Welcome to visit Communications in Theoretical Physics,
Mathematical Physics

New dynamics performance for established dark solitons in polariton condensate

  • Emad H M Zahran , 1 ,
  • Ahmet Bekir , 2 ,
  • Reda A Ibrahim , 3
Expand
  • 1Department of Basic Science, Benha University, Faculty of Engineering, Shubra, Egypt
  • 2Neighbourhood of Akcaglan, Imarli Street, Number: 28/4, 26030, Eskisehir, Turkey

Author to whom any correspondence should be addressed.

Received date: 2024-06-13

  Revised date: 2024-10-19

  Accepted date: 2024-10-21

  Online published: 2024-12-16

Copyright

© 2024 Institute of Theoretical Physics CAS, Chinese Physical Society and IOP Publishing. All rights, including for text and data mining, AI training, and similar technologies, are reserved.

Abstract

New diverse enormous soliton solutions to the Gross–Pitaevskii equation, which describes the dynamics of two dark solitons in a polarization condensate under non-resonant pumping, have been constructed for the first time by using two different schemes. The two schemes utilized are the generalized Kudryashov scheme and the (G’/G)-expansion scheme. Throughout these two suggested schemes we construct new diverse forms solutions that include dark, bright-shaped soliton solutions, combined bright-shaped, dark-shaped soliton solutions, hyperbolic function soliton solutions, singular-shaped soliton solutions and other rational soliton solutions. The two 2D and 3D figure designs have been configured using the Mathematica program. In addition, the Haar wavelet numerical scheme has been applied to construct the identical numerical behavior for all soliton solutions achieved by the two suggested schemes to show the existing similarity between the soliton solutions and numerical solutions.

Cite this article

Emad H M Zahran , Ahmet Bekir , Reda A Ibrahim . New dynamics performance for established dark solitons in polariton condensate[J]. Communications in Theoretical Physics, 2025 , 77(3) : 035004 . DOI: 10.1088/1572-9494/ad88f7

Gross–Pitaevskii equation $\qquad$ GPE
Generalized Kudryashov scheme GKS
Haar Wavelet Numerical scheme HWNS

1. Introduction

Generally, according to the soliton theory, the soliton is a solitary wave that has constant shape and speed that can be realized by cancelation of the nonlinear effect and the dispersion effect [15], for example, the static and dynamic characteristics of polarization Bose–Einstein condensates. This can be done through experimental studies of coherent nonlinear dynamics [611] in which these properties can be represented by the Gross–Pitaevskii equation, which is one of the forms of the nonlinear Schrodinger equation. The study of the soliton in polarization condensates is among the hottest topics and aims to obtain novel scenarios in which the combined effects of dissipation and nonlinearity on the nonlinear phenomena will disappear with an emphasis on capturing the non-equilibrium nature of the soliton with no analog in the static counterpart [1221]. A number of dark solitons created by non-resonantly pumped excitation in a polarization condensate appear as the result of a moving defect that is dependent on the pump power [16]. The dynamics of two dark solitons in a polarization condensate under non-resonant pumping that can be described by the Gross–Pitaevskii equations coupled to the rate equation was first investigated theoretically [22]. The exaction polarization Bose–Einstein condensate in semiconductor micro cavities has been considered a novel platform to date, and has been the focus of major studies in nonlinear physics [2326]. In this field of study, there are recent articles that discuss other nonlinear problems arising in various branches of physics, see, for example, Tariq et al [27] who applied three analytical approaches, namely the new extended hyperbolic function method, the modified extended $\tan $ hyperbolic function method and the new $\left(G^{\prime} /{G}^{2}\right)$-expansion method, to derive a variety of new multi-soliton solutions structures, in the form of dark, multi-bell shaped, singular bell shaped, trigonometric, hyperbolic and rational functions, to the coupled nonlinear (1+1)-dimensional Drinfel’d–Sokolov–Wilson equation in dispersive water waves, which is used to describe a nonlinear surface gravity wave propagating over a horizontal sea bed. Tariq et al [28] employed the extended modified auxiliary equation mapping approach and the $\left(G^{\prime} /{G}^{2}\right)$-expansion method to study the Sharma–Tasso–Olver model. which characterizes the dynamical propagation of nonlinear double-dispersive evolution dispersive waves in heterogeneous mediums, and found that the model supports nonlinear solitary waves, periodic waves, shock waves and stable oscillatory waves. Using a set of appropriate parameters, Badshah et al [29] studied the anticipation of a bilinear Korteweg–De Vries (KdV) model known as the (1+1)-dimensional integro-differential Ito equation, which depicts oceanic shallow water wave dynamics using the $\left(G^{\prime} /{G}^{2}\right)$-expansion approach, and the Adomian technique to acquire a variety of novel configurations for the governing dynamical model and established a collection of options for bright, dark, periodic, rational, and elliptic functions. Badshah et al [30] obtained some traveling and semi-analytical solitons to the extended (2+1)-dimensional Boussinesq model, which describes the propagation of waves with small amplitudes in shallow water propagating at a constant speed through a uniformly deep water canal using the Hirota bilinear technique, and established the bilinear structure of the governing equation. Ay and Yaşar [31], who studied the (2+1)-dimensional Chaffee–Infante equation, which occurs in the fields of fluid dynamics, high-energy physics, electronic science etc, built the Bäcklund transformations and residual symmetries in nonlocal structure using the Painlevé truncated expansion approach, delivered new exact solution profiles via the combination of various simple exact solution structures and acquired an infinite amount of exact solution forms methodically. The exaction–polarizations have a finite lifetime as the result of the imperfect confinement of the photon component, and they must be continuously re-populated and, hence, they lie between equilibrium Bose–Einstein condensates and lasers. We are interested in the Bose–Einstein condensates due to the non-resonant pumping created in a wire-shaped micro cavity similar to [32, 33], which bounds the polarities to a similar-dimensional channel. The condensate order parameter function ψ(x, t) denotes, from the point of view of mean field theory, the driven-dissipative GPE connected by the density nR(x, t) of reservoir polarizations [22] as follows:
$\begin{eqnarray}\begin{array}{rcl}{\rm{i}}\,\hslash {{\rm{\Psi }}}_{\tau } & = & \displaystyle \frac{-{\hslash }^{2}}{2m}{{\rm{\Psi }}}_{xx}+{g}_{R}{n}_{R}{\rm{\Psi }}\\ & & +\,\displaystyle \frac{{\rm{i}}\,\hslash }{2}\left(R{n}_{R}-{\gamma }_{c}\right){\rm{\Psi }}+{g}_{c}\left({\left|{\rm{\Psi }}\right|}^{2}{\rm{\Psi }}\right),\\ {\left({n}_{R}\right)}_{\tau } & = & P-\left({\gamma }_{R}+R{\left|{\rm{\Psi }}\right|}^{2}\right){n}_{R},\end{array}\end{eqnarray}$
where $m$ is the relativistic mass of inferior polarizations; $P$ is the level of an off-resonant continuous-wave thrusting; ${\gamma }_{c}$ and ${\gamma }_{R}$ describe the lifespan of the condensate and tank polarizations, respectively; $R$ is the wave rate of scattering process of reservoir polarizations into the condensate; and ${g}_{c}$ and ${g}_{R}$ describe, respectively, the interaction coupling of the nonlinear interaction strength of polarizations and the interaction strength between reservoir and polarization. Note that the parameters ${g}_{c},$ ${g}_{R}$ and $R$ have been rescaled into the one-dimensional case by the width $d$ of the nanowire thickness such that ${g}_{c}\to \displaystyle \frac{{g}_{c}}{\sqrt{2\pi d}},$ ${g}_{R}\to \displaystyle \frac{{g}_{R}}{\sqrt{2\pi d}},$ $R\to \displaystyle \frac{R}{\sqrt{2\pi d}}.$
Figure 1. The 2D and 3D soliton solution behavior of equation (23) with the values given in equation (20).
Figure 2. The 2D and 3D soliton solution behavior of equation (24) with the values given in equation (20).
Figure 3. The 2D and 3D soliton solution behavior of $\left|{\rm{\Psi }}\right|$.
Figure 4. The 2D and 3D soliton solution behavior of equation (30) with the values given in equation (27).
Figure 5. The 2D and 3D soliton solution behavior of equation (31) with the values given in equation (27).
By differentiating the first part of equation (1) with respect to the time we get
$\begin{eqnarray}\begin{array}{rcl}{\rm{i}}\hslash {{\rm{\Psi }}}_{\tau \tau } & = & \displaystyle \frac{-{\hslash }^{2}}{2m}{{\rm{\Psi }}}_{xx\tau }+{g}_{R}{n}_{R}{{\rm{\Psi }}}_{\tau }+{g}_{R}{\rm{\Psi }}{\left({n}_{R}\right)}_{\tau }\\ & & +\,\displaystyle \frac{{\rm{i}}\hslash }{2}\left(R{n}_{R}-{\gamma }_{c}\right){{\rm{\Psi }}}_{\tau }+\displaystyle \frac{{\rm{i}}\hslash R}{2}{\left({n}_{R}\right)}_{\tau }{\rm{\Psi }}\\ & & +\,{g}_{c}{\left({\left|{\rm{\Psi }}\right|}^{2}\right)}_{\tau }{\rm{\Psi }}+{g}_{c}{\left|{\rm{\Psi }}\right|}^{2}{\left({\rm{\Psi }}\right)}_{\tau }.\end{array}\end{eqnarray}$
Figure 6. The 2D and 3D soliton solution behavior of $\left|{\rm{\Psi }}\right|$.
Figure 7. The soliton solution behaviors of equation (42) with the values given in equation (38) and ${l}_{1}=1\,{,}{l}_{2}=2$.
Figure 8. The soliton behavior of equation (43) with the values given in equation (38) and ${l}_{1}=1,{l}_{2}=2$.
Figure 9. The 2D and 3D soliton solution behavior of $\left|{\rm{\Psi }}\right|$.
Figure 10. The soliton behavior of the Real (Re.) part of equation (49) with the values given in equation (46) and ${l}_{1}=1,{l}_{2}=2$.
When the second part of equation (1) is substituted into equation (2) we get
$\begin{eqnarray}\begin{array}{c}\displaystyle \frac{{\hslash }^{2}}{2m}{{\rm{\Psi }}}_{xx\tau }+{\rm{i}}\hslash {{\rm{\Psi }}}_{\tau \tau }-{g}_{R}{n}_{R}{{\rm{\Psi }}}_{\tau }\\ \,-\,{g}_{R}{\rm{\Psi }}\left(P-{n}_{R}{\gamma }_{R}-{n}_{R}R{\left|{\rm{\Psi }}\right|}^{2}\right)\\ \,-\,\displaystyle \frac{{\rm{i}}\hslash }{2}\left(R{n}_{R}-{\gamma }_{c}\right){{\rm{\Psi }}}_{\tau }\\ \,-\,\displaystyle \frac{{\rm{i}}\hslash R}{2}\left(P-({\gamma }_{R}+R{\left|{\rm{\Psi }}\right|}^{2}){n}_{R}\right){\rm{\Psi }}\\ \,-\,{g}_{c}{\left({\left|{\rm{\Psi }}\right|}^{2}\right)}_{\tau }{\rm{\Psi }}-{g}_{c}{\left|{\rm{\Psi }}\right|}^{2}{{\rm{\Psi }}}_{\tau }=0.\end{array}\end{eqnarray}$
Let us now consider the complex transformation
$\begin{eqnarray}\begin{array}{rcl}{\rm{\Psi }}\left(x,\tau \right) & = & u\left(\zeta \right){{\rm{e}}}^{i\eta (x,\tau )},\\ \zeta & = & k\,x+w\,\tau ,\\ \eta & = & qx+\delta \tau +{\vartheta }_{0},\end{array}\end{eqnarray}$
where $u\left(\eta \right)$ is the wave amplitude, while $\eta $ denotes the phase amplitude, where $k,{\vartheta }_{0},w$ are, respectively, frequency, phase constant and wave number. Simply from equation (4), we can construct the following relations
$\begin{eqnarray}{{\rm{\Psi }}}_{x}=\left(ku^{\prime} +{\rm{i}}\,qu\right){{\rm{e}}}^{{\rm{i}}\eta \left(x,\tau \right)},\end{eqnarray}$
$\begin{eqnarray}{{\rm{\Psi }}}_{xx}=\left(-{q}^{2}u+2{\rm{i}}kqu^{\prime} +{k}^{2}u^{\prime\prime} \right){{\rm{e}}}^{{\rm{i}}\eta \left(x,\tau \right)},\end{eqnarray}$
$\begin{eqnarray}\begin{array}{rcl}{{\rm{\Psi }}}_{xx\tau } & = & -w{q}^{2}u^{\prime} -{\rm{i}}\delta {q}^{2}u+2{\rm{i}}kqwu^{\prime\prime} \\ & & -2\delta qku^{\prime} +{k}^{2}wu^{\prime\prime\prime} +{\rm{i}}\delta {k}^{2}u^{\prime\prime} {{\rm{e}}}^{{\rm{i}}\eta \left(x,\tau \right)},\end{array}\end{eqnarray}$
$\begin{eqnarray}{{\rm{\Psi }}}_{\tau }=\left(wu^{\prime} +{\rm{i}}\,\delta u\right){{\rm{e}}}^{{\rm{i}}\eta \left(x,\tau \right)},\end{eqnarray}$
$\begin{eqnarray}{{\rm{\Psi }}}_{\tau \tau }=\left(-{\delta }^{2}u+2{\rm{i}}\delta wu^{\prime} +{w}^{2}u^{\prime\prime} \right){{\rm{e}}}^{{\rm{i}}\eta \left(x,\tau \right)},\end{eqnarray}$
$\begin{eqnarray}{\left|{\rm{\Psi }}\right|}^{2}={u}^{2}.\end{eqnarray}$
When the relations (5)–(10) are substituted into equation (3), which is dimensionless and $\hslash =m=1$, and the real and imaginary terms separated, we get
$\begin{eqnarray}\begin{array}{l}\displaystyle \frac{{k}^{2}w}{2}u^{\prime\prime\prime} -\left(\displaystyle \frac{1}{2}\left[w{q}^{2}+2\delta qk\right]+2\delta w+{g}_{R}{n}_{R}w\right)u^{\prime} \\ \,+\,\left({g}_{R}\left({\gamma }_{R}{n}_{R}-P\right)-\displaystyle \frac{\delta }{2}\left({\gamma }_{c}-R{n}_{R}\right)\right)u\\ \,-\,3{g}_{c}w{u}^{2}u^{\prime} +R{g}_{R}{n}_{R}{u}^{3}=0,\end{array}\end{eqnarray}$
$\begin{eqnarray}\begin{array}{c}\left(\displaystyle \frac{{k}^{2}\delta }{2}+kqw+{w}^{2}\right)u^{\prime\prime} +\left(\displaystyle \frac{{R}^{2}{n}_{R}}{2}-\delta {g}_{c}\right){u}^{3}\\ \,+\,\left(\displaystyle \frac{{\gamma }_{c}w}{2}-\displaystyle \frac{R{n}_{R}w}{2}\right)u^{\prime} \\ \,-\,\left(\displaystyle \frac{{q}^{2}\delta }{2}+{\delta }^{2}+{g}_{R}{n}_{R}\delta -\displaystyle \frac{R{\gamma }_{R}{n}_{R}}{2}+\displaystyle \frac{Rp}{2}\right)u=0.\end{array}\end{eqnarray}$
Throughout this study we will use the GKNS [3437] and the $\left(\displaystyle \frac{G^{\prime} }{G}\right)$-expansion scheme [3840] to extract new soliton concepts for the proposed model that have not been described before.

