_{q,s}^{2}({\rho }_{{P}_{1}{P}_{2}})$ by relabeling the partition {P1, P2, P3}. Therefore, when α ≥ 2 we get
$\begin{eqnarray*}\begin{array}{rcl}{U}_{q,s}^{\alpha }({\rho }_{{P}_{1}| {P}_{2}{P}_{3}}) & \geqslant & {\left({U}_{q,s}^{2}({\rho }_{{P}_{1}{P}_{2}})+{U}_{q,s}^{2}({\rho }_{{P}_{1}{P}_{3}})\right)}^{\tfrac{\alpha }{2}}\\ & = & {U}_{q,s}^{\alpha }({\rho }_{{P}_{1}| {P}_{2}}){\left(1+\displaystyle \frac{{U}_{q,s}^{2}({\rho }_{{P}_{1}{P}_{3}})}{{U}_{q,s}^{2}({\rho }_{{P}_{1}{P}_{2}})}\right)}^{\tfrac{\alpha }{2}}\\ & \geqslant & {U}_{q,s}^{\alpha }({\rho }_{{P}_{1}{P}_{2}})+{U}_{q,s}^{\alpha }({\rho }_{{P}_{1}{P}_{3}}),\end{array}\end{eqnarray*}$
where we have used theorem 2 in the first inequality. The second inequality is obtained since (1 + t)x≥1 + tx for any real numbers x and t, 0 ≤ t ≤ 1 and x ∈ [1, ∞ ]. When α ≤ 0, we get
$\begin{eqnarray*}\begin{array}{rcl}{U}_{q,s}^{\alpha }({\rho }_{{P}_{1}| {P}_{2}{P}_{3}}) & \leqslant & {\left({U}_{q,s}^{2}({\rho }_{{P}_{1}{P}_{2}})+{U}_{q,s}^{2}({\rho }_{{P}_{1}{P}_{3}})\right)}^{\tfrac{\alpha }{2}}\\ & = & {U}_{q,s}^{\alpha }({\rho }_{{P}_{1}| {P}_{2}}){\left(1+\displaystyle \frac{{U}_{q,s}^{2}({\rho }_{{P}_{1}{P}_{3}})}{{U}_{q,s}^{2}({\rho }_{{P}_{1}{P}_{2}})}\right)}^{\tfrac{\alpha }{2}}\\ & \lt & {U}_{q,s}^{\alpha }({\rho }_{{P}_{1}{P}_{2}})+{U}_{q,s}^{\alpha }({\rho }_{{P}_{1}{P}_{3}}),\end{array}\end{eqnarray*}$
where the first inequality is due to theorem 2. The second inequality is obtained as (1 + t)x<1 + tx for any real numbers x and t, t ≥ 0 and x ∈ [– ∞ , 0]. Therefore, we can have the following conclusion.
[Theorem 3]. Let ${\rho }_{{A}_{{j}_{1}}{A}_{{j}_{2}}\cdots {A}_{{j}_{m}}}$ be the reduced density matrix of an n-qudit GW state ${\left|\psi \right\rangle }_{{A}_{1}\cdots {A}_{n}}$, and {P1, P2, ⋯ ,Pr} a partition of $\{{A}_{{j}_{1}},{A}_{{j}_{2}},\cdots ,{A}_{{j}_{m}}\}$, rmn. For $(q,s)\in { \mathcal R }$ we have
$\begin{eqnarray}{U}_{q,s}^{\alpha }({\rho }_{{P}_{1}| {P}_{2}\cdots {P}_{r}})\geqslant \displaystyle \sum _{i=2}^{r}{U}_{q,s}^{\alpha }({\rho }_{{P}_{1}{P}_{i}}),\end{eqnarray}$
when α ≥ 2, and
$\begin{eqnarray}{U}_{q,s}^{\alpha }({\rho }_{{P}_{1}| {P}_{2}\cdots {P}_{r}})\lt \displaystyle \sum _{i=2}^{r}{U}_{q,s}^{\alpha }({\rho }_{{P}_{1}{P}_{i}}),\end{eqnarray}$
when α ≤ 0.

4. Tighter monogamy inequalities in terms of UE

The refined monogamy relations yield more precise characterizations of entanglement distributions, which are intimately connected to the security of quantum cryptographic protocols [10] based on entanglement. Therefore, gaining tighter entanglement monogamy relations is essential for a comprehensive grasp of quantum entanglement. Here, in terms of the αth power of UE, we provide a new class of tighter monogamy relations for n-qudit GW states. We need the lemma below.
[Lemma 5]. For any real numbers xh ≥ 0, $1\leqslant p\leqslant 1+\tfrac{1}{x}$ and m ≥ 1, we have
$\begin{eqnarray}{\left(1+x\right)}^{m}-{p}^{m-1}{x}^{m}\geqslant {\left(1+h\right)}^{m}-{p}^{m-1}{h}^{m}.\end{eqnarray}$

Consider the function $f(x,m)={\left(1+x\right)}^{m}-{p}^{m-1}{x}^{m}$ with $x\geqslant 0$, $1\leqslant p\leqslant 1+\tfrac{1}{x}$ and $m\geqslant 1$. Since $\tfrac{\partial f(x,m)}{\partial x}$ = $m{\left(1+x\right)}^{m-1}-{{mp}}^{m-1}{x}^{m-1}$ = $m[{\left(1+x\right)}^{m-1}-{\left({px}\right)}^{m-1}]\geqslant 0$, the function $f(x,m)$ increases with x. As $x\geqslant h\geqslant 0$, we have $f{(x,m)\geqslant f(h,m)=(1+h)}^{m}-{p}^{m-1}{h}^{m}$. Therefore, we get the inequality (26).

For any tripartite state ${\rho }_{{P}_{1}{P}_{2}{P}_{3}}$, from (22) we have ${U}_{q,s}^{2}({\rho }_{{P}_{1}| {P}_{2}{P}_{3}})\geqslant {U}_{q,s}^{2}({\rho }_{{P}_{1}{P}_{2}})+{U}_{q,s}^{2}({\rho }_{{P}_{1}{P}_{3}})$. Therefore, there exists μ ≥ 1 such that
$\begin{eqnarray}{U}_{q,s}^{2}({\rho }_{{P}_{1}| {P}_{2}{P}_{3}})\geqslant {U}_{q,s}^{2}({\rho }_{{P}_{1}{P}_{2}})+\mu {U}_{q,s}^{2}({\rho }_{{P}_{1}{P}_{3}}).\end{eqnarray}$
By using lemma 5 we improve the monogamy inequality (24) for the αth power of UE.
[Theorem 4]. Let μ ≥ 1 and h ≥ 1 be any real numbers. Let ${\rho }_{{A}_{{j}_{1}}{A}_{{j}_{2}}\cdots {A}_{{j}_{m}}}$ be the reduced density matrix of an n-qudit GW state ${\left|\psi \right\rangle }_{{A}_{1}\cdots {A}_{n}}$ and {P1, P2, P3} a partition of $\{{A}_{{j}_{1}},{A}_{{j}_{2}},\cdots ,{A}_{{j}_{m}}\},$ 3 ≤ mn. If ${U}_{q,s}^{2}({\rho }_{{P}_{1}{P}_{2}})\geqslant {{hU}}_{q,s}^{2}({\rho }_{{P}_{1}{P}_{3}})$ and $1\leqslant p\leqslant 1+\tfrac{\mu {U}_{q,s}^{2}({\rho }_{{P}_{1}{P}_{3}})}{{U}_{q,s}^{2}({\rho }_{{P}_{1}{P}_{2}})}$, we have
$\begin{eqnarray}\begin{array}{l}{U}_{q,s}^{\alpha }({\rho }_{{P}_{1}| {P}_{2}{P}_{3}})\\ \geqslant \,{p}^{\tfrac{\alpha }{2}-1}{U}_{q,s}^{\alpha }({\rho }_{{P}_{1}{P}_{2}})+({\left(\mu +h\right)}^{\displaystyle \frac{\alpha }{2}}-{p}^{\tfrac{\alpha }{2}-1}{h}^{\displaystyle \frac{\alpha }{2}}){U}_{q,s}^{\alpha }({\rho }_{{P}_{1}{P}_{3}}),\end{array}\end{eqnarray}$
with $(q,s)\in { \mathcal R }$ and α ≥ 2.