2. The GKT-concept

To discuss the Generalized Kudryashov Technique (GKT) concept, we will investigate the formalism of the nonlinear partial differential equation (NLPDE) by supposing the function $E$ of $u\left(x,\tau \right)$ and its partial derivatives as
$\begin{eqnarray}E\left(u,{u}_{x},{u}_{\tau },{u}_{xx},{u}_{\tau \tau },\ldots \right)=0.\end{eqnarray}$
When we apply the transformation $u\left(x,\tau \right)=u\left(\zeta \right),\zeta =kx+w\tau ,$ where $k,\omega $ are, respectively, the wave number and traveling wave speed to equation (13), it will be replaced by the following ordinary differential equation
$\begin{eqnarray}R\left(u^{\prime} ,u^{\prime\prime} ,u^{\prime\prime\prime} ,\ldots \right)=0,\end{eqnarray}$
in which $R$ is a function of $u\left(x,\tau \right)$ and its total derivatives. The proposed solution of equation (14) according to the GKM is
$\begin{eqnarray}u\left(\zeta \right)=\displaystyle \frac{\displaystyle {\sum }_{i=0}^{N}{a}_{i}{P}^{i}\left(\zeta \right)}{\displaystyle {\sum }_{j=0}^{M}{b}_{j}{P}^{j}\left(\zeta \right)}=\displaystyle \frac{{a}_{0}+{a}_{1}P\left(\zeta \right)+{a}_{2}{P}^{2}\left(\zeta \right)+\ldots }{{b}_{0}+{b}_{1}P(\zeta )+{b}_{2}{P}^{2}(\zeta )+\ldots },\end{eqnarray}$
where the parameters ${a}_{i},\left(i=0,1,2,\,\ldots ,\,N\right)$ and ${b}_{j},j\,=0,1,2,\,\ldots ,\,M$ will be determined later such that ${a}_{N}\ne 0,{b}_{M}\ne 0$, while the function $P\left(\zeta \right)$ is the solution of the second-order nonlinear equation. The solution for the real part with balance number M = 1 is
$\begin{eqnarray}\displaystyle \frac{{\rm{d}}P\left(\zeta \right)}{{\rm{d}}\zeta }={P}^{2}\left(\zeta \right)-P\left(\zeta \right).\end{eqnarray}$
By integrating equation (16) we get
$\begin{eqnarray}P\left(\zeta \right)=\displaystyle \frac{1}{1+C{{\rm{e}}}^{\zeta }}.\end{eqnarray}$
Here, C is the integration constant. We will implement this method to the real part and the imaginary part individually.

2.1. For the real part

When one applies the balance rule between $u^{\prime\prime\prime} ,{u}^{2}u^{\prime} $ appears at equation (11) he will obtain $M=1,\Rightarrow N=2$; thus, the solution is
$\begin{eqnarray}u\left(\zeta \right)=\displaystyle \frac{{a}_{0}+{a}_{1}P\left(\zeta \right)+{a}_{2}{P}^{2}\left(\zeta \right)}{{b}_{0}+{b}_{1}P\left(\zeta \right)}.\end{eqnarray}$
By inserting $u^{\prime\prime\prime} ,{u}^{2}u^{\prime} ,u,{u}^{3}$ into equation (11), setting the coefficients of various powers of ${P}^{i}(\zeta )$ equal to zero, a system of equations for the required unknown parameters will be explored from which we get 24 diverse enormous results; for similarity and simplicity, we will choose one of these results, which is
$\begin{eqnarray}\begin{array}{c}w\,\to \,-\displaystyle \frac{R{g}_{R}{n}_{R}}{3{g}_{c}},{a}_{0}\to 0,{b}_{0}\to 0,\\ {\gamma }_{c}\,\to \,\displaystyle \frac{-2P{g}_{c}{g}_{R}+R\delta {g}_{c}{n}_{R}+2{k}^{2}R{g}_{R}{n}_{R}+2{g}_{c}{g}_{R}{n}_{R}{\gamma }_{R}}{\delta {g}_{c}},\\ q\,\to \,\displaystyle \frac{3k\delta {g}_{c}+\sqrt{9{k}^{2}{\delta }^{2}{g}_{c}^{2}+7{k}^{2}{R}^{2}{g}_{R}^{2}{n}_{R}^{2}-4{R}^{2}\delta {g}_{R}^{2}{n}_{R}^{2}-2{R}^{2}{g}_{R}^{3}{n}_{R}^{3}}}{R{g}_{R}{n}_{R}},\\ {a}_{1}\,\to \,-{a}_{2},{b}_{1}\to \displaystyle \frac{{a}_{2}\sqrt{{g}_{c}}}{k}.\end{array}\end{eqnarray}$
Let us now design the 2D and 3D graphs of this solution that can be simplified to
$\begin{eqnarray}\begin{array}{c}C=\delta =R={g}_{c}={g}_{R}={\gamma }_{R}={n}_{R}=k=P={a}_{2}=1,\\ {a}_{0}=0,{a}_{1}=-1,{b}_{0}=0,{b}_{1}=1,\\ w=-0.3,{\gamma }_{c}=3,q=3+\sqrt{10}.\end{array}\end{eqnarray}$
The solution according to these parameter values is
$\begin{eqnarray}u\left(\zeta \right)=\displaystyle \frac{-{{\rm{e}}}^{\zeta }}{{{\rm{e}}}^{\zeta }+1},\end{eqnarray}$
$\begin{eqnarray}{\rm{\Psi }}\left(x,\tau \right)=\left(\displaystyle \frac{-{{\rm{e}}}^{\left(x-\tfrac{1}{3}\tau \right)}}{{{\rm{e}}}^{\left(x-\tfrac{1}{3}\tau \right)}+1}\right){{\rm{e}}}^{{\rm{i}}\left(6x+\tau +0.1\right)},\end{eqnarray}$
$\begin{eqnarray}\mathrm{Re}{\rm{\Psi }}\left(x,\tau \right)=\left(\displaystyle \frac{-{{\rm{e}}}^{\left(x-\tfrac{1}{3}\tau \right)}}{{{\rm{e}}}^{\left(x-\tfrac{1}{3}\tau \right)}+1}\right)\cos \left(6x+\tau +0.1\right),\end{eqnarray}$
$\begin{eqnarray}\rm{Im}{\rm{\Psi }}\left(x,\tau \right)=\left(\displaystyle \frac{-{{\rm{e}}}^{\left(x-\displaystyle \frac{1}{3}\tau \right)}}{{{\rm{e}}}^{\left(x-\displaystyle \frac{1}{3}\tau \right)}+1}\right)\sin \left(6x+\tau +0.1\right).\end{eqnarray}$