By straightforward calculation, we have

$\begin{eqnarray*}\begin{array}{l}{U}_{q,s}^{\alpha }({\rho }_{{P}_{1}| {P}_{2}{P}_{3}})\\ \quad =\,{\left({U}_{q,s}^{2}({\rho }_{{P}_{1}| {P}_{2}{P}_{3}})\right)}^{\tfrac{\alpha }{2}}\\ \quad \geqslant {\left({U}_{q,s}^{2}({\rho }_{{P}_{1}{P}_{2}})+\mu {U}_{q,s}^{2}({\rho }_{{P}_{1}{P}_{3}})\right)}^{\tfrac{\alpha }{2}}\\ \quad =\,{\mu }^{\displaystyle \frac{\alpha }{2}}{U}_{q,s}^{\alpha }({\rho }_{{P}_{1}{P}_{3}}){\left(1+\displaystyle \frac{{U}_{q,s}^{2}({\rho }_{{P}_{1}{P}_{2}})}{\mu {U}_{q,s}^{2}({\rho }_{{P}_{1}{P}_{3}})}\right)}^{\tfrac{\alpha }{2}}\\ \quad \,\geqslant {\mu }^{\displaystyle \frac{\alpha }{2}}{U}_{q,s}^{\alpha }({\rho }_{{P}_{1}{P}_{3}})\\ \quad \times \,(\displaystyle \frac{{p}^{\tfrac{\alpha }{2}-1}{U}_{q,s}^{\alpha }({\rho }_{{P}_{1}{P}_{2}})}{{\mu }^{\tfrac{\alpha }{2}}{U}_{q,s}^{\alpha }({\rho }_{{P}_{1}{P}_{3}})}+{\left(1+\displaystyle \frac{h}{\mu }\right)}^{\tfrac{\alpha }{2}}-{p}^{\tfrac{\alpha }{2}-1}{\left(\displaystyle \frac{h}{\mu }\right)}^{\tfrac{\alpha }{2}})\\ \quad =\,{p}^{\tfrac{\alpha }{2}-1}{U}_{q,s}^{\alpha }({\rho }_{{P}_{1}{P}_{2}})+({\left(\mu +h\right)}^{\displaystyle \frac{\alpha }{2}}-{p}^{\tfrac{\alpha }{2}-1}{h}^{\displaystyle \frac{\alpha }{2}}){U}_{q,s}^{\alpha }({\rho }_{{P}_{1}{P}_{3}}),\end{array}\end{eqnarray*}$
where the first inequality is due to (27) and the second inequality due to lemma 5. Moreover, if ${U}_{q,s}({\rho }_{{P}_{1}{P}_{2}})=0$, then ${U}_{q,s}({\rho }_{{P}_{1}{P}_{3}})=0$ and the lower bound becomes trivially zero.