2.2. For the imaginary part

When one applies the balance rule between $u^{\prime\prime} ,{u}^{3}$ appears at equation (12) he will obtain $M=1;$ thus, the solution is
$\begin{eqnarray}u\left(\zeta \right)=\displaystyle \frac{{a}_{0}+{a}_{1}P\left(\zeta \right)+{a}_{2}{P}^{2}\left(\zeta \right)}{{b}_{0}+{b}_{1}P\left(\zeta \right)}.\end{eqnarray}$
By inserting $u^{\prime\prime} ,{u}^{3},u^{\prime} ,u$ into equation (12), setting the coefficients of various powers of ${P}^{i}\left(\zeta \right)$ equal to zero, a system of equations for the required unknown parameters will be explored, from which we get 14 diverse enormous results; for similarity and simplicity, we will choose one of them, which is
$\begin{eqnarray}\begin{array}{c}{a}_{0}\to 0,{b}_{0}\to 0,{\gamma }_{c}\to \displaystyle \frac{-6\delta {a}_{2}^{2}{g}_{c}+3{R}^{2}{a}_{2}^{2}{n}_{R}+2Rw{b}_{1}^{2}{n}_{R}}{2w{b}_{1}^{2}},\\ q\to \displaystyle \frac{-4{w}^{2}{b}_{1}^{2}-2{k}^{2}\delta {b}_{1}^{2}+2\delta {a}_{2}^{2}{g}_{c}-{R}^{2}{a}_{2}^{2}{n}_{R}}{4kw{b}_{1}^{2}},\\ P\to \displaystyle \frac{\left\{\begin{array}{c}-16{w}^{4}\delta {b}_{1}^{4}-48{k}^{2}{w}^{2}{\delta }^{2}{b}_{1}^{4}-4{k}^{4}{\delta }^{3}{b}_{1}^{4}-32{k}^{2}{w}^{2}\delta {a}_{2}^{2}{b}_{1}^{2}{g}_{c}+16{w}^{2}{\delta }^{2}{a}_{2}^{2}{b}_{1}^{2}{g}_{c}\\ +8{k}^{2}{\delta }^{3}{a}_{2}^{2}{b}_{1}^{2}{g}_{c}-4{\delta }^{3}{a}_{2}^{4}{g}_{c}^{2}+16{k}^{2}{R}^{2}{w}^{2}{a}_{2}^{2}{b}_{1}^{2}{n}_{R}-8{R}^{2}{w}^{2}\delta {a}_{2}^{2}{b}_{1}^{2}{n}_{R}-4{k}^{2}{R}^{2}{\delta }^{2}{a}_{2}^{2}{b}_{1}^{2}{n}_{R}\\ +4{R}^{2}{\delta }^{2}{a}_{2}^{4}{g}_{c}{n}_{R}-32{k}^{2}{w}^{2}\delta {b}_{1}^{4}{g}_{R}{n}_{R}-{R}^{4}\delta {a}_{2}^{4}{n}_{R}^{2}+16{k}^{2}R{w}^{2}{b}_{1}^{4}{n}_{R}{\gamma }_{R}\end{array}\right\}}{16{k}^{2}R{w}^{2}{b}_{1}^{4}},\\ {a}_{1}\to -{a}_{2}.\end{array}\end{eqnarray}$
Let us now design the 2D and 3D graphs of the chosen result that can be simplified to
$\begin{eqnarray}\begin{array}{c}\delta =R=w={n}_{R}={g}_{c}={a}_{2}={b}_{1}={\gamma }_{R}=k={g}_{R}=1,\\ {a}_{0}={b}_{0}=0,{a}_{1}=-1,{\gamma }_{c}=-\displaystyle \frac{1}{2},P=-\displaystyle \frac{89}{16},q=-\displaystyle \frac{5}{4}.\end{array}\end{eqnarray}$
The solution according to these parameter values is
$\begin{eqnarray}u\left(\zeta \right)=\displaystyle \frac{-{{\rm{e}}}^{\zeta }}{{{\rm{e}}}^{\zeta }+1},\end{eqnarray}$
$\begin{eqnarray}{\rm{\Psi }}\left(x,\tau \right)=\left(\displaystyle \frac{-{{\rm{e}}}^{\left(x+\tau \right)}}{{{\rm{e}}}^{x+\tau }+1}\right){{\rm{e}}}^{{\rm{i}}\left(\tfrac{-5}{4}x+\tau +0.1\right)},\end{eqnarray}$
$\begin{eqnarray}\mathrm{Re}{\rm{\Psi }}\left(x,\tau \right)=\left(\displaystyle \frac{-{{\rm{e}}}^{\left(x+\tau \right)}}{{{\rm{e}}}^{\left(x+\tau \right)}+1}\right)\cos \left(\displaystyle \frac{-5}{4}x+\tau +0.1\right),\end{eqnarray}$
$\begin{eqnarray}\rm{Im}{\rm{\Psi }}\left(x,\tau \right)=\left(\displaystyle \frac{-{{\rm{e}}}^{\left(x+\tau \right)}}{{{\rm{e}}}^{\left(x+\tau \right)}+1}\right)\sin \left(\displaystyle \frac{-5}{4}x+\tau +0.1\right).\end{eqnarray}$

3. The (G′/G)-expansion scheme

This scheme proposes the solution of equation (14) to be in the form
$\begin{eqnarray}u\left(\eta \right)={A}_{0}+{\displaystyle \sum _{i=1}^{M}{A}_{i}\left[\displaystyle \frac{G^{\prime} }{G}\right]}^{i},{A}_{M}\ne 0,\end{eqnarray}$
where $M$ is the balance number. The function $G\left(\zeta \right)$ achieves the second-order differential equation $G^{\prime\prime} +\mu G^{\prime} +\lambda G=0$ that has three types of solution depending on the discriminate of this equation, which has one of these cases:
(I) If ${\mu }^{2}-4\lambda \succ 0,$ then the solution is
$\begin{eqnarray}\begin{array}{c}\left(\displaystyle \frac{G^{\prime} }{G}\right)\,=\displaystyle \frac{\sqrt{{\mu }^{2}-4\lambda }}{2}\\ \times \,\left(\displaystyle \frac{{l}_{1}\,\sinh \left(\displaystyle \frac{\sqrt{{\mu }^{2}-4\lambda }}{2}\right)\zeta +{l}_{2}\,\cosh \left(\displaystyle \frac{\sqrt{{\mu }^{2}-4\lambda }}{2}\right)\zeta }{{l}_{1}\,\cosh \left(\displaystyle \frac{\sqrt{{\mu }^{2}-4\lambda }}{2}\right)\zeta +{l}_{2}\,\sinh \left(\displaystyle \frac{\sqrt{{\mu }^{2}-4\lambda }}{2}\right)\zeta }\right)\\ \,-\,\displaystyle \frac{\mu }{2}.\end{array}\end{eqnarray}$
(II) If ${\mu }^{2}-4\lambda \prec 0\,{,}\,$ then the solution is
$\begin{eqnarray}\begin{array}{c}\left(\displaystyle \frac{G^{\prime} }{G}\right)=\,\displaystyle \frac{\sqrt{{\mu }^{2}-4\lambda }}{2}\\ \times \,\left(\displaystyle \frac{-{l}_{1}\,\sin \left(\displaystyle \frac{\sqrt{{\mu }^{2}-4\lambda }}{2}\right)\zeta +{l}_{2}\,\cos \left(\displaystyle \frac{\sqrt{{\mu }^{2}-4\lambda }}{2}\right)\zeta }{{l}_{1}\,\cos \left(\displaystyle \frac{\sqrt{{\mu }^{2}-4\lambda }}{2}\right)\zeta +{l}_{2}\,\sin \left(\displaystyle \frac{\sqrt{{\mu }^{2}-4\lambda }}{2}\right)\zeta }\right)\\ \,-\,\displaystyle \frac{\mu }{2}.\end{array}\end{eqnarray}$
(III) If ${\mu }^{2}-4\lambda =0\,{,}\,$ then the solution is
$\begin{eqnarray}\left(\displaystyle \frac{G^{\prime} }{G}\right)=\left(\displaystyle \frac{{l}_{2}}{{l}_{1}+{l}_{2}\zeta }\right)-\displaystyle \frac{\mu }{2}.\end{eqnarray}$
Let us now apply this concept for the above real part and imaginary part of equations (11) and (12), respectively.

3.1. Solution for the real part with balance number $M=1$

$\begin{eqnarray}u(\zeta )={A}_{0}+{A}_{1}\left(\displaystyle \frac{G^{\prime} }{G}\right).\end{eqnarray}$
By computing $u^{\prime\prime\prime} ,{u}^{2}u^{\prime} ,u,{u}^{3}$ and inserting in equation (11), setting the coefficients of various powers of ${\left(\displaystyle \frac{G^{\prime} }{G}\right)}^{i}$ equal to zero, a system of equations for the required unknown parameters will be explored, from which we get unique result, which is
$\begin{eqnarray}\begin{array}{c}\lambda \to \displaystyle \frac{{A}_{0}\left(3{k}^{2}w{A}_{0}+R{A}_{1}^{3}{g}_{R}{n}_{R}\right)}{3{k}^{2}w{A}_{1}^{2}},\\ \mu \to \displaystyle \frac{6{k}^{2}w{A}_{0}+R{A}_{1}^{3}{g}_{R}{n}_{R}}{3{k}^{2}w{A}_{1}},\\ \delta \to \displaystyle \frac{-9{k}^{2}{q}^{2}{w}^{2}-18{k}^{2}{w}^{2}{g}_{R}{n}_{R}+7{R}^{2}{A}_{1}^{4}{g}_{R}^{2}{n}_{R}^{2}}{18{k}^{2}w\left(kq+2w\right)},\\ {\gamma }_{c}\to \left(\displaystyle \frac{\begin{array}{c}36{k}^{5}Pq{w}^{2}{g}_{R}+72{k}^{4}P{w}^{3}{g}_{R}+9{k}^{4}{q}^{2}R{w}^{3}{n}_{R}+18{k}^{4}R{w}^{3}{g}_{R}{n}_{R}^{2}-7{k}^{2}{R}^{3}w{A}_{1}^{4}{g}_{R}^{2}{n}_{R}^{3}\\ -4kq{R}^{3}{A}_{1}^{6}{g}_{R}^{3}{n}_{R}^{3}-8{R}^{3}w{A}_{1}^{6}{g}_{R}^{3}{n}_{R}^{3}-36{k}^{5}q{w}^{2}{g}_{R}{n}_{R}{\gamma }_{R}-72{k}^{4}{w}^{3}{g}_{R}{n}_{R}\gamma \end{array}}{{k}^{2}w\left(9{k}^{2}{q}^{2}{w}^{2}+18{k}^{2}{w}^{2}{g}_{R}{n}_{R}-7{R}^{2}{A}_{1}^{4}{g}_{R}^{2}{n}_{R}^{2}\right)}\right),\\ {g}_{c}\to \displaystyle \frac{{k}^{2}}{{A}_{1}^{2}}.\end{array}\end{eqnarray}$
This result can be streamlined to the following values
$\begin{eqnarray}\begin{array}{l}{g}_{R}=k=R={A}_{1}=w={\gamma }_{R}\\ \,=\,{A}_{0}=P=q={n}_{R}={g}_{c}=1,\\ \lambda =\displaystyle \frac{4}{3},\mu =\displaystyle \frac{7}{3},{\gamma }_{c}=\displaystyle \frac{2}{5},\delta \to -\displaystyle \frac{10}{27},\end{array}\end{eqnarray}$
from which we have ${\mu }^{2}-4\lambda =\displaystyle \frac{1}{9}\succ 0,$ which implies the form equation (11) for $\left(\displaystyle \frac{G^{\prime} }{G}\right)$ cases is
$\begin{eqnarray}\left(\displaystyle \frac{G^{\prime} }{G}\right)=\displaystyle \frac{1}{6}\left(\displaystyle \frac{{l}_{1}\,{\rm{\sin }}\,{\rm{h}}\left(\tfrac{1}{6}\right)\zeta +{l}_{2}\,{\rm{\cos }}\,{\rm{h}}\left(\tfrac{1}{6}\right)\zeta }{{l}_{1}\,{\rm{\cos }}\,{\rm{h}}\left(\tfrac{1}{6}\right)\zeta +{l}_{2}\,{\rm{\sin }}\,{\rm{h}}\left(\tfrac{1}{6}\right)\zeta }\right)-\displaystyle \frac{7}{6},\end{eqnarray}$
$\begin{eqnarray}\begin{array}{rcl}u\left(\zeta \right) & = & 1+\displaystyle \frac{1}{6}\left(\displaystyle \frac{{l}_{1}\,{\rm{\sin }}\,{\rm{h}}\left(\tfrac{1}{6}\right)\zeta +{l}_{2}\,{\rm{\cos }}\,{\rm{h}}\left(\tfrac{1}{6}\right)\zeta }{{l}_{1}\,{\rm{\cos }}\,{\rm{h}}\left(\tfrac{1}{6}\right)\zeta +{l}_{2}\,{\rm{\sin }}\,{\rm{h}}\left(\tfrac{1}{6}\right)\zeta }\right)-\displaystyle \frac{7}{6}\\ & = & \displaystyle \frac{1}{6}\left(\displaystyle \frac{{l}_{1}\,{\rm{\sin }}\,{\rm{h}}\left(\tfrac{1}{6}\right)\zeta +{l}_{2}\,{\rm{\cos }}\,{\rm{h}}\left(\tfrac{1}{6}\right)\zeta }{{l}_{1}\,\cosh \left(\tfrac{1}{6}\right)\zeta +{l}_{2}\,\sinh \left(\tfrac{1}{6}\right)\zeta }-1\right),\end{array}\end{eqnarray}$
$\begin{eqnarray}\begin{array}{l}{\rm{\Psi }}\left(x,\tau \right)\,=\displaystyle \frac{1}{6}\\ \times \,\left(\displaystyle \frac{{l}_{1}\,{\rm{\sin }}\,{\rm{h}}\left(\tfrac{1}{6}\left(x+\tau \right)\right)+{l}_{2}\,{\rm{\cos }}\,{\rm{h}}\left(\tfrac{1}{6}\left(x+\tau \right)\right)}{{l}_{1}\,{\rm{\cos }}\,{\rm{h}}\left(\tfrac{1}{6}\left(x+\tau \right)\right)+{l}_{2}\,{\rm{\sin }}\,{\rm{h}}\left(\tfrac{1}{6}\left(x+\tau \right)\right)}-1\right)\\ \times \,{{\rm{e}}}^{{\rm{i}}\left(x-\,\tfrac{10}{27}\tau +0.1\right)},\end{array}\end{eqnarray}$
$\begin{eqnarray}\begin{array}{l}\mathrm{Re}{\rm{\Psi }}\left(x,\tau \right)\,=\displaystyle \frac{1}{6}\\ \times \,\left(\displaystyle \frac{{l}_{1}\,{\rm{\sin }}\,{\rm{h}}\left(\tfrac{1}{6}\left(x+\tau \right)\right)+{l}_{2}\,{\rm{\cos }}\,{\rm{h}}\left(\tfrac{1}{6}\left(x+\tau \right)\right)}{{l}_{1}\,{\rm{\cos }}\,{\rm{h}}\left(\tfrac{1}{6}\left(x+\tau \right)\right)+{l}_{2}\,{\rm{\sin }}\,{\rm{h}}\left(\tfrac{1}{6}\left(x+\tau \right)\right)}-1\right)\\ \times \,\cos \left(x-\displaystyle \frac{10}{27}\tau +0.1\right),\end{array}\end{eqnarray}$
$\begin{eqnarray}\begin{array}{l}\rm{Im}{\rm{\Psi }}\left(x,\tau \right)\,=\displaystyle \frac{1}{6}\\ \times \,\left(\displaystyle \frac{{l}_{1}\,{\rm{\sin }}\,{\rm{h}}\left(\displaystyle \frac{1}{6}\left(x+\tau \right)\right)+{l}_{2}\,\cos \,{\rm{h}}\left(\displaystyle \frac{1}{6}\left(x+\tau \right)\right)}{{l}_{1}\,\cos \,{\rm{h}}\left(\displaystyle \frac{1}{6}\left(x+\tau \right)\right)+{l}_{2}\,{\rm{\sin }}\,{\rm{h}}\left(\displaystyle \frac{1}{6}\left(x+\tau \right)\right)}-1\right)\\ \times \,\sin \left(x-\displaystyle \frac{10}{27}\tau +0.1\right).\end{array}\end{eqnarray}$
Let us now design the 2D and 3D graphs of equations (42) and (43)

3.2. The (G′/G)-expansion scheme for the imaginary part

As we noted before, the balance number for imaginary part equation (12) is $M=1;$ hence, the solution is
$\begin{eqnarray}u\left(\zeta \right)={A}_{0}+{A}_{1}\left(\displaystyle \frac{G^{\prime} }{G}\right).\end{eqnarray}$
By computing $u^{\prime\prime} ,u^{\prime} ,u,{u}^{3}$ and inserting in equation (12), setting the coefficients of various powers of ${\left(\displaystyle \frac{G^{\prime} }{G}\right)}^{i}$ equal to zero, a system of equations for the required unknown parameters will be explored, from which we get three different results; for simplicity we choose the first one, which is
$\begin{eqnarray}\begin{array}{c}\lambda \to \displaystyle \frac{4kqw{A}_{0}^{2}+4{w}^{2}{A}_{0}^{2}+2{k}^{2}\delta {A}_{0}^{2}+PR{A}_{1}^{2}+{q}^{2}\delta {A}_{1}^{2}+2{\delta }^{2}{A}_{1}^{2}+2\delta {A}_{1}^{2}{g}_{R}{n}_{R}-R{A}_{1}^{2}{n}_{R}{\gamma }_{R}}{2\left(2kqw+2{w}^{2}+{k}^{2}\delta \right){A}_{1}^{2}},\\ \mu \to \displaystyle \frac{2{A}_{0}}{{A}_{1}},{g}_{c}\to \displaystyle \frac{4kqw+4{w}^{2}+2{k}^{2}\delta +{R}^{2}{A}_{1}^{2}{n}_{R}}{2\delta {A}_{1}^{2}},{\gamma }_{c}\to R{n}_{R}.\end{array}\end{eqnarray}$
This result can be streamlined to be in the form
$\begin{eqnarray}\begin{array}{l}{g}_{R}=k=R={A}_{1}=w={\gamma }_{R}\\ \,=\,{A}_{0}=P=q=\delta ={n}_{R}={\gamma }_{c}=1,\\ \lambda =\displaystyle \frac{3}{2},\mu =2,{g}_{c}=\displaystyle \frac{11}{2},\end{array}\end{eqnarray}$
from which we have ${\mu }^{2}-4\lambda =-2\prec 0,$ so the solution from $\left(\displaystyle \frac{G^{\prime} }{G}\right)$ point of view equation (12) is
$\begin{eqnarray}u\left(\zeta \right)=\displaystyle \frac{{\rm{i}}}{\sqrt{2}}\left(\displaystyle \frac{-{l}_{1}\,\sin \left(\tfrac{{\rm{i}}}{\sqrt{2}}\right)\zeta +{l}_{2}\,\cos \left(\tfrac{{\rm{i}}}{\sqrt{2}}\right)\zeta }{{l}_{1}\,\cos \left(\tfrac{{\rm{i}}}{\sqrt{2}}\right)\zeta +{l}_{2}\,\sin \left(\tfrac{{\rm{i}}}{\sqrt{2}}\right)\zeta }\right),\end{eqnarray}$
$\begin{eqnarray}\begin{array}{l}{\rm{\Psi }}\left(x,\tau \right)\,=\displaystyle \frac{{\rm{i}}}{\sqrt{2}}\\ \times \,\left(\displaystyle \frac{-{l}_{1}\,\sin \left(\tfrac{{\rm{i}}\left(x+\tau \right)}{\sqrt{2}}\right)+{l}_{2}\,\cos \left(\tfrac{{\rm{i}}\left(x+\tau \right)}{\sqrt{2}}\right)}{{l}_{1}\,\cos \left(\tfrac{{\rm{i}}\left(x+\tau \right)}{\sqrt{2}}\right)+{l}_{2}\,\sin \left(\tfrac{{\rm{i}}\left(x+\tau \right)}{\sqrt{2}}\right)}\right)\\ \times \,{{\rm{e}}}^{{\rm{i}}\left(x+\tau +0.1\right)},\end{array}\end{eqnarray}$
$\begin{eqnarray}\begin{array}{l}\mathrm{Re}{\rm{\Psi }}\left(x,\tau \right)\,=\displaystyle \frac{-{\rm{i}}}{\sqrt{2}}\\ \times \,\left(\displaystyle \frac{-{l}_{1}\,\sin \left(\tfrac{{\rm{i}}\left(x+\tau \right)}{\sqrt{2}}\right)+{l}_{2}\,\cos \left(\tfrac{{\rm{i}}\left(x+\tau \right)}{\sqrt{2}}\right)}{{l}_{1}\,\cos \left(\tfrac{{\rm{i}}\left(x+\tau \right)}{\sqrt{2}}\right)+{l}_{2}\,\sin \left(\tfrac{{\rm{i}}\left(x+\tau \right)}{\sqrt{2}}\right)}\right)\\ \times \,\sin \left(x+\tau +0.1\right),\end{array}\end{eqnarray}$
$\begin{eqnarray}\begin{array}{c}\rm{Im}{\rm{\Psi }}\left(x,\tau \right)\,=\displaystyle \frac{{\rm{i}}}{\sqrt{2}}\\ \times \,\left(\displaystyle \frac{-{l}_{1}\,\sin \left(\displaystyle \frac{{\rm{i}}\left(x+\tau \right)}{\sqrt{2}}\right)+{l}_{2}\,\cos \left(\displaystyle \frac{{\rm{i}}\left(x+\tau \right)}{\sqrt{2}}\right)}{{l}_{1}\,\cos \left(\displaystyle \frac{{\rm{i}}\left(x+\tau \right)}{\sqrt{2}}\right)+{l}_{2}\,\sin \left(\displaystyle \frac{{\rm{i}}\left(x+\tau \right)}{\sqrt{2}}\right)}\right)\\ \times \,\cos \left(x+\tau +0.1\right).\end{array}\end{eqnarray}$

4. The algorithm of HWNS

The wavelet is considered as one of the powerful and fast evolving methods to obtain a numerical solution of ordinary and partial differential equations with increasing applications in physics and engineering problems. The development of the Haar wavelet in the construction of the numerical solution started in 1997 when Chen and Hsiao [41] introduced an operational matrix of integration to solve the suggested models of dynamic systems. They suggested the notation of expressing the function corresponding to highest derivative of a differential equation as a Haar wavelet series. Lepik [4244] introduced the Haar wavelet numerical scheme with a uniform grid for the solution of differential, integral, integro-differential and fractional integral equations. As a vital part of this work, we attempt to extend this method to examine the results for higher order nonlinear boundary value problems with semi-infinite or infinite domain, thus making the method more useful in real-world applications.

4.1. Haar wavelet functions and their integration

The Haar wavelet functions [45] are given as
$\begin{eqnarray}{h}_{i}\left(t\right)=\left\{\begin{array}{ll}1; & for\,t\in \left[{\nu }_{1},{\nu }_{2}\right]\\ -1; & for\,t\in \left[{\nu }_{2},{\nu }_{2}\right]\\ 0; & {\rm{otherwise}}\end{array}\right..\end{eqnarray}$
This is considered as the simplest wavelet function in the structure of building basis functions because it uses only two operations, translation and dilation.
With ${\nu }_{1}=\displaystyle \frac{k}{m},$ ${\nu }_{2}=\displaystyle \frac{k+0.5}{m},$ ${\nu }_{3}=\tfrac{k+1}{m}:$ the integer number $m={2}^{j};\,j=0,1,2,\,\ldots ,\,J$ indicates the level of the wavelet (dilation parameter); and $k=0,1,2,\,\ldots ,\,m-1$ is the translation parameter. The integer $J$ is the maximal level of resolution; the index $i$ is computed from $i=m+k+1$, which has minimum value $i=2\left(m=1,k=0\right),$ for which the Haar function is called the mother function, and maximum value $i=2M,$ $M={2}^{J}$ the index $i=1$ corresponds to the scaling (father) function:
$\begin{eqnarray}{h}_{1}\left(t\right)=\left\{\begin{array}{ll}1; & for\,0\leqslant t\prec 1\\ 0; & elsewhere\end{array}\right..\end{eqnarray}$
The following relations according to [4145] are important to introduce
$\begin{eqnarray}\begin{array}{rcl}{p}_{i}\left(t\right) & = & {\int }_{0}^{t}{h}_{i}\left(x\right){\rm{d}}x;\\ {Q}_{i}\left(t\right) & = & {\int }_{0}^{t}{p}_{i}\left(x\right){\rm{d}}x;\\ {R}_{i}\left(t\right) & = & {\int }_{0}^{t}{Q}_{i}\left(x\right){\rm{d}}x.\end{array}\end{eqnarray}$
Integrating the Haar functions with respect to $t$ from $0\to x$, we can obtain the following important special relations:
$\begin{eqnarray}{p}_{i}\left(t\right)=\left\{\begin{array}{cc}t-{\nu }_{1}; & for\,t\in \left[{\nu }_{1},\,{\nu }_{2}\right]\\ {\nu }_{3}-t; & for\,t\in \left[{\nu }_{2},\,{\nu }_{3}\right]\\ 0; & elsewhere\end{array}\right.,\end{eqnarray}$
$\begin{eqnarray}{Q}_{i}\left(t\right)=\left\{\begin{array}{ll}0; & for\,t\in \left[0,{\nu }_{1}\right]\\ \frac{{\left(t-{\nu }_{1}\right)}^{2}}{2}; & for\,t\in \left[{\nu }_{1},{\nu }_{2}\right]\\ \frac{1}{4{m}^{2}}-\frac{{\left({\nu }_{3}-t\right)}^{2}}{2}; & for\,t\in \left[{\nu }_{2},{\nu }_{3}\right]\\ \frac{1}{4{m}^{2}}; & for\,t\in \left[{\nu }_{3},1\right]\end{array},\right.\end{eqnarray}$
$\begin{eqnarray}{R}_{i}\left(t\right)=\Space{0ex}{3.0ex}{0ex}\{\begin{array}{ll}0; & for\,t\in \left[0,{\nu }_{1}\right]\\ \displaystyle \frac{{\left(t-{\nu }_{1}\right)}^{3}}{6}; & for\,t\in \left[{\nu }_{1},{\nu }_{2}\right]\\ \displaystyle \frac{\left(t-{\nu }_{2}\right)}{4{m}^{2}}-\displaystyle \frac{{\left({\nu }_{3}-t\right)}^{3}}{6}; & for\,t\in \left[{\nu }_{2},{\nu }_{3}\right]\\ \displaystyle \frac{t-{\nu }_{2}}{4{m}^{2}}; & for\,t\in \left[{\nu }_{3},1\right]\end{array}.\end{eqnarray}$