[Remark 1]. In [34], the authors provide the following monogamy relation for an n-qudit GW state based on UE,
$\begin{eqnarray}\begin{array}{l}{U}_{q,s}^{\alpha }({\rho }_{{P}_{1}| {P}_{2}{P}_{3}})\\ \quad \geqslant \,{U}_{q,s}^{\alpha }({\rho }_{{P}_{1}{P}_{2}})+({\left(\mu +h\right)}^{\displaystyle \frac{\alpha }{\gamma }}-{h}^{\displaystyle \frac{\alpha }{\gamma }}){U}_{q,s}^{\alpha }({\rho }_{{P}_{1}{P}_{3}}),\end{array}\end{eqnarray}$
for αγ, γ ≥ 1, μ ≥ 1 and h ≥ 1, with q ≥ 2, 0 ≤ s ≤ 1 and qs ≤ 3. When p = 1 and γ = 2, it is obvious that inequality (29) in [34] is just a special case of our theorem 3. Moreover, it can be seen that our lower bound of the αth power of UE becomes tighter when p increases,
$\begin{eqnarray*}\begin{array}{l}{U}_{q,s}^{\alpha }({\rho }_{{P}_{1}| {P}_{2}{P}_{3}})\\ \quad \geqslant \,{p}^{\tfrac{\alpha }{2}-1}{U}_{q,s}^{\alpha }({\rho }_{{P}_{1}{P}_{2}})+({\left(\mu +h\right)}^{\displaystyle \frac{\alpha }{2}}-{p}^{\tfrac{\alpha }{2}-1}{h}^{\displaystyle \frac{\alpha }{2}}){U}_{q,s}^{\alpha }({\rho }_{{P}_{1}{P}_{3}})\\ \quad \geqslant \,{U}_{q,s}^{\alpha }({\rho }_{{P}_{1}{P}_{2}})+({\left(\mu +h\right)}^{\displaystyle \frac{\alpha }{2}}-{h}^{\displaystyle \frac{\alpha }{2}}){U}_{q,s}^{\alpha }({\rho }_{{P}_{1}{P}_{3}}),\end{array}\end{eqnarray*}$
for all α ≥ 2, q ≥ 2, 0 ≤ s ≤ 1 and qs ≤ 3, where the second equality holds when p = 1. Hence our result (28) is tighter than the result (29) given in [34], see the example below.
[Example 1]. Consider the following 4-qubit generalized W-class state,
$\begin{eqnarray}\begin{array}{l}{\left|\psi \right\rangle }_{{A}_{1}{A}_{2}{A}_{3}{A}_{4}}\\ =\,0.3\left|0001\right\rangle +0.4\left|0010\right\rangle +0.5\left|0100\right\rangle +\sqrt{0.5}\left|1000\right\rangle .\end{array}\end{eqnarray}$
We choose ${\rho }_{{A}_{1}{A}_{2}{A}_{3}}$ to be the reduced density matrix of ${\left|\psi \right\rangle }_{{A}_{1}{A}_{2}{A}_{3}{A}_{4}}$, P1 = A1, P2 = A2, P3 = A3. Then we have ${\rho }_{{A}_{1}{A}_{2}{A}_{3}}=0.09\left|000\right\rangle \left\langle 000\right|+\left|\phi \right\rangle \left\langle \phi \right|$, where $\left|\phi \right\rangle =0.4\left|001\right\rangle \,+0.5\left|010\right\rangle +\sqrt{0.5}\left|100\right\rangle $. By direct calculation, we get $C({\rho }_{{P}_{1}| {P}_{2}{P}_{3}})=\sqrt{\tfrac{41}{50}}$, $C({\rho }_{{P}_{1}{P}_{2}})=\tfrac{\sqrt{2}}{2}$, $C({\rho }_{{P}_{1}{P}_{3}})=\tfrac{2\sqrt{2}}{5}$. Set γ = 2, s = 2 and q = 1. We obtain ${U}_{\mathrm{2,1}}({\rho }_{{P}_{1}| {P}_{2}{P}_{3}})=\tfrac{41}{100}$, ${U}_{\mathrm{2,1}}({\rho }_{{P}_{1}{P}_{2}})=\tfrac{1}{4}$ and ${U}_{\mathrm{2,1}}({\rho }_{{P}_{1}{P}_{3}})=\tfrac{4}{25}$. Then we can get
$\begin{eqnarray}\begin{array}{l}{U}_{q,s}^{\alpha }({\rho }_{{P}_{1}| {P}_{2}{P}_{3}})\\ \geqslant \,{p}^{\tfrac{\alpha }{2}-1}{\left(\displaystyle \frac{1}{4}\right)}^{\alpha }+({\left(\mu +h\right)}^{\displaystyle \frac{\alpha }{2}}-{p}^{\tfrac{\alpha }{2}-1}{h}^{\displaystyle \frac{\alpha }{2}}){\left(\displaystyle \frac{4}{25}\right)}^{\alpha },\end{array}\end{eqnarray}$
from our result (28) in theorem 4, and
$\begin{eqnarray}\begin{array}{l}{U}_{q,s}^{\alpha }({\rho }_{{P}_{1}| {P}_{2}{P}_{3}})\\ \geqslant \,{\left(\displaystyle \frac{1}{4}\right)}^{\alpha }+({\left(\mu +h\right)}^{\displaystyle \frac{\alpha }{2}}-{h}^{\displaystyle \frac{\alpha }{2}}){\left(\displaystyle \frac{4}{25}\right)}^{\alpha },\end{array}\end{eqnarray}$
from the result (29) given in [34]. Set μ = 4 and h = 1. Figure 1 shows that (31) is tighter than (32).
Figure 1. From top to bottom, the black line is the exact values of ${U}_{\mathrm{2,1}}({\rho }_{{P}_{1}| {P}_{2}{P}_{3}})$. The green dashed line (red dot-dashed line) represents the lower bound from our result (28) when p = 2.6 (p = 1.8). The blue dotted line represents the lower bound from the result (29) in [34].
Note that the third system P3 in theorem 3 can be divided into two subsystems. Consequently, by iterately using theorem 4 we can extend the monogamy inequality to multipartite qudit systems.
[Theorem 5]. Let μt ≥ 1 and ht ≥ 1 be real numbers, 1 ≤ tr − 2. Let ${\rho }_{{A}_{{j}_{1}}{A}_{{j}_{2}}\cdots {A}_{{j}_{m}}}$ be the reduced density matrix of an n-qudit GW state ${\left|\psi \right\rangle }_{{A}_{1}\cdots {A}_{n}}$ and {A, B1, ⋯ ,Br−1} a partition of $\{{A}_{{j}_{1}},{A}_{{j}_{2}},\cdots ,{A}_{{j}_{m}}\},$ rmn. If ${U}_{q,s}^{2}({\rho }_{{{AB}}_{i}})\geqslant {h}_{i}{U}_{q,s}^{2}({\rho }_{A| {B}_{i+1}\cdots {B}_{r-1}})$, ${U}_{q,s}^{2}({\rho }_{A| {B}_{i}\cdots {B}_{r-1}})\,\geqslant {U}_{q,s}^{2}({\rho }_{{{AB}}_{i}})+{\mu }_{i}{U}_{q,s}^{2}({\rho }_{A| {B}_{i+1}\cdots {B}_{r-1}})$, $1\leqslant {p}_{i}\leqslant 1+\tfrac{{\mu }_{i}{U}_{q,s}^{2}({\rho }_{A| {B}_{i+1}\cdots {B}_{r-1}})}{{U}_{q,s}^{2}({\rho }_{{{AB}}_{i}})}$ for i = 1, 2, ⋯ ,k, and ${U}_{q,s}^{2}({\rho }_{A| {B}_{j+1}\cdots {B}_{r-1}})\geqslant {h}_{j}{U}_{q,s}^{2}({\rho }_{{{AB}}_{j}})$, ${U}_{q,s}^{2}({\rho }_{A| {B}_{j}\cdots {B}_{r-1}})\geqslant {\mu }_{j}{U}_{q,s}^{2}({\rho }_{{{AB}}_{j}})+{U}_{q,s}^{2}({\rho }_{A| {B}_{j+1}\cdots {B}_{r-1}})$, $1\leqslant {p}_{j}\,\leqslant \tfrac{{\mu }_{j}{U}_{q,s}^{2}({\rho }_{{{AB}}_{j}})}{{U}_{q,s}^{2}({\rho }_{A| {B}_{j+1}\cdots {B}_{r-1}})}$ for j = k + 1, ⋯ ,r − 2, 1 ≤ kr − 3 and r ≥ 4, then the UE satisfies
$\begin{eqnarray}\begin{array}{l}{U}_{q,s}^{\alpha }({\rho }_{{P}_{1}| {P}_{2}\cdots {P}_{r}})\\ \geqslant \,{p}_{1}^{\tfrac{\alpha }{2}-1}{U}_{q,s}^{\alpha }({\rho }_{{{AB}}_{1}})+\displaystyle \sum _{i=2}^{k}\displaystyle \prod _{l=1}^{i-1}{{\rm{\Gamma }}}_{l}{p}_{i}^{\tfrac{\alpha }{2}-1}{U}_{q,s}^{\alpha }({\rho }_{{{AB}}_{i}})\\ +\,{{\rm{\Gamma }}}_{1}\cdots {{\rm{\Gamma }}}_{k+1}{U}_{q,s}^{\alpha }({\rho }_{{{AB}}_{k+1}})\\ +\,{{\rm{\Gamma }}}_{1}\cdots {{\rm{\Gamma }}}_{k}\displaystyle \sum _{j=k+2}^{r-2}\displaystyle \prod _{l=k+1}^{j-1}{p}_{l}^{\tfrac{\alpha }{2}-1}{{\rm{\Gamma }}}_{j}{U}_{q,s}^{\alpha }({\rho }_{{{AB}}_{j}})\\ +\,{{\rm{\Gamma }}}_{1}\cdots {{\rm{\Gamma }}}_{k}{\left({p}_{k+1}\cdots {p}_{r-2}\right)}^{\tfrac{\alpha }{2}-1}{U}_{q,s}^{\alpha }({\rho }_{{{AB}}_{r-1}}),\end{array}\end{eqnarray}$
for all α ≥ 2, where ${{\rm{\Gamma }}}_{t}={({\mu }_{t}+{h}_{t})}^{\tfrac{\alpha }{2}}-{p}_{t}^{\tfrac{\alpha }{2}-1}{h}_{t}^{\tfrac{\alpha }{2}}$ with $(q,s)\in { \mathcal R }$.