4.2. Haar wavelet functions and collocation points [4145]

Since the numerical solution is computed first at discrete points, in this case called collation points, to find the solution of the differential equation we discretize the equation in Haar functions ${h}_{i}\left(t\right)$ in the following manner.
Firstly, we will divide the interval $t\in \left[0,1\right]$ into 2M parts of equal length ${\rm{\Lambda }}\left(t\right)=\displaystyle \frac{1}{2M},$ then we compute the collocation points from
$\begin{eqnarray}{t}_{l}=\displaystyle \frac{l-0.5}{2M}.\end{eqnarray}$
Any function $\psi \left(t\right),t\in \left[0,1\right]$ can be written as
$\begin{eqnarray}\psi \left(t\right)=\displaystyle \sum _{i=1}^{2M}{a}_{i}{h}_{i}\left(t\right)={a}_{1}{h}_{1}\left(t\right)+{a}_{2}{h}_{2}\left(t\right)+\,\ldots +{a}_{2M}{h}_{2M}\left(t\right),\end{eqnarray}$
where αi denotes the Haar coefficients. Multiplying equation (58) by ${h}_{m}\left(t\right),$ and integrating from $0\to 1$, one obtains
$\begin{eqnarray*}\displaystyle {\int }_{0}^{1}\psi \left(t\right){h}_{m}\left(t\right){\rm{d}}t={a}_{i}\displaystyle \sum _{i=1}^{2M}\displaystyle {\int }_{0}^{1}{h}_{i}\left(t\right){h}_{m}\left(t\right){\rm{d}}t.\end{eqnarray*}$
And from the orthogonal property, we get the coefficients ${a}_{i}$
$\begin{eqnarray}\begin{array}{c}\displaystyle {\int }_{0}^{1}{h}_{i}\left(t\right){h}_{m}\left(t\right){\rm{d}}t=\left\{\begin{array}{ll}{2}^{-j}; & if\,i=m\\ 0; & if\,i\ne m\end{array}\right.\Rightarrow \\ \left[{a}_{i}={2}^{j}\displaystyle {\int }_{0}^{1}\psi \left(t\right){h}_{m}\left(t\right){\rm{d}}t\right].\end{array}\end{eqnarray}$
Satisfying equation (58) at collocation points
$\begin{eqnarray}\psi \left({t}_{l}\right)=\displaystyle \sum _{i=1}^{2M}{a}_{i}{h}_{i}\left({t}_{l}\right)=\displaystyle \sum _{i=1}^{2M}{a}_{i}{{\rm X}}_{il},\end{eqnarray}$
which can be written in matrix form ${\rm{\Xi }}=a{\rm X},$ where ${\rm{\Xi }}$ and $a$ are $2M$ vectors and ${\rm X}={{\rm X}}_{il}={h}_{i}\left({t}_{l}\right)$ are the coefficients matrix with dimension ($2M\times 2M).$

4.3. The numerical solution using the HWNS corresponding to the exact solution derived by GKS (real part)

It is a vital aim in this work to construct the numerical solution corresponding to the analytical soliton solution obtained by GKS and the $\left(\displaystyle \frac{G^{\prime} }{G}\right)$-expansion scheme to show the reliability of the obtained analytical soliton solutions.
Consider the real part of equation (11) with values
$\begin{eqnarray}\begin{array}{c}\delta =R={g}_{c}={g}_{R}={\gamma }_{R}={n}_{R}=k=P=1,\\ w=\displaystyle \frac{-1}{3},{\gamma }_{c}=3,q=3+\sqrt{10}.\end{array}\end{eqnarray}$
This can be written as
$\begin{eqnarray}\displaystyle \frac{1}{2}u^{\prime\prime\prime} \left(\zeta \right)+u^{\prime} \left(\zeta \right)+u^{\prime} \left(\zeta \right){u}^{2}\left(\zeta \right)-u\left(\zeta \right)+{u}^{3}\left(\zeta \right)=0,\end{eqnarray}$
whose exact solution derived by GKM is equation (21), which has the following initial conditions
$\begin{eqnarray}u\left(0\right)=-\displaystyle \frac{1}{2},u^{\prime} \left(0\right)\,=-\displaystyle \frac{1}{4},u^{\prime\prime} \left(0\right)=0.\end{eqnarray}$
According to HWNS, the solution of equation (62) is put in the form
$\begin{eqnarray}u^{\prime\prime\prime} \left(\zeta \right)=\displaystyle \sum _{i=1}^{2M}{a}_{i}{h}_{i}\left(\zeta \right).\end{eqnarray}$
By integrating equation (64) three times w.r.t. $\zeta $ from $0\to \zeta $ to obtain $u\left(\zeta \right)$ we obtain
$\begin{eqnarray}u^{\prime\prime} \left(\zeta \right)=\displaystyle \sum _{i=1}^{2M}{a}_{i}{p}_{i}\left(\zeta \right)+u^{\prime\prime} \left(0\right)=\displaystyle \sum _{i=1}^{2M}{a}_{i}{p}_{i}\left(\zeta \right),\end{eqnarray}$
$\begin{eqnarray}\displaystyle \begin{array}{rcl}u^{\prime} \left(\zeta \right) & = & \sum _{i=1}^{2M}{a}_{i}{Q}_{i}\left(\zeta \right)+u^{\prime} \left(0\right)\\ & = & -\displaystyle \frac{1}{4}+\sum _{i=1}^{2M}{a}_{i}{Q}_{i}\left(\zeta \right),\end{array}\end{eqnarray}$
$\begin{eqnarray}\displaystyle \begin{array}{rcl}u\left(\zeta \right) & = & \sum _{i=1}^{2M}{a}_{i}{R}_{i}\left(\zeta \right)-\frac{1}{4}\zeta +u\left(0\right)\\ & = & -\frac{1}{2}-\frac{1}{4}\zeta +\sum _{i=1}^{2M}{a}_{i}{R}_{i}\left(\zeta \right).\end{array}\end{eqnarray}$
Inserting equations (64)–(67) into equation (62) we obtain
$\begin{eqnarray}\begin{array}{c}\displaystyle \frac{1}{2}\displaystyle \sum _{i=1}^{2M}{a}_{i}{h}_{i}\left(\zeta \right)\,-\displaystyle \frac{1}{4}+\displaystyle \sum _{i=1}^{2M}{a}_{i}{Q}_{i}\left(\zeta \right)\\ \,+\,\left(-\displaystyle \frac{1}{4}+\displaystyle \sum _{i=1}^{2M}{a}_{i}{Q}_{i}\left(\zeta \right)\right){\left(-\displaystyle \frac{1}{2}-\displaystyle \frac{1}{4}\zeta +\displaystyle \sum _{i=1}^{2M}{a}_{i}{R}_{i}\left(\zeta \right)\right)}^{2}\\ \,+\,\displaystyle \frac{1}{2}+\displaystyle \frac{1}{4}\zeta -\displaystyle \sum _{i=1}^{2M}{a}_{i}{R}_{i}\left(\zeta \right)\\ \,+\,{\left(-\displaystyle \frac{1}{2}-\displaystyle \frac{1}{4}\zeta +\displaystyle \sum _{i=1}^{2M}{a}_{i}{R}_{i}\left(\zeta \right)\right)}^{3}=0.\end{array}\end{eqnarray}$
When equation (68) surrenders to the collocation points given in equation (57) we get
$\begin{eqnarray}\begin{array}{c}\displaystyle \frac{1}{2}\displaystyle \sum _{i=1}^{2M}{a}_{i}{h}_{i}\left({\zeta }_{l}\right)-\displaystyle \frac{1}{4}+\displaystyle \sum _{i=1}^{2M}{a}_{i}{Q}_{i}\left({\zeta }_{l}\right)\\ \,+\,\left(-\displaystyle \frac{1}{4}+\displaystyle \sum _{i=1}^{2M}{a}_{i}{Q}_{i}\left(\zeta \right)\right){\left(-\displaystyle \frac{1}{2}-\displaystyle \frac{1}{4}{\zeta }_{l}+\displaystyle \sum _{i=1}^{2M}{a}_{i}{R}_{i}\left({\zeta }_{l}\right)\right)}^{2}\\ \,+\,\displaystyle \frac{1}{2}+\displaystyle \frac{1}{4}{\zeta }_{l}-\displaystyle \sum _{i=1}^{2M}{a}_{i}{R}_{i}\left({\zeta }_{l}\right)\\ \,+\,{\left(-\displaystyle \frac{1}{2}-\displaystyle \frac{1}{4}{\zeta }_{l}+\displaystyle \sum _{i=1}^{2M}{a}_{i}{R}_{i}\left({\zeta }_{l}\right)\right)}^{3}=0\,{,}\,l=1,2,\,\ldots ,\,2M.\end{array}\end{eqnarray}$
Putting the level of resolution $J=1\to M={2}^{J}\,=2\to 2M=4\to l=1,2,3,4$, then equation (69) becomes
$\begin{eqnarray}\begin{array}{c}\displaystyle \frac{1}{2}\displaystyle \sum _{i=1}^{4}{a}_{i}{h}_{i}\left({\zeta }_{l}\right)-\displaystyle \frac{1}{4}+\displaystyle \sum _{i=1}^{4}{a}_{i}{Q}_{i}\left({\zeta }_{l}\right)\\ \,+\,\left(-\displaystyle \frac{1}{4}+\displaystyle \sum _{i=1}^{4}{a}_{i}{Q}_{i}\left(\zeta \right)\right){\left(-\displaystyle \frac{1}{2}-\displaystyle \frac{1}{4}{\zeta }_{l}+\displaystyle \sum _{i=1}^{4}{a}_{i}{R}_{i}\left({\zeta }_{l}\right)\right)}^{2}\\ \,+\,\displaystyle \frac{1}{2}+\displaystyle \frac{1}{4}{\zeta }_{l}-\displaystyle \sum _{i=1}^{4}{a}_{i}{R}_{i}\left({\zeta }_{l}\right)\\ \,+\,{\left(-\displaystyle \frac{1}{2}-\displaystyle \frac{1}{4}{\zeta }_{l}+\displaystyle \sum _{i=1}^{4}{a}_{i}{R}_{i}\left({\zeta }_{l}\right)\right)}^{3}=0\,.\end{array}\end{eqnarray}$
Equation (70), at collocation points ${\zeta }_{l}=\displaystyle \frac{l-0.5}{2M}\,=\displaystyle \frac{l-0.5}{4},l=1,2,3,4$, leads to a system of unknowns ${a}_{i},i=1,2,3,4,$ and by solving this system we get
$\begin{eqnarray}\begin{array}{rcl}{a}_{1} & = & -0.00279276,\\ {a}_{2} & = & -0.0929915,\\ {a}_{3} & = & -0.0262158,\\ {a}_{4} & = & -0.0656008.\end{array}\end{eqnarray}$
Figure 11. The soliton behavior of the Imaginary (Im.) part of equation (50) with the values given in equation (46) and ${l}_{1}=1,{l}_{2}=2$.
Figure 12. The 2D and 3D soliton solution behavior of $\left|{\rm{\Psi }}\right|$.
Figure 13. The HW numerical solution behavior of the Re. part of equation (73) with values given in equation (61).
Figure 14. The HW numerical solution behavior to the Im. part of equation (74) with values given in equation (61).
Figure 15. The 2D and 3D soliton HWN solution behavior of $\left|{\rm{\Psi }}\right|$ equations (73) or (74).
Using equation (71) in equation (67), then the Haar wavelet solution of equation (62) is
$\begin{eqnarray}\begin{array}{rcl}u\left(\zeta \right) & = & -\displaystyle \frac{1}{2}-\displaystyle \frac{1}{4}\zeta +{a}_{1}{R}_{1}\left(\zeta \right)+{a}_{2}{R}_{2}\left(\zeta \right)\\ & & +{a}_{3}{R}_{3}\left(\zeta \right)+{a}_{4}{R}_{4}\left(\zeta \right)=-\displaystyle \frac{1}{2}-\displaystyle \frac{1}{4}\zeta \\ & & -0.00279276\,{R}_{1}\left(\zeta \right)-0.0929915\,{R}_{2}\left(\zeta \right)\\ & & -0.0262158\,{R}_{3}\left(\zeta \right)-0.0656008\,{R}_{4}\left(\zeta \right).\end{array}\end{eqnarray}$
Hence,
$\begin{eqnarray*}{\rm{\Psi }}\left(x,\tau \right)=u\left(\zeta \right){{\rm{e}}}^{{\rm{i}}\eta \left(x,\tau \right)}\end{eqnarray*}$
$\begin{eqnarray}\begin{array}{l}\mathrm{Re}{\rm{\Psi }}\left(x,\tau \right)\,=\\ \left(\begin{array}{l}-0.5-0.25\left(x-\displaystyle \frac{1}{3}\tau \right)-0.00279276{R}_{1}\left[x-\displaystyle \frac{1}{3}\tau \right]\\ -0.0929915{R}_{2}\left[x-\displaystyle \frac{1}{3}\tau \right]\\ -0.026216{R}_{3}\left[x-\displaystyle \frac{1}{3}\tau \right]-0.0656008{R}_{4}\left[x-\displaystyle \frac{1}{3}\tau \right]\end{array}\right)\\ \,\times \,\cos \left[6x+\tau +0.1\right],\end{array}\end{eqnarray}$
$\begin{eqnarray}\begin{array}{c}\rm{Im}{\rm{\Psi }}\left(x,\tau \right)\,=\\ \left(\begin{array}{c}-0.5-0.00279276{R}_{1}\left[x-\displaystyle \frac{1}{3}\tau \right]\\ -0.0929915{R}_{2}\left[x-\displaystyle \frac{1}{3}\tau \right]-0.25\left(x-\displaystyle \frac{1}{3}\tau \right)\\ -0.02622{R}_{3}\left[x-\displaystyle \frac{1}{3}\tau \right]-0.065601{R}_{4}\left[x-\displaystyle \frac{1}{3}\tau \right]\end{array}\right)\\ \,\times \,\sin \left[6x+\tau +0.1\right].\end{array}\end{eqnarray}$

4.4. The numerical solution using the HWNS corresponding to the exact solution derived by GKS (imaginary part)

For the imaginary part equation (12) with the following
$\begin{eqnarray}\begin{array}{l}\delta =R={g}_{c}={g}_{R}={\gamma }_{R}={n}_{R}=w=k=1,\\ P=\displaystyle \frac{-89}{16},{\gamma }_{c}=-\displaystyle \frac{1}{2},q=-\displaystyle \frac{5}{4},\end{array}\end{eqnarray}$
becomes
$\begin{eqnarray}\displaystyle \frac{1}{4}u^{\prime\prime} \left(\zeta \right)-\displaystyle \frac{3}{4}u^{\prime} \left(\zeta \right)+\displaystyle \frac{1}{2}u\left(\zeta \right)-\displaystyle \frac{1}{2}{u}^{3}\left(\zeta \right)=0,\end{eqnarray}$
whose exact solution derived by GKS is equation (28), which has the following initial conditions
$\begin{eqnarray}u\left(0\right)=-\displaystyle \frac{1}{2},u^{\prime} \left(0\right)=-\displaystyle \frac{1}{4}.\end{eqnarray}$
The HWNS considers the solution of equation (76) in the form
$\begin{eqnarray}u^{\prime\prime} \left(\zeta \right)=\displaystyle \sum _{i=1}^{2M}{a}_{i}{h}_{i}\left(\zeta \right).\end{eqnarray}$
By integrating equation (78) twice from $0\to \zeta $ we obtain
$\begin{eqnarray}\displaystyle \begin{array}{rcl}u^{\prime} \left(\zeta \right) & = & \sum _{i=1}^{2M}{a}_{i}{p}_{i}\left(\zeta \right)+u^{\prime} \left(0\right)\\ & = & -\displaystyle \frac{1}{4}+\sum _{i=1}^{2M}{a}_{i}{p}_{i}\left(\zeta \right),\end{array}\end{eqnarray}$
$\begin{eqnarray}\displaystyle \begin{array}{rcl}u\left(\zeta \right) & = & \displaystyle \sum _{i=1}^{2M}{a}_{i}{Q}_{i}\left(\zeta \right)-\displaystyle \frac{1}{4}\zeta +u\left(0\right)\\ & = & -\displaystyle \frac{1}{2}-\displaystyle \frac{1}{4}\zeta +\displaystyle \sum _{i=1}^{2M}{a}_{i}{Q}_{i}\left(\zeta \right).\end{array}\end{eqnarray}$
By substituting from equations (78)–(80) into equation (76) we get
$\begin{eqnarray}\begin{array}{c}\displaystyle \frac{1}{4}\displaystyle \sum _{i=1}^{2M}{a}_{i}{h}_{i}\left(\zeta \right)-\displaystyle \frac{3}{4}\left(-\displaystyle \frac{1}{4}+\displaystyle \sum _{i=1}^{2M}{a}_{i}{P}_{i}\left(\zeta \right)\right)\\ \,+\,\displaystyle \frac{1}{2}\left(-\displaystyle \frac{1}{2}-\displaystyle \frac{1}{4}\zeta +\displaystyle \sum _{i=1}^{2M}{a}_{i}{Q}_{i}\left(\zeta \right)\right)\\ \,-\,\displaystyle \frac{1}{2}{\left(-\displaystyle \frac{1}{2}-\displaystyle \frac{1}{4}\zeta +\displaystyle \sum _{i=1}^{2M}{a}_{i}{Q}_{i}\left(\zeta \right)\right)}^{3}=0.\end{array}\end{eqnarray}$
Satisfying equation (81) at the collocation points given in equation (57) we get
$\begin{eqnarray}\begin{array}{c}\displaystyle \frac{1}{4}\displaystyle \sum _{i=1}^{2M}{a}_{i}{h}_{i}\left({\zeta }_{l}\right)\,-\displaystyle \frac{3}{4}\left(-\displaystyle \frac{1}{4}+\displaystyle \sum _{i=1}^{2M}{a}_{i}{P}_{i}\left({\zeta }_{l}\right)\right)\\ \,+\,\displaystyle \frac{1}{2}\left(-\displaystyle \frac{1}{2}-\displaystyle \frac{1}{4}{\zeta }_{l}+\displaystyle \sum _{i=1}^{2M}{a}_{i}{Q}_{i}\left({\zeta }_{l}\right)\right)\\ \,-\,\displaystyle \frac{1}{2}{\left(-\displaystyle \frac{1}{2}-\displaystyle \frac{1}{4}{\zeta }_{l}+\displaystyle \sum _{i=1}^{2M}{a}_{i}{Q}_{i}\left({\zeta }_{l}\right)\right)}^{3}=0\,{,}\,l=1,2,\mathrm{..}.,2M.\end{array}\end{eqnarray}$
Let the parameter $J=1\to M={2}^{J}=2\to 2M=4\,\to l=1,2,3,4$ in equation (82)
$\begin{eqnarray}\begin{array}{c}\displaystyle \frac{1}{4}\displaystyle \sum _{i=1}^{4}{a}_{i}{h}_{i}\left({\zeta }_{l}\right)-\displaystyle \frac{3}{4}\left(-\displaystyle \frac{1}{4}+\displaystyle \sum _{i=1}^{4}{a}_{i}{P}_{i}\left({\zeta }_{l}\right)\right)\\ \,+\,\displaystyle \frac{1}{2}\left(-\displaystyle \frac{1}{2}-\displaystyle \frac{1}{4}{\zeta }_{l}+\displaystyle \sum _{i=1}^{4}{a}_{i}{Q}_{i}\left({\zeta }_{l}\right)\right)\\ \,-\,\displaystyle \frac{1}{2}{\left(-\displaystyle \frac{1}{2}-\displaystyle \frac{1}{4}{\zeta }_{l}+\displaystyle \sum _{i=1}^{4}{a}_{i}{Q}_{i}\left({\zeta }_{l}\right)\right)}^{3}=0,l=1,2,3,4.\end{array}\end{eqnarray}$
Equation (83), at collocation points ${\zeta }_{l}\,=\displaystyle \frac{l-0.5}{2M}=\displaystyle \frac{l-0.5}{4},l=1,2,3,4$, surrenders to a system of unknowns ${a}_{i},i=1,2,3,4,$ and its solution is
$\begin{eqnarray}\begin{array}{rcl}{a}_{1} & = & 0.0771199,\\ {a}_{2} & = & -0.0397252,\\ {a}_{3} & = & -0.0172571,\\ {a}_{4} & = & -0.0252802.\end{array}\end{eqnarray}$
Then, the Haar wavelet solution of equation (84) is
$\begin{eqnarray}\begin{array}{rcl}u\left(\zeta \right) & = & -\displaystyle \frac{1}{2}-\displaystyle \frac{1}{4}\zeta +{a}_{1}{Q}_{1}\left(\zeta \right)\\ & & +\,{a}_{2}{Q}_{2}\left(\zeta \right)+{a}_{3}{Q}_{3}\left(\zeta \right)+{a}_{4}{Q}_{4}\left(\zeta \right)\\ & = & -\displaystyle \frac{1}{2}-\displaystyle \frac{1}{4}\zeta 0.0771199{Q}_{1}\left(\zeta \right)-0.0397252{Q}_{2}\left(\zeta \right)\\ & & -\,0.0172571{Q}_{3}\left(\zeta \right)-0.0252802{Q}_{4}\left(\zeta \right),\end{array}\end{eqnarray}$
$\begin{eqnarray*}{\rm{Q}}{\rm{\Psi }}\left(x,\tau \right)=u\left(\zeta \right){{\rm{e}}}^{{\rm{i}}\eta \left(x,\tau \right)}\end{eqnarray*}$
$\begin{eqnarray}\begin{array}{l}\mathrm{Re}{\rm{\Psi }}\left(x,\tau \right)\,=\\ \left(\begin{array}{l}-\displaystyle \frac{1}{2}-\displaystyle \frac{1}{4}\left(x+\tau \right)+\,0.0771199{Q}_{1}\left(x+\tau \right)\\ -0.0397252{Q}_{2}\left(x+\tau \right)\\ -0.0172571{Q}_{3}\left(x+\tau \right)-0.0252802{Q}_{4}\left(x+\tau \right)\end{array}\right)\\ \,\times \,\cos \left[-\displaystyle \frac{5}{4}x+\tau +0.1\right],\end{array}\end{eqnarray}$
and
$\begin{eqnarray}\begin{array}{c}\rm{Im}{\rm{\Psi }}\left(x,\tau \right)\,=\\ \left(\begin{array}{c}-\displaystyle \frac{1}{2}-\displaystyle \frac{1}{4}\left(x+\tau \right)+\,0.0771199{Q}_{1}\left(x+\tau \right)\\ -0.0397252{Q}_{2}\left(x+\tau \right)\\ -0.0172571{Q}_{3}\left(x+\tau \right)-0.0252802{Q}_{4}\left(x+\tau \right)\end{array}\right)\\ \times \,\sin \left[-\displaystyle \frac{5}{4}x+\tau +0.1\right].\end{array}\end{eqnarray}$

4.5. The numerical solution by the HWNS corresponding to the exact solution derived by the $\left(\displaystyle \frac{G^{\prime} }{G}\right)$-expansion scheme (real part)