From theorem 4, ${U}_{q,s}^{2}({\rho }_{{{AB}}_{i}})\geqslant {h}_{i}{U}_{q,s}^{2}({\rho }_{A| {B}_{i+1}\cdots {B}_{r-1}})$, ${U}_{q,s}^{2}({\rho }_{A| {B}_{i}\cdots {B}_{r-1}})\geqslant {U}_{q,s}^{2}({\rho }_{{{AB}}_{i}})+{\mu }_{i}{U}_{q,s}^{2}({\rho }_{A| {B}_{i+1}\cdots {B}_{r-1}})$, $1\leqslant {p}_{i}\leqslant 1+\tfrac{{\mu }_{i}{U}_{q,s}^{2}({\rho }_{A| {B}_{i+1}\cdots {B}_{r-1}})}{{U}_{q,s}^{2}({\rho }_{{{AB}}_{i}})}$ for $i=1,2,\cdots ,k$. We have

$\begin{eqnarray}\begin{array}{l}{U}_{q,s}^{\alpha }({\rho }_{A| {B}_{1}\cdots {B}_{r-1}})\\ \geqslant {p}_{1}^{\tfrac{\alpha }{2}-1}{U}_{q,s}^{\alpha }({\rho }_{{{AB}}_{1}})+{{\rm{\Gamma }}}_{1}{U}_{q,s}^{\alpha }({\rho }_{A| {B}_{2}\cdots {B}_{r-1}})\\ \geqslant {p}_{1}^{\tfrac{\alpha }{2}-1}{U}_{q,s}^{\alpha }({\rho }_{{{AB}}_{1}})+{{\rm{\Gamma }}}_{1}{p}_{2}^{\tfrac{\alpha }{2}-1}{U}_{q,s}^{\alpha }({\rho }_{{{AB}}_{2}})\\ \quad +{{\rm{\Gamma }}}_{1}{{\rm{\Gamma }}}_{2}{U}_{q,s}^{\alpha }({\rho }_{A| {B}_{3}\cdots {B}_{r-1}})\\ \geqslant \cdots \\ \geqslant {p}_{1}^{\tfrac{\alpha }{2}-1}{U}_{q,s}^{\alpha }({\rho }_{{{AB}}_{1}})+{{\rm{\Gamma }}}_{1}{p}_{2}^{\tfrac{\alpha }{2}-1}{U}_{q,s}^{\alpha }({\rho }_{{{AB}}_{2}})\\ \quad +\cdots +{{\rm{\Gamma }}}_{1}\cdots {{\rm{\Gamma }}}_{k-1}{p}_{k}^{\tfrac{\alpha }{2}-1}{U}_{q,s}^{\alpha }({\rho }_{{{AB}}_{k}})\\ \quad +{{\rm{\Gamma }}}_{1}\cdots {{\rm{\Gamma }}}_{k}{U}_{q,s}^{\alpha }({\rho }_{A| {B}_{k+1}\cdots {B}_{r-1}}).\end{array}\end{eqnarray}$
If ${U}_{q,s}^{2}({\rho }_{A| {B}_{j+1}\cdots {B}_{r-1}})\geqslant {h}_{j}{U}_{q,s}^{2}({\rho }_{{{AB}}_{j}})$, ${U}_{q,s}^{2}({\rho }_{A| {B}_{j}\cdots {B}_{r-1}})\geqslant {\mu }_{j}{U}_{q,s}^{2}({\rho }_{{{AB}}_{j}})\,+{U}_{q,s}^{2}({\rho }_{A| {B}_{j+1}\cdots {B}_{r-1}})$, $1\leqslant {p}_{j}\leqslant \tfrac{{\mu }_{j}{U}_{q,s}^{2}({\rho }_{{{AB}}_{j}})}{{U}_{q,s}^{2}({\rho }_{A| {B}_{j+1}\cdots {B}_{r-1}})}$ for $j=k+1,\cdots ,r-2$, we get
$\begin{eqnarray}\begin{array}{l}{U}_{q,s}^{\alpha }({\rho }_{A| {B}_{k+1}\cdots {B}_{r-1}})\\ \geqslant {{\rm{\Gamma }}}_{k+1}{U}_{q,s}^{\alpha }({\rho }_{{{AB}}_{k+1}})+{p}_{k+1}^{\tfrac{\alpha }{2}-1}{U}_{q,s}^{\alpha }({\rho }_{A| {B}_{k+2}\cdots {B}_{r-1}})\\ \geqslant {{\rm{\Gamma }}}_{k+1}{U}_{q,s}^{\alpha }({\rho }_{{{AB}}_{k+1}})+{p}_{k+1}^{\tfrac{\alpha }{2}-1}{{\rm{\Gamma }}}_{k+2}{U}_{q,s}^{\alpha }({\rho }_{{{AB}}_{k+2}})\\ \quad +{\left({p}_{k+1}{p}_{k+2}\right)}^{\tfrac{\alpha }{2}-1}{U}_{q,s}^{\alpha }({\rho }_{A| {B}_{k+3}\cdots {B}_{r-1}})\\ \geqslant \,\cdots \\ \geqslant \,{{\rm{\Gamma }}}_{k+1}{U}_{q,s}^{\alpha }({\rho }_{{{AB}}_{k+1}})+{p}_{k+1}^{\tfrac{\alpha }{2}-1}{{\rm{\Gamma }}}_{k+2}{U}_{q,s}^{\alpha }({\rho }_{{{AB}}_{k+2}})\\ \quad +\cdots +\,{\left({p}_{k+1}\cdots {p}_{r-3}\right)}^{\tfrac{\alpha }{2}-1}{{\rm{\Gamma }}}_{r-2}{U}_{q,s}^{\alpha }({\rho }_{{{AB}}_{r-2}})\\ \quad +{\left({p}_{k+1}\cdots {p}_{r-2}\right)}^{\tfrac{\alpha }{2}-1}{U}_{q,s}^{\alpha }({\rho }_{{{AB}}_{r-1}}).\end{array}\end{eqnarray}$
Combining (34) and (35), we complete the proof.

5. Generalized monogamy relation and upper bound for n-qudit systems

In this section, for n-qudit systems ABC1...Cn−2, we consider the generalized monogamy relation and upper bound satisfied by the βth (0 ≤ β ≤ 1) power of UE of an n-qudit GW state under the partition AB and C1...CN−2. Before showing the results, we need the following lemmas.
[Lemma 6]. [40, 41] For arbitrary two real numbers x, y such that xy ≥ 0, one has (xy)βxβyβ and (x + y)βxβ + yβ for 0 ≤ β ≤ 1.
[Lemma 7]. [42] The function fq,s(x) given in equation (11) satisfies ${f}_{q,s}(\sqrt{{x}^{2}+{y}^{2}})={f}_{q,s}(x)+{f}_{q,s}(y)$ for q = 2 and $\tfrac{1}{2}\leqslant s\leqslant 1$.
[Lemma 8]. [34] Let ${\rho }_{{A}_{{j}_{1}}\cdots {A}_{{j}_{m}}}$ be a reduced density matrix of an n-qudit GW state (14). Then ${U}_{q,s}({\rho }_{{A}_{{j}_{1}}| {A}_{{j}_{2}}\cdots {A}_{{j}_{m}}})={f}_{q,s}(C({\rho }_{{A}_{{j}_{1}}| {A}_{{j}_{2}}\cdots {A}_{{j}_{m}}}))$ with q ≥ 1, 0 ≤ s ≤ 1 and qs ≤ 3.
[Theorem 6]. For an n-qudit GW state ${\left|\psi \right\rangle }_{{{ABC}}_{1}{C}_{2}\cdots {C}_{n-2}}$, the following inequality holds:
$\begin{eqnarray}\begin{array}{l}{U}_{q,s}^{\beta }(| \psi {\rangle }_{{AB}| {C}_{1}{C}_{2}\cdots {C}_{n-2}})\\ \geqslant \,\left|{\left(\displaystyle \sum _{i=1}^{n-2}{U}_{q,s}(C({\rho }_{{{AC}}_{i}}))+{U}_{q,s}(C({\rho }_{{AB}}))\right)}^{\beta }\right.\\ \left.-{\left(\displaystyle \sum _{i=1}^{n-2}{U}_{q,s}(C({\rho }_{{{BC}}_{i}}))+{U}_{q,s}(C({\rho }_{{AB}}))\right)}^{\beta }\right|,\end{array}\end{eqnarray}$
where q = 2 and $\tfrac{1}{2}\leqslant s\leqslant 1$.