According to $\left(\displaystyle \frac{G^{\prime} }{G}\right)$ the real part of equation (11) with the following values
$\begin{eqnarray}\begin{array}{l}R=P=q={g}_{c}={g}_{R}={\gamma }_{R}={n}_{R}=w=k=1,\\ \delta =\displaystyle \frac{-10}{27},{\gamma }_{c}=\displaystyle \frac{2}{5},\end{array}\end{eqnarray}$
becomes
$\begin{eqnarray}\displaystyle \frac{1}{2}u^{\prime\prime\prime} \left(\zeta \right)-\displaystyle \frac{7}{18}u^{\prime} \left(\zeta \right)-3u^{\prime} \left(\zeta \right){u}^{2}\left(\zeta \right)-\displaystyle \frac{1}{9}u\left(\zeta \right)+{u}^{3}\left(\zeta \right)=0,\end{eqnarray}$
whose exact solution derived by $\left(\displaystyle \frac{G^{\prime} }{G}\right)$ is equation (40), which has the following initial conditions
$\begin{eqnarray}u\left(0\right)=\displaystyle \frac{1}{6},u^{\prime} \left(0\right)=-\displaystyle \frac{1}{12},u^{\prime\prime} \left(0\right)=\displaystyle \frac{1}{18}.\end{eqnarray}$
The Haar wavelet solution of equation (89) takes the form
$\begin{eqnarray}u^{\prime\prime\prime} \left(\zeta \right)=\displaystyle \sum _{i=1}^{2M}{a}_{i}{h}_{i}\left(\zeta \right).\end{eqnarray}$
To reach $u\left(\zeta \right)$, we integrate equation (91) three times from $0\to \zeta $
$\begin{eqnarray}u^{\prime\prime} \left(\zeta \right)=\displaystyle \sum _{i=1}^{2M}{a}_{i}{p}_{i}\left(\zeta \right)+u^{\prime\prime} \left(0\right)=\displaystyle \frac{1}{18}+\displaystyle \sum _{i=1}^{2M}{a}_{i}{p}_{i}\left(\zeta \right),\end{eqnarray}$
$\begin{eqnarray}\displaystyle \begin{array}{rcl}u^{\prime} \left(\zeta \right) & = & \sum _{i=1}^{2M}{a}_{i}{Q}_{i}\left(\zeta \right)+\displaystyle \frac{1}{18}\zeta +u^{\prime} \left(0\right)\\ & = & -\displaystyle \frac{1}{12}+\displaystyle \frac{1}{18}\zeta +\sum _{i=1}^{2M}{a}_{i}{Q}_{i}\left(\zeta \right),\end{array}\end{eqnarray}$
$\begin{eqnarray}\displaystyle \begin{array}{rcl}u\left(\zeta \right) & = & \displaystyle \sum _{i=1}^{2M}{a}_{i}{R}_{i}\left(\zeta \right)+\displaystyle \frac{1}{36}{\zeta }^{2}-\displaystyle \frac{1}{12}\zeta +u\left(0\right)\\ & = & \displaystyle \frac{1}{36}{\zeta }^{2}-\displaystyle \frac{1}{12}\zeta +\displaystyle \frac{1}{6}+\displaystyle \sum _{i=1}^{2M}{a}_{i}{R}_{i}\left(\zeta \right).\end{array}\end{eqnarray}$
Using equations (91)–(94) in equation (89) one can get
$\begin{eqnarray}\begin{array}{c}\displaystyle \frac{1}{2}\displaystyle \sum _{i=1}^{2M}{a}_{i}{h}_{i}\left(\zeta \right)-\displaystyle \frac{7}{18}\left(-\displaystyle \frac{1}{12}+\displaystyle \frac{1}{18}\zeta +\displaystyle \sum _{i=1}^{2M}{a}_{i}{Q}_{i}\left(\zeta \right)\right)\\ \,-\,\displaystyle \frac{1}{9}\left(\displaystyle \frac{1}{36}{\zeta }^{2}-\displaystyle \frac{1}{12}\zeta +\displaystyle \frac{1}{6}+\displaystyle \sum _{i=1}^{2M}{a}_{i}{R}_{i}\left(\zeta \right)\right)\\ \,-\,3\left(-\displaystyle \frac{1}{12}+\displaystyle \frac{1}{18}\zeta +\displaystyle \sum _{i=1}^{2M}{a}_{i}{Q}_{i}\left(\zeta \right)\right)\\ \,\times \,{\left(\displaystyle \frac{1}{36}{\zeta }^{2}-\displaystyle \frac{1}{12}\zeta +\displaystyle \frac{1}{6}+\displaystyle \sum _{i=1}^{2M}{a}_{i}{R}_{i}\left(\zeta \right)\right)}^{2}\\ \,+\,{\left(\displaystyle \frac{1}{36}{\zeta }^{2}-\displaystyle \frac{1}{12}\zeta +\displaystyle \frac{1}{6}+\displaystyle \sum _{i=1}^{2M}{a}_{i}{R}_{i}\left(\zeta \right)\right)}^{3}=0\,.\end{array}\end{eqnarray}$
Putting the level of resolution $J=1\to \,M={2}^{J}=2\to 2M=4\to l=1,2,3,4,$ satisfying equation (95) at the collocation points ${\zeta }_{l}=\displaystyle \frac{l-0.5}{2M}=\displaystyle \frac{l-0.5}{4},l=1,2,3,4$, we obtain a system in the unknowns ${a}_{i},i=1,2,3,4,$ and by solving this system we find
$\begin{eqnarray}\begin{array}{rcl}{a}_{1} & = & -0.0250399,\\ {a}_{2} & = & -0.0067265,\\ {a}_{3} & = & -0.00423359,\\ {a}_{4} & = & -0.00253455.\end{array}\end{eqnarray}$
The Haar wavelet solution of equation (89) is
$\begin{eqnarray}\begin{array}{rcl}u\left(\zeta \right) & = & \displaystyle \frac{1}{36}{\zeta }^{2}-\displaystyle \frac{1}{12}\zeta +\displaystyle \frac{1}{6}+{a}_{1}{R}_{1}\left(\zeta \right)+{a}_{2}{R}_{2}\left(\zeta \right)\\ & & +\,{a}_{3}{R}_{3}(\zeta )+{a}_{4}{R}_{4}\left(\zeta \right)\\ & = & \displaystyle \frac{1}{36}{\zeta }^{2}-\displaystyle \frac{1}{12}\zeta +\displaystyle \frac{1}{6}\\ & & -\,0.0250399\,{R}_{1}\left(\zeta \right)-0.0067265\,{R}_{2}\left(\zeta \right)\\ & & -\,0.00423359{R}_{3}\left(\zeta \right)-0.00253455\,{R}_{4}\left(\zeta \right).\end{array}\end{eqnarray}$
And hence, ${\rm{\Psi }}\left(x,\tau \right)=u\left(\zeta \right){{\rm{e}}}^{{\rm{i}}\eta \left(x,\tau \right)}$, from which we get
$\begin{eqnarray}\begin{array}{l}\mathrm{Re}{\rm{\Psi }}(x,\tau )\,=\\ \left(\begin{array}{l}\displaystyle \frac{1}{36}{\left(x+\tau \right)}^{2}+\displaystyle \frac{1}{6}-0.0250399\,{R}_{1}\left(x+\tau \right)\\ -0.0067265\,{R}_{2}\left(x+\tau \right)-0.0042336{R}_{3}\left(x+\tau \right)\\ -0.00253455\,{R}_{4}\left(x+\tau \right)-\displaystyle \frac{1}{12}\left(x+\tau \right)\end{array}\right)\\ \,\times \,\cos \left[x-\displaystyle \frac{10}{27}\tau +0.1\right],\end{array}\end{eqnarray}$
$\begin{eqnarray}\begin{array}{c}\rm{Im}{\rm{\Psi }}\left(x,\tau \right)\,=\\ \left(\begin{array}{c}\displaystyle \frac{1}{36}{\left(x+\tau \right)}^{2}+\displaystyle \frac{1}{6}-0.0250399\,{R}_{1}\left(x+\tau \right)\\ -0.0067265\,{R}_{2}\left(x+\tau \right)-0.00423359{R}_{3}\left(x+\tau \right)\\ -0.00253455\,{R}_{4}\left(x+\tau \right)-\displaystyle \frac{1}{12}\left(x+\tau \right)\end{array}\right)\\ \,\times \,\sin \left[x-\displaystyle \frac{10}{27}\tau +0.1\right].\end{array}\end{eqnarray}$

4.6. The numerical solution by the HWNS corresponding to the exact solution derived by the $\left(\displaystyle \frac{G^{\prime} }{G}\right)$-expansion scheme (imaginary part)

The imaginary part equation (12) with the following
$\begin{eqnarray}\begin{array}{l}\delta =R={g}_{R}={\gamma }_{c}={\gamma }_{R}={n}_{R}=w=k=P=q=1,\\ {g}_{c}=\displaystyle \frac{11}{2},\end{array}\end{eqnarray}$
is reduced to
$\begin{eqnarray}\displaystyle \frac{5}{2}u^{\prime\prime} \left(\zeta \right)-\displaystyle \frac{5}{2}u\left(\zeta \right)-5{u}^{3}\left(\zeta \right)=0,\end{eqnarray}$
whose exact solution derived by $\left(\displaystyle \frac{G^{\prime} }{G}\right)$ is equation (47), which has the following initial conditions
$\begin{eqnarray}u\left(0\right)=i\sqrt{2},u^{\prime} \left(0\right)=0.\end{eqnarray}$
The HWNS considers the solution of equation (101) in the form
$\begin{eqnarray}u^{\prime\prime} \left(\zeta \right)=\displaystyle \sum _{i=1}^{2M}{a}_{i}{h}_{i}\left(\zeta \right).\end{eqnarray}$
By integrating equation (103) twice from $0\to \zeta $ to obtain $u\left(\zeta \right)$
$\begin{eqnarray}u^{\prime} \left(\zeta \right)=\displaystyle \sum _{i=1}^{2M}{a}_{i}{p}_{i}\left(\zeta \right)+u^{\prime} \left(0\right)=\displaystyle \sum _{i=1}^{2M}{a}_{i}{p}_{i}\left(\zeta \right),\end{eqnarray}$
$\begin{eqnarray}u\left(\zeta \right)=\displaystyle \sum _{i=1}^{2M}{a}_{i}{Q}_{i}\left(\zeta \right)+u\left(0\right)={\rm{i}}\sqrt{2}+\displaystyle \sum _{i=1}^{2M}{a}_{i}{Q}_{i}\left(\zeta \right).\end{eqnarray}$
Inserting equations (103)–(105) into equation (101) we get
$\begin{eqnarray}\begin{array}{c}\displaystyle \frac{5}{2}\displaystyle \sum _{i=1}^{2M}{a}_{i}{h}_{i}\left(\zeta \right)-\displaystyle \frac{5}{2}\left(i\sqrt{2}+\displaystyle \sum _{i=1}^{2M}{a}_{i}{Q}_{i}\left(\zeta \right)\right)\\ \,-\,5{\left({\rm{i}}\sqrt{2}+\displaystyle \sum _{i=1}^{2M}{a}_{i}{Q}_{i}\left(\zeta \right)\right)}^{3}=0.\end{array}\end{eqnarray}$
Taking the level of resolution $J=1,$ satisfying equation (106) at the collocation points ${\zeta }_{l}=\displaystyle \frac{l-0.5}{2M}\,=\displaystyle \frac{l-0.5}{4},l=1,2,3,4$, a system in the unknowns ${a}_{i},i=1,2,3,4$ is obtained. Solving this system, we get
$\begin{eqnarray}\begin{array}{rcl}{a}_{1} & = & 0.175656{\rm{i}},\\ {a}_{2} & = & -2.84584{\rm{i}},\\ {a}_{3} & = & -1.23671{\rm{i}},\\ {a}_{4} & = & -1.074{\rm{i}}.\end{array}\end{eqnarray}$
Then the Haar wavelet solution of equation (110) is:
$\begin{eqnarray}\begin{array}{rcl}u\left(\zeta \right) & = & {\rm{i}}\sqrt{2}+0.175656{\rm{i}}{Q}_{1}\left[\zeta \right]-2.84584{\rm{i}}{Q}_{2}\left[\zeta \right]\\ & & -\,1.23671{\rm{i}}{Q}_{3}\left[\zeta \right]-1.074{\rm{i}}{Q}_{4}\left[\zeta \right].\end{array}\end{eqnarray}$
And hence, ${\rm{\Psi }}\left(x,\tau \right)=u\left(\zeta \right){{\rm{e}}}^{{\rm{i}}\eta \left(x,\tau \right)}$, from which we get
$\begin{eqnarray}\begin{array}{l}\mathrm{Re}{\rm{\Psi }}(x,\tau )\,=\\ -\,\left(\begin{array}{l}\sqrt{2}+0.175656{Q}_{1}\left[x+\tau \right]-2.84584{Q}_{2}\left[x+\tau \right]\\ -1.23671{Q}_{3}\left[x+\tau \right]-1.074{Q}_{4}\left[x+\tau \right]\end{array}\right)\\ \,\times \,\sin \left[x+\tau +0.1\right],\end{array}\end{eqnarray}$
$\begin{eqnarray}\begin{array}{c}\rm{Im}{\rm{\Psi }}\left(x,\tau \right)\,=\\ \left(\begin{array}{c}\sqrt{2}+0.175656{Q}_{1}\left[x+\tau \right]-2.84584{Q}_{2}\left[x+\tau \right]\\ -1.23671{Q}_{3}\left[x+\tau \right]-1.074{Q}_{4}\left[x+\tau \right]\end{array}\right)\\ \,\times \,\cos \left[x+\tau +0.1\right].\end{array}\end{eqnarray}$