For q = 2 and $\tfrac{1}{2}\leqslant s\leqslant 1$ we have

$\begin{eqnarray}\begin{array}{l}{U}_{q,s}(| \psi {\rangle }_{A| {{BC}}_{1}{C}_{2}\cdots {C}_{n-2}})\\ =\,{f}_{q,s}(C(| \psi {\rangle }_{A| {{BC}}_{1}{C}_{2}\cdots {C}_{n-2}}))\\ =\,{f}_{q,s}(\sqrt{{C}^{2}({\rho }_{{AB}})+{C}^{2}({\rho }_{{{AC}}_{1}})+\cdots +{C}^{2}({\rho }_{{{AC}}_{n-2}})})\\ =\,\displaystyle \sum _{i=1}^{n-2}{f}_{q,s}(C({\rho }_{{{AC}}_{i}}))+{f}_{q,s}(C({\rho }_{{AB}}))\\ =\,\displaystyle \sum _{i=1}^{n-2}{U}_{q,s}(C({\rho }_{{{AC}}_{i}}))+{U}_{q,s}(C({\rho }_{{AB}})),\end{array}\end{eqnarray}$
where the first and fourth equalities are due to lemma 8, the second and third equalities are due to lemma 4 and lemma 7, respectively. Similarly, we have
$\begin{eqnarray}\begin{array}{l}{U}_{q,s}(| \psi {\rangle }_{B| {{AC}}_{1}{C}_{2}\cdots {C}_{n-2}})\\ =\,\displaystyle \sum _{i=1}^{n-2}{U}_{q,s}(C({\rho }_{{{BC}}_{i}}))+{U}_{q,s}(C({\rho }_{{AB}})).\end{array}\end{eqnarray}$
From the subadditivity of the unified-($q,s$) entropy for a quantum state ${\rho }_{{AB}}$ [43], $| {U}_{q,s}({\rho }_{A})-{U}_{q,s}({\rho }_{B})| \leqslant {U}_{q,s}({\rho }_{{AB}})\leqslant {U}_{q,s}({\rho }_{A})+{U}_{q,s}({\rho }_{B})$, we have
$\begin{eqnarray*}\begin{array}{l}{U}_{q,s}^{\beta }(| \psi {\rangle }_{{AB}| {C}_{1}{C}_{2}\cdots {C}_{n-2}})={U}_{q,s}^{\beta }({\rho }_{{AB}})\\ \geqslant \,| {U}_{q,s}({\rho }_{A})-{U}_{q,s}({\rho }_{B}){| }^{\beta }\\ \geqslant \,| {U}_{q,s}^{\beta }({\rho }_{A})-{U}_{q,s}^{\beta }({\rho }_{B})| \\ =\,\left|{\left(\displaystyle \sum _{i=1}^{n-2}{U}_{q,s}(C({\rho }_{{{AC}}_{i}}))+{U}_{q,s}(C({\rho }_{{AB}}))\right)}^{\beta }\right.\\ \left.-{\left(\displaystyle \sum _{i=1}^{n-2}{U}_{q,s}(C({\rho }_{{{BC}}_{i}}))+{U}_{q,s}(C({\rho }_{{AB}}))\right)}^{\beta }\right|,\end{array}\end{eqnarray*}$
where the second inequality is due to the subadditivity of UE, the third inequality is by lemma 6, the last equality is obtained from equations (37) and (38).

[Remark 2]. In [34], the authors give the following generalized monogamy relation,
$\begin{eqnarray*}\begin{array}{l}{U}_{q,s}(| \psi {\rangle }_{{AB}| {C}_{1}{C}_{2}\cdots {C}_{n-2}})\\ \geqslant \,\left|\displaystyle \sum _{i=1}^{n-2}[{U}_{q,s}(C({\rho }_{{{AC}}_{i}}))-{U}_{q,s}(C({\rho }_{{{BC}}_{i}})]\right|,\end{array}\end{eqnarray*}$
which is obviously a special case of our theorem 6 when β = 1. Moreover, when β = 1 and s = 1, theorem 5 reduces to the generalized monogamy relation in terms of the Tsallis-2 entanglement given in [32].
According to the subadditivity of the unified-(q, s) entropy, we also have the following upper bound of UE.
[Theorem 7]. For an n-qudit GW state ${\left|\psi \right\rangle }_{{{ABC}}_{1}{C}_{2}\cdots {C}_{n-2}}$, the following inequality holds,
$\begin{eqnarray}\begin{array}{l}{U}_{q,s}^{\beta }(| \psi {\rangle }_{{AB}| {C}_{1}{C}_{2}\cdots {C}_{n-2}})\\ \leqslant \,{\left(\displaystyle \sum _{i=1}^{n-2}{U}_{q,s}(C({\rho }_{{{AC}}_{i}}))+{U}_{q,s}(C({\rho }_{{AB}}))\right)}^{\beta }\\ \quad +\,{\left(\displaystyle \sum _{i=1}^{n-2}{U}_{q,s}(C({\rho }_{{{BC}}_{i}}))+{U}_{q,s}(C({\rho }_{{AB}}))\right)}^{\beta },\end{array}\end{eqnarray}$
where q = 2 and $\tfrac{1}{2}\leqslant s\leqslant 1$.

Using the subadditivity of unified-($q,s$) entropy, we have the following inequality,

$\begin{eqnarray*}\begin{array}{l}{U}_{q,s}^{\beta }(| \psi {\rangle }_{{AB}| {C}_{1}{C}_{2}\cdots {C}_{n-2}})={U}_{q,s}^{\beta }({\rho }_{{AB}})\\ \leqslant \,({U}_{q,s}({\rho }_{A})+{U}_{q,s}{\left({\rho }_{B})\right)}^{\beta }\\ \leqslant \,{U}_{q,s}^{\beta }({\rho }_{A})+{U}_{q,s}^{\beta }({\rho }_{B})\\ =\,{\left(\displaystyle \sum _{i=1}^{n-2}{U}_{q,s}(C({\rho }_{{{AC}}_{i}}))+{U}_{q,s}(C({\rho }_{{AB}}))\right)}^{\beta }\\ +\,{\left(\displaystyle \sum _{i=1}^{n-2}{U}_{q,s}(C({\rho }_{{{BC}}_{i}}))+{U}_{q,s}(C({\rho }_{{AB}}))\right)}^{\beta },\end{array}\end{eqnarray*}$
where the second inequality is due to the subadditivity of UE, the third inequality is by lemma 6, the last equality is obtained by using equations (37) and (38).