5. Conclusion

In this paper, we succeeded in deriving diverse enormous soliton solutions to the Gross–Pitaevskii equation, which describes the dynamics of two dark solitons in a polarization condensate under non-resonant pumping, analytically for the first time using the generalized Kudryashov method and the (G’/G)-method. The extracted solutions in the framework of these two suggested schemes appear in forms that include dark, bright, combined bright-shaped and dark-shaped soliton solutions, hyperbolic function soliton solutions, singular shaped soliton solutions and other rational soliton solutions. Moreover, the Haar wavelet numerical method, which is one of the famous techniques in numerical methods, has been utilized to explore the numerical solutions for all realized soliton solutions by the above two techniques. The 2D and 3D graphs have been designed utilizing the Mathematica program and the figures simulations have been configured to show the agreement range between the soliton solutions and the numerical solutions, which corresponded perfectly in figures [123]. Our results are new compared with [22] who used the variational approach and analytically derived the time evolution equations for the soliton parameters and presented the first analytical result on the two-dark soliton problem in the context of a polarization Bose–Einstein Condensates formed under non-resonant pumping by solving the dissipative Gross–Pitaevskii equation that compares this analytical result with the numerical solutions for the trajectory of two solitons directly obtained from the dissipative Gross–Pitaevskii equation. Our realized analytical solutions and their corresponding numerical solutions have not been achieved before.
Figure 16. The numerical solution behavior to equation (86) with values given in equation (75).
Figure 17. The numerical solution behavior to equation (87) with values given in equation (75).
Figure 18. The 2D and 3D soliton HWN solution behavior of $\left|{\rm{\Psi }}\right|$ equations (86) or (87).
Figure 19. The numerical solution behavior to the Re. part of equation (98) with values $R=P=q={g}_{c}={g}_{R}={\gamma }_{R}={n}_{R}=w=k=1,$ $\delta =\displaystyle \frac{-10}{27},$ ${\gamma }_{c}=\displaystyle \frac{2}{5}$.
Figure 20. The numerical solution behavior to the Im. part of equation (99) with values $R=P=q={g}_{c}={g}_{R}={\gamma }_{R}={n}_{R}=w=k=1,$ $\delta =\displaystyle \frac{-10}{27},$ ${\gamma }_{c}=\displaystyle \frac{2}{5}$.
Figure 21. The 2D and 3D soliton HWN solution behavior of $\left|{\rm{\Psi }}\right|$ equation (98) or (99).
Figure 22. The numerical solution behavior to the Re. part of equation (109) with values $\delta =R={g}_{R}={\gamma }_{c}={\gamma }_{R}={n}_{R}=w=k=P=q=1,$ ${g}_{c}=\displaystyle \frac{11}{2}$.
Figure 23. The numerical solution behavior to the Im. part of equation (110) with values $\delta =R={g}_{R}={\gamma }_{c}={\gamma }_{R}={n}_{R}=w=k=P\,=q=1,$ ${g}_{c}=\displaystyle \frac{11}{2}$.
1
Pethick C J, Smith H 2008 Bose–Einstein Condensation in Dilute Gases Cambridge University Press

2
Kevrekidis P G, Frantzeskakis D J, Carretero-Gonzalez R 2015 The Defocusing Nonlinear Schrödinger Equation: From Dark Solitons to Vortices and Vortex Rings Philadelphia, PA SIAM

3
Kevrekidis P, Frantzeskakis D 2016 Solitons in coupled nonlinear Schrödinger models: a survey of recent developments Rev. Phys. 1 140 153

DOI

4
Xu X, Chen L, Zhang Z, Liang Z 2019 Dark–bright solitons in spinor polarisation condensates under nonresonant pumping J. Phys. B 52 025303

DOI

5
Zhou Q 2022 Influence of parameters of optical fibers on optical soliton interactions Chin. Phys. Lett. 39 010501

DOI

6
Bobrovska N, Ostrovskaya E A, Matuszewski M 2014 Stability and spatial coherence of nonresonantly pumped exciton-polariton condensates Phys. Rev. B 90 205304

DOI

7
Keeling J, Marchetti F M, Szymańska M H, Littlewood P B 2007 Collective coherence in planar semiconductor microcavities Semicond. Sci. Technol. 22 R1

DOI

8
Luders C, Pukrop M, Rozas E, Schneider C, Höfling S, Sperling J, Schumacher S, Amann M 2021 Quantifying quantum coherence in polarisation condensates PRX Quantum 2 030320

DOI

9
Schneider C, Winkler K, Fraser M D, Kamp M, Yamamoto Y, Ostrovskaya E A, Hofling S 2016 Exciton-polarisation trapping and potential landscape engineering Rep. Prog. Phys. 80 016503

DOI

10
Wang B, Zhang Z, Li B 2020 Soliton molecules and some hybrid solutions for the nonlinear Schrödinger equation Chin. Phys. Lett. 37 030501

DOI

11
Zhao L C, Qin Y H, Wang W L, Yang Z Y 2020 A direct derivation of the dark soliton excitation energy Chin. Phys. Lett. 37 050502

DOI

12
Zhang K, Wen W, Lin J, Li H J 2021 Generation and stability of diversiform nonlinear localized modes in exciton–polarisation condensates; New J. Phys. 23 033011

DOI

13
Cheng S C, Chen T W 2020 Topological spin-Meissner states in nonequilibrium polarisation condensates Phys. Rev. B 101 125304

DOI

14
Mu N M A, Rubo Y G, Toikka L A 2020 Long Josephson junctions with exciton-polarisation condensates Phys. Rev. B 101 184509

DOI

15
Jiang Y, Wang G, Sun X M, Feng S H, Xue Y 2019 Manipulation of a stable dark soliton train in polarisation condensate Opt. Express 27 10185

DOI

16
Opala A, Pieczarka M, Bobrovska N, Matuszewski M 2018 Dynamics of defect-induced dark solitons in an exciton-polarisation condensate Phys. Rev. B 97 155304

DOI

17
Stepanov P, Amelio I, Rousset J G, Bloch J, Lemaitre A, Amo A, Minguzzi A, Carusotto I, Richard M 2019 Dispersion relation of the collective excitations in a resonantly driven polarisation fluid Nat. Commun. 10 3869

DOI

18
Maıtre A, Lerario G, Medeiros A, Claude F, Glorieux Q, Giacobino E, Pigeon S, Bramati A 2020 Dark-soliton molecules in an exciton-polarisation superfluid Phys. Rev. X 10 041028

DOI

19
Lerario G, Koniakhin S V, Maître A, Solnyshkov D, Zilio A, Glorieux Q, Malpuech G, Giacobino E, Pigeon S, Bramati A 2020 Parallel dark-soliton pair in a bistable two-dimensional exciton-polarisation superfluid Phys. Rev. Res. 2 042041

DOI

20
Claude F 2020 Taming the snake instabilities in a polarisation superfluid Optica 7 1660

DOI

21
Yulin A V, Skryabin D V, Gorbach A V 2015 Dark solitons and vortices in the intrinsic bistability regime in exciton polarisation condensates Phys. Rev. B 92 064306

DOI

22
Zhang Y, Jia C, Liang Z 2022 Dynamics of two dark solitons in a polarisation condensate Chin. Phys. Lett. 39 020501

DOI

23
Kasprzak J 2006 Bose–Einstein condensation of exciton polarisations Nature 443 409

DOI

24
Deng H, Haug H, Yamamoto Y 2010 Exciton-polarisation Bose–Einstein condensation Rev. Mod. Phys. 82 1489

DOI

25
Carusotto I, Ciuti C 2013 Quantum fluids of light Rev. Mod. Phys. 85 299

DOI

26
Keeling J, Berloff N G 2011 Exciton–polarisation condensation Contemp. Phys. 52 131

DOI

27
Tariq, K U, Wazwaz A M, Javed R 2022 Construction of different wave structures, stability analysis and modulation instability of the coupled nonlinear Drinfel’d–Sokolov–Wilson model Chaos, Solitons Fractals 166 112903

DOI

28
Tariq, K U, Bekir A, Sana Nisar S 2023 The dynamical structures of the Sharma-Tasso-Olver model in doubly dispersive medium Chaos, Solitons Fractals 177 114290

DOI

29
Badshah F, Tariq K U, Bekir A, Tufail R N, Ilyas H 2024 Lump, periodic, travelling, semi-analytical solutions and stability analysis for the Ito integro-differential equation arising in shallow water waves Chaos, Solitons Fractals 182 114783

DOI

30
Badshah, F, Tariq K U, Ilyas H, Tufail R N 2024 Soliton, lumps, stability analysis and modulation instability for an extended (2+1)-dimensional Boussinesq model in shallow water Chaos, Solitons Fractals 187 115352

DOI

31
Ay N G, Yaşar E 2023 The residual symmetry, Bäcklund transformations, CRE integrability, and interaction solutions: (2+1)-dimensional Chaffee–Infante equation Commun. Theor. Phys. 75 115004

DOI

32
Wertz E 2010 Spontaneous formation and optical manipulation of extended polarisation condensates Nat. Phys. 6 860

DOI

33
Smirnov L A, Smirnova D A, Ostrovskaya E A, Kivshar Y S 2014 Dynamics and stability of dark solitons in exciton-polarisation condensates Phys. Rev. B 89 235310

DOI

34
Akbar M A, Wazwaz A M, Mahmud F, Baleanu D, Roy R, Barman H K, Mahmoud W, Al Sharifi M A A, Osman M S 2022 Dynamical behavior of solitons of the perturbed nonlinear Schrödinger equation and microtubules through the generalized Kudryashov scheme Res. Phys. 43 106079

DOI

35
Zahran E H M, Bekir A, Ibrahim R A, Myrzakulove R 2024 The new soliton solution types to the Myrzakulov–Lakshmanan-XXXII-equation AIMS Mathematics 9 6145 6160

DOI

36
Genc G, Ekici M, Biswas A, Belic M R 2020 Cubic-quartic optical solitons with Kudryashov’s law of refractive index by F-expansions schemes Res. Phys. 18 103273

DOI

37
Kumar D, Seadawy A R, Joardar A K 2018 Modified Kudryashov method via new exact solutions for some conformable fractional differential equations arising in mathematical biology Chin. J. Phys. 56 75 85

DOI

38
Bekir A 2008 Application of the (G’/G)-expansion method for nonlinear evolution equations Phys. Lett. A 372 3400 3406

DOI

39
Zahran E H M, Bekir A, Ibrahim R A 2024 Effective analytical solutions versus numerical treatments of Chavy–Waddy–Kolokolnikov bacterial aggregates model in phototaxic Eur. Phys. J. Plus 139 135

DOI

40
Zahran E H M, Bekir A 2023 Unexpected configurations for the optical solitons propagation in lossy fiber system with dispersion terms effect Math. Meth. Appl. Sci. 46 4055 4069

DOI

41
Chen C F, Hsiao C H 1997 Haar wavelet method for solving lumped and distributed parameter systems IEEE Proceeding Control Theory Appl. 144 87 94

DOI

42
Lepik U 2008 Application of Haar wavelet transform to solving integral and differential equations Appl. Math. Comput. 57 28 46

DOI

43
Zahran E H M, Bekir A, Ibrahim R A 2024 Unique soliton solutions to the nonlinear Schrödinger equation with weak non-locality and cubic–quintic–septic nonlinearity in nonlinear optical fibers Appl. Phys. B 130 34

DOI

44
Lepik U, Hein H 2014 Haar Wavelet with Applications Springer

45
Youssef I K, Ibrahim R A 2017 On the performance of Haar wavelet approach for boundary value problems and systems of Fredholm integral equations Math. Comput. Sci. 2 39 46

DOI

Outlines

/