6. Applications

To investigate the entanglement properties of multi-qubit W-class states, in this section we first present two monogamy-like inequalities of PREs for GW states by utilizing theorem 2. For an n-qubit GW state ${\left|\varphi \right\rangle }_{{A}_{1}{A}_{2}\cdots {A}_{n}}$, we can always divide the whole system into two subsystems under any partition P = {P1, P2} of {A1, ⋯ ,An}, such that P1 = {A1, A2, ⋯ ,Am} and P2 = {Am+1, Am+2, ⋯ ,An}. Each subsystem can be further partitioned as P1 = {P11, P12} and P2 = {P21, P22}, where P11 = {A1, ⋯ ,Aa}, P12 = {Aa, ⋯ ,Am} and P21 = {Am+1, ⋯ ,Ab}, P22 = {Ab+1, ⋯ ,An}. Since the partition P = {P1, P2, ⋯ ,Pr} in theorem 2 is arbitrary, if we take r = 3 and P = {P11P12, P21, P22}, according to the monogamy relation in theorem 2 we obtain
$\begin{eqnarray}\begin{array}{rcl} & & {U}_{q,s}^{2}({\rho }_{{P}_{11}{P}_{12}| {P}_{21}{P}_{22}})\\ & \geqslant & {U}_{q,s}^{2}({\rho }_{{P}_{11}{P}_{12}| {P}_{21}})+{U}_{q,s}^{2}({\rho }_{{P}_{11}{P}_{12}| {P}_{22}})\\ & \geqslant & {U}_{q,s}^{2}({\rho }_{{P}_{11}| {P}_{21}})+{U}_{q,s}^{2}({\rho }_{{P}_{12}| {P}_{21}})\\ & & +\,{U}_{q,s}^{2}({\rho }_{{P}_{11}| {P}_{22}})+{U}_{q,s}^{2}({\rho }_{{P}_{12}| {P}_{22}})\\ & \geqslant & \displaystyle \sum _{i=1}^{m}\displaystyle \sum _{j=m+1}^{n}{U}_{q,s}^{2}({\rho }_{{A}_{i}{A}_{j}}),\end{array}\end{eqnarray}$
by repeatedly applying the second inequality. Clearly, the above inequality relations hold for any partition given by a, m and b with 1 ≤ am < bn.
From inequality (40), we have the following PREs in terms of the unified-(q, s) entanglement,
$\begin{eqnarray}\begin{array}{rcl}{{\rm{\Upsilon }}}_{{P}_{11}{P}_{12}| {P}_{21}{P}_{22}} & = & {U}_{q,s}^{2}({\rho }_{{P}_{11}{P}_{12}| {P}_{21}{P}_{22}})-{U}_{q,s}^{2}({\rho }_{{P}_{11}| {P}_{21}})\\ & & -{U}_{q,s}^{2}({\rho }_{{P}_{12}| {P}_{21}})-{U}_{q,s}^{2}({\rho }_{{P}_{11}| {P}_{22}})\\ & & -{U}_{q,s}^{2}({\rho }_{{P}_{12}| {P}_{22}}),\end{array}\end{eqnarray}$
and
$\begin{eqnarray}\begin{array}{rcl}{\rm{\Upsilon }}{{\prime} }_{{P}_{11}{P}_{12}| {P}_{21}{P}_{22}} & = & {U}_{q,s}^{2}({\rho }_{{P}_{11}{P}_{12}| {P}_{21}{P}_{22}})\\ & & -\displaystyle \sum _{i=1}^{m}\displaystyle \sum _{j=m+1}^{n}{U}_{q,s}^{2}({\rho }_{{A}_{i}{A}_{j}}).\end{array}\end{eqnarray}$
The monogamy inequality (40) and the PREs (41) and (42) contain all possible bipartitions for n-qubit systems. The PRE captures entanglement properties under arbitrary partitions, elucidating various multi-partitioned entanglements with respect to a, m and b. Let us take the n-qubit W state ${\left|W\right\rangle }_{{A}_{1}{A}_{2}\cdots {A}_{n}}$ to illustrate our inequalities and PREs,
$\begin{eqnarray*}{\left|W\right\rangle }_{{A}_{1}{A}_{2}\cdots {A}_{n}}=\displaystyle \frac{1}{\sqrt{N}}(| 10\cdots 0\rangle +| 01\cdots 0\rangle +| 0\cdots 01\rangle ).\end{eqnarray*}$
For $(q,s)\in { \mathcal R }$, using theorem 1 we obtain
$\begin{eqnarray}\begin{array}{rcl}{{\rm{\Upsilon }}}_{{P}_{11}{P}_{12}| {P}_{21}{P}_{22}} & = & {g}_{q,s}^{2}({C}_{{P}_{11}{P}_{12}| {P}_{21}{P}_{22}})-{g}_{q,s}^{2}({C}_{{P}_{11}| {P}_{21}})\\ & & -{g}_{q,s}^{2}({C}_{{P}_{12}| {P}_{21}})-{g}_{q,s}^{2}({C}_{{P}_{11}| {P}_{22}})\\ & & -{g}_{q,s}^{2}({C}_{{P}_{12}| {P}_{22}}),\end{array}\end{eqnarray}$
and
$\begin{eqnarray}\begin{array}{rcl}{\rm{\Upsilon }}{{\prime} }_{{P}_{11}{P}_{12}| {P}_{21}{P}_{22}} & = & {g}_{q,s}^{2}({C}_{{P}_{11}{P}_{12}| {P}_{21}{P}_{22}})\\ & & -\displaystyle \sum _{i=1}^{m}\displaystyle \sum _{j=m+1}^{n}{g}_{q,s}^{2}({C}_{{A}_{i}{A}_{j}}).\end{array}\end{eqnarray}$
By direct calculation we have ${C}_{{P}_{11}{P}_{12}| {P}_{21}{P}_{22}}^{2}=\tfrac{4m(n-m)}{{n}^{2}}$, ${C}_{{P}_{11}{P}_{21}}^{2}=\tfrac{1}{{n}^{2}}{[\sqrt{{(n-m)}^{2}+4a(b-m)}-(n-m)]}^{2}$, ${C}_{{P}_{12}{P}_{21}}^{2}=\tfrac{1}{{n}^{2}}{[\sqrt{{(n-m)}^{2}+4(m-a)(b-m)}-(n-m)]}^{2}$, ${C}_{{P}_{11}{P}_{22}}^{2}=\tfrac{1}{{n}^{2}}{[\sqrt{{(n-m)}^{2}+4a(n-b)}-(n-m)]}^{2}$, ${C}_{{P}_{12}{P}_{22}}^{2}=\tfrac{1}{{n}^{2}}{[\sqrt{{(n-m)}^{2}+4(m-a)(n-b)}-(n-m)]}^{2}$ and ${C}_{{A}_{i}{A}_{j}}^{2}=\tfrac{1}{{n}^{2}}{[\sqrt{4+{(n-2)}^{2}}-(n-2)]}^{2}$ [33, 38].
When s tends to 1, the unified-(q, s) entropy converges to Tsallis-q entropy. In this case the PRE ${{\rm{\Upsilon }}}_{{P}_{11}{P}_{12}| {P}_{21}{P}_{22}}$ (41) relies on the two partitions in terms of a, m and b. Let n = 6 and m = 4. Then a can be 1, 2, 3 and 4, and b be 5 or 6. For all the possible values of a and b the value of the PRE ${{\rm{\Upsilon }}}_{{P}_{11}{P}_{12}| {P}_{21}{P}_{22}}$ for a 6-qubit W-class state is shown in tables 1 and 2.
Table 1. The values of PRE ${{\rm{\Upsilon }}}_{{P}_{11}{P}_{12}| {P}_{21}{P}_{22}}$ for different q and all the possible values of a, denoted by ϒ(q, a, b), when s = 1, m = 4, b = 5, n = 6.
q ϒ(q, 1, 5) ϒ(q, 2, 5) ϒ(q, 3, 5) ϒ(q, 4, 5)
2.0 0.191 172 0.193 981 0.191 172 0.183 117

2.1 0.179 591 0.182 176 0.179 591 0.172876

2.2 0.168 899 0.171 295 0.168 899 0.162006

2.3 0.159 022 0.161 259 0.159 022 0.152585

2.4 0.149 893 0.151 993 0.149 893 0.143847
Table 2. The values of PRE ${{\rm{\Upsilon }}}_{{P}_{11}{P}_{12}| {P}_{21}{P}_{22}}$ for different q and all the possible values of a, denoted by ϒ(q, a, b), when s = 1, m = 4, b = 6, n = 6.
q ϒ(q, 1, 6) ϒ(q, 2, 6) ϒ(q, 3, 6) ϒ(q, 4, 6)
2.0 0.173 999 0.183 117 0.173 999 0.148 145

2.1 0.163 680 0.172 876 0.163 680 0.139568

2.2 0.154 082 0.162 006 0.154 082 0.131526

2.3 0.145 158 0.152 585 0.145 158 0.123996

2.4 0.136 863 0.143 847 0.136 863 0.116952
We observe that the values in table 1 with b = 5 are greater than those in table 2 with b = 6, and the values of ϒ(q, 4, 5) and ϒ(q, 2, 6) are equal. In table 1 (table 2), the PRE has the same value when a = 1 and a = 3, and the PRE gets the maximum value when a = 2 and the minimum when a = 4. If a, m, b are fixed for $\tfrac{5-\sqrt{13}}{2}\leqslant q\leqslant \tfrac{5+\sqrt{13}}{2}$, the value of PRE decreases with the increase of q, as shown in figure 2 and figure 3, corresponding to tables 1 and 2, respectively.
Figure 2. s = 1, m = 4, b = 5, n = 6. From top to bottom, the blue dotted line represents a = 2, the black line represents a = 1, the red dot-dashed line represents a = 3, and the green dashed line represents a = 4. The curves coincide when a = 1 and a = 3.
Figure 3. s = 1, m = 4, b = 6, n = 6. From top to bottom, the blue dotted line represents a = 2, the black line represents a = 1, the red dot-dashed line represents a = 3, and the green dashed line represents a = 4. The curves coincide when a = 1 and a = 3.
On the other hand, the PRE ${\rm{\Upsilon }}{{\prime} }_{{P}_{11}{P}_{12}| {P}_{21}{P}_{22}}$ in equation (42) is only related to the first partition in terms of m. Set n = 6. Then, the value of m can be 1, 2, 3, 4, 5. The values of PRE ${\rm{\Upsilon }}{{\prime} }_{{P}_{11}{P}_{12}| {P}_{21}{P}_{22}}$ are shown in table 3 when s = 1.
Table 3. The values of PRE ${\rm{\Upsilon }}{{\prime} }_{{P}_{11}{P}_{12}| {P}_{21}{P}_{22}}$ for different q and all the possible values of m, denoted by ${\rm{\Upsilon }}^{\prime} (q,m)$, when s = 1 and n = 6.
q ${\rm{\Upsilon }}^{\prime} (q,1)$ ${\rm{\Upsilon }}^{\prime} (q,2)$ ${\rm{\Upsilon }}^{\prime} (q,3)$ ${\rm{\Upsilon }}^{\prime} (q,4)$ ${\rm{\Upsilon }}^{\prime} (q,5)$
2.0 0.077 113 0.197 450 0.249 914 0.197 450 0.077113

2.1 0.071 820 0.185 350 0.235 131 0.185350 0.071820

2.2 0.067 131 0.174 229 0.221 395 0.174229 0.067131

2.3 0.062 961 0.163 993 0.208 622 0.163993 0.062961

2.4 0.059 234 0.154 560 0.196 737 0.154560 0.059234
We see that the value of PRE ${\rm{\Upsilon }}{{\prime} }_{{P}_{11}{P}_{12}| {P}_{21}{P}_{22}}$ is the same when m = 1 (m = 2) and m = 5 (m = 4), and the value is maximum when m = 3. The above results are also due to the structural particularity of the W-class state. If m and n are fixed for $\tfrac{5-\sqrt{13}}{2}\leqslant q\leqslant \tfrac{5+\sqrt{13}}{2}$, the value of PRE ${\rm{\Upsilon }}{{\prime} }_{{P}_{11}{P}_{12}| {P}_{21}{P}_{22}}$ decreases with the increase of q, as shown in figure 4, corresponding to the case in table 3. These results of PREs show the entanglement structures of the six-qubit W state.
Figure 4. s = 1, n = 6. From top to bottom, the red dot-dashed line represents m = 3, the blue dotted line represents m = 2, the green dashed line represents m = 4, the black line represents m = 1, and the orange dashed line represents m = 5. The curves coincide when m = 1 (m = 2) and m = 5 (m = 4).

7. Conclusion

The monogamy relations of quantum entanglement are the essential characteristics displayed by multiqudit entangled states. We have investigated monogamy properties related to the unified-(q, s) entropy for n-qudit GW states under any partition. We have provided an analytical formula of the unified-(q, s) entanglement with extended (q,s) region for $(q,s)\in { \mathcal R }$. By using the analytical formula, the monogamy relation based on the squared UE for a qudit GW state has been presented. Since the distribution of entanglement in multi-qudit systems can be better understood by employing stricter monogamy inequalities, we have also investigated tighter monogamy relations based on the αth (α ≥ 2) power of the UE. Furthermore, for n-qudit systems ABC1...Cn−2, generalized monogamy relation and upper bound satisfied by the βth (0 ≤ β ≤ 1) power of UE for the GW states have been established under the partition AB and C1...Cn−2. To demonstrate the significance of our conclusions, we have presented the two partition-dependent residual entanglements to give a comprehensive analysis of the entanglement structure of the GW states. Our results indicate that the UE serves as an effective measure of entanglement in multi-qudit systems in the MoE framework. When the parameters q and s of the unified-(q, s) entanglement converge to some values, our results turn to be the ones for other entanglement measures. Our results may shed new light on further investigations on comprehending the distribution of entanglement in other multipartite systems. A proper entanglement measure should satisfy three basic conditions [44], including the monotonicity [45], namely, the measure does not increase on average under local operations and classical communication. It remains unclear whether the unified entanglement constitutes an entanglement monotone. In our future work, we hope to be able to answer this question.

This work is supported by the National Natural Science Foundation of China under Grant Nos. 12075159 and 12171044, the specific research fund of the Innovation Platform for Academicians of Hainan Province.

1
Jafarpour M, Hasanvand F K, Afshar D 2017 Dynamics of Entanglement and Measurement-Induced Disturbance for a Hybrid Qubit-Qutrit System Interacting with a Spin-Chain Environment: A Mean Field Approach Commun. Theor. Phys. 67 27

DOI

2
Wang M Y, Xu J Z, Yan F L, Gao T 2018 Entanglement concentration for polarization-spatial-time-bin hyperentangled Bell states Europhys. Lett. 123 60002

DOI

3
Huang H L, Goswami A K, Bao W S, Panigrahi P K 2018 Demonstration of essentiality of entanglement in a Deutsch-like quantum algorithm Sci. China-Phys. Mech. Astron. 61 060311

DOI

4
Deng F G, Ren B C, Li X H 2017 Quantum hyperentanglement and its applications in quantum information processing Sci. Bull. 62 46

DOI

5
Bennett C H, Brassard G, Crépeau C, Jozsa R, Peres A, Wootters W K 1993 Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels Phys. Rev. Lett. 70 1895

DOI

6
Boyer M, Gelles R, Kenigsberg D, Mor T 2009 Semiquantum key distribution Phys. Rev. A 79 032341

DOI

7
Raussendorf R, Briegel H J 2001 A One-Way Quantum Computer Phys. Rev. Lett. 86 5188

DOI

8
Coffman V, Kundu J, Wootters W K 2000 Distributed entanglement Phys. Rev. A 61 052306

DOI

9
Terhal B M 2004 Is entanglement monogamous? IBM J. Res. Dev. 48 71

DOI

10
Pawlowski M 2010 Security proof for cryptographic protocols based only on the monogamy of Bell's inequality violations Phys. Rev. A 82 032313

DOI

11
Acín A, Gisin N, Masanes L 2006 From Bell's theorem to secure quantum key distribution Phys. Rev. Lett. 97 120405

DOI

12
Tomamichel M, Fehr S, Kaniewski J, Wehner S 2013 A monogamy-of-entanglement game with applications to device-independent quantum cryptography New J. Phys. 15 103002

DOI

13
Seevinck M P 2010 Monogamy of correlations versus monogamy of entanglement Quantum Inf. Process. 9 273

DOI

14
Ma X S, Dakic B, Naylor W, Zeilinger A, Walther P 2011 Quantum simulation of the wavefunction to probe frustrated Heisenberg spin systems Nat. Phys. 7 399

DOI

15
Verlinde E, Verlinde H 2013 Black hole entanglement and quantum error correction J. High Energy Phys. 1310 107

DOI

16
Osborne T J, Verstraete F 2006 General monogamy inequality for bipartite qubit entanglement Phys. Rev. Lett. 96 220503

DOI

17
de Oliveira T R, Cornelio M F, Fanchini F F 2014 Monogamy of entanglement of formation Phys. Rev. A 89 034303

DOI

18
Bai Y K, Xu Y F, Wang Z D 2014 General monogamy relation for the entanglement of formation in multiqubit systems Phys. Rev. Lett. 113 100503

DOI

19
Bai Y K, Xu Y F, Wang Z D 2014 Hierarchical monogamy relations for the squared entanglement of formation in multipartite systems Phys. Rev. A 90 062343

DOI

20
Song W, Bai Y K, Yang M, Cao Z L General monogamy relation of multi-qubit system in terms of squared Rényi-α entanglement Phys. Rev. A 93 022306

DOI

21
Luo Y, Tian T, Shao L H, Li Y M 2016 General monogamy of Tsallis q-entropy entanglement in multiqubit systems Phys, Rev. A 93 062340

DOI

22
Khan A, ur Rehman J, Wang K, Shin H 2019 Unified Monogamy Relations of Multipartite Entanglement Sci. Rep. 9 16419

DOI

23
Zhu X N, Fei S M 2014 Entanglement monogamy relations of qubit systems Phys. Rev. A 90 024304

DOI

24
Luo Y, Li Y M 2015 Monogamy of α-th power entanglement measurement in qubit system Ann. Phys. 362 511 520

DOI

25
Walter M, Doran B, Gross D, Christandl M 2013 Entanglement polytopes: multiparticle entanglement from single-particle information Science 340 1205

DOI

26
Ou Y C 2007 Violation of monogamy inequality for higher-dimensional objects Phys. Rev. A 75 034305

DOI

27
Kim J S, Sanders B C 2008 Generalized W-class state and its monogamy relation J. Phys. A-Math. Theor. 41 495301

DOI

28
Lancien C, Martino S D, Huber M, Piani M, Adesso G, Winter A 2016 Should Entanglement Measures be Monogamous or Faithful? Phys. Rev. Lett. 117 060501

DOI

29
Christandl M, Winter A 2004 ‘Squashed entanglement': an additive entanglement measure J. Math. Phys. 45 829 840

DOI

30
Choi J H, Kim J S 2015 Negativity and strong monogamy of multiparty quantum entanglement beyond qubits Phys. Rev. A 92 042307

DOI

31
Kim J S 2016 Strong monogamy of multiparty quantum entanglement for partially coherently superposed states Phys. Rev. A 93 032331

DOI

32
Shi X, Chen L 2020 Monogamy relations for the generalized W-class states beyond qubits Phys. Rev. A 101 032344

DOI

33
Liang Y Y, Zheng Z J, Zhu C J 2020 Monogamy and polygamy for generalized W-class states using R¨?yi-α entropy Phys. Rev. A 102 062428

DOI

34
Li B, Xie B, Zhang Z, Fan H 2024 Monogamy and polygamy for the generalized W-class states using unified-(q, s) entropy Sci. China-Phys. Mech. Astron. 67 210312

DOI

35
Kim J S, Sanders B C 2011 Unified entropy, entanglement measures and monogamy of multi-party entanglement J. Phys. A-Math. Theor. 44 295303

DOI

36
Kim J S 2012 Unification of multiqubit polygamy inequalities Phys. Rev. A 85 032335

DOI

37
Yang X, Yang Y H, Luo M X 2022 Entanglement polygon inequality in qudit systems Phys. Rev. A 105 062402

DOI

38
Man Z X, Xia Y J, An N B 2010 Entanglement measure and dynamics of multiqubit systems: non-Markovian versus Markovian and generalized monogamy relations New J. Phys. 12 033020

DOI

39
Rungta P, Buz˘ek V, Caves C M, Hillery M, Milburn G J 2001 Universal state inversion and concurrence in arbitrary dimensions Phys. Rev. A 64 042315

DOI

40
Jin Z X, Fei S M, Li-Jost X Q 2019 Generalized Entanglement Monogamy and Polygamy Relations for N-Qubit Systems Int. J. Theor. Phys. 58 1576 1589

DOI

41
Jin Z X, Fei S M 2020 Tighter generalized monogamy and polygamy relations for multiqubit systems Quantum Inf. Process. 19 23

DOI

42
Luo Y, Zhang F G, Li Y 2017 Entanglement distribution in multi-particle systems in terms of unified entropy Sci. Rep. 7 1122

DOI

43
Rastegin A E 2011 Some General Properties of Unified Entropies J. Stat. Phys. 143 1120

DOI

44
Vedral V, Plenio M B 1998 Entanglement measures and purification procedures Phys. Rev. A 57 1619

DOI

45
Guo Y, Gour G 2019 Monogamy of the entanglement of formation Phys. Rev. A 99 042305

DOI

Outlines

/