Welcome to visit Communications in Theoretical Physics,
Particle Physics and Quantum Field Theory

Neutrino oscillation in the presence of background classical sources

  • Susobhan Mandal
Expand
  • Department of Physics, Indian Institute of Technology Bombay, Mumbai 400076, India

Received date: 2024-03-26

  Revised date: 2024-11-07

  Accepted date: 2024-11-12

  Online published: 2025-01-09

Copyright

© 2025 Institute of Theoretical Physics CAS, Chinese Physical Society and IOP Publishing. All rights, including for text and data mining, AI training, and similar technologies, are reserved.
This article is available under the terms of the IOP-Standard License.

Abstract

The presence of background classical sources affects quantum field theory significantly in different ways. Neutrino oscillation is a phenomenon that confirms that neutrinos are massive fermions in nature, a celebrated result in modern physics. Neutrino oscillation plays an important role in many astrophysical observations. However, the interactions between the background classical sources with neutrinos are not often considered. In the present article, we show the effect of some classical sources, namely matter currents, electromagnetic waves, torsion, and gravitational waves on neutrino oscillation. It is shown explicitly that the above sources can change the helicity state of neutrinos during neutrino oscillation.

Cite this article

Susobhan Mandal . Neutrino oscillation in the presence of background classical sources[J]. Communications in Theoretical Physics, 2025 , 77(4) : 045202 . DOI: 10.1088/1572-9494/ad91b4

1. Introduction

Neutrino oscillation is an interesting phenomenon in modern physics that is often observed in particle physics, nuclear physics [14], and cosmology [510]. Neutrino oscillation was first suggested by Pontecorvo in order to confirm the massive nature of neutrinos [11]. After many years of studies and efforts, it has brought the scientific community independent pieces of evidence of neutrino oscillations that have been obtained in a series of experiments [1222]. The phenomenon of neutrino mixing and the existence of non-zero neutrino masses have captured much attention because it opens up fascinating possibilities in physics beyond the Standard Model.
The nature of transition probability in neutrino oscillation depends on the medium through which neutrinos are propagating. Hence, the interactions between the medium and the neutrinos affect the nature of neutrino oscillation, which has been studied in the literature [2327]. Apart from the flavor oscillation, we also expect a change in helicity during the neutrino oscillation in a non-trivial medium, unlike in the vacuum neutrino oscillation. This has been discussed in the literature [2830] considering different interactions. The foremost theme of the present article is to show the nature of neutrino oscillation in the presence of some background classical sources which include a conserved matter current. In order to show that, we used some results related to the Dirac–Volkov equations [31]. Furthermore, the change in the helicity state of neutrinos during the neutrino flavor oscillation is also shown explicitly in this case. Using a similar mathematical approach, neutrino oscillation in the presence of a background electromagnetic plane-wave field is also shown, where neutrinos are coupled to the gauge field through their magnetic moments. This study would help us in understanding neutrino oscillations in the presence of astrophysical particles and other sources.
General relativity (GR) is a successful theory of classical gravity that agrees with a vast number of observations. GR is also successful in predicting many astrophysical observations. Gravitational wave (GW) is one of the predictions of GR which has been confirmed recently [3235]. The detection of GW is important as it is expected to open up new possibilities for both astrophysical and cosmological observations since the information carried by GW is different from its electromagnetic counterpart. This opens us up to a new way of understanding black holes, their formation, the merging of binary systems consisting of compact astrophysical objects, the search for exotic compact astrophysical objects, and others. Since GW couples to matter sources through their stress-energy tensor, we expect it affects the nature of neutrino oscillation with a change in the helicity states of neutrinos. However, the change is quantitatively small as the strength of the coupling constant is very small. This is explicitly shown in the present article. Therefore, in principle, neutrino oscillation can also be used in detecting GW.
GR is described by the Einstein–Hilbert action, which yields the field equations, known as Einstein’s equations, if varied with respect to the metric. However, if the metric and the non-Riemannian part of the connection, namely the torsion are considered as a priori independent variables assuming metric compatibility, then two field equations are obtained using the variational principle. The first one is nothing but the Einstein equation although the Einstein tensor, in this case, is not necessarily symmetric, while the other field equation relates the torsion tensor to the spin tensor. The existence of torsion promises to solve singularity and other problems in GR and cosmology, which are discussed in the literature [3639]. The existence of torsion is not yet ruled out from the experimental observations. The neutrino oscillation phenomenon can be used to probe the torsion, shown in [7]. In the present article, we show the effect of torsion as a classical source on neutrino oscillation in Minkowski spacetime. Furthermore, we show the change in the helicity state in neutrino oscillation due to the presence of torsion.

2. Neutrino oscillation in the presence of a matter current

Although neutrinos do not have an electric charge, there exists a conserved current corresponding to U(1) symmetry. If neutrinos are propagating in a medium in the presence of a background conserved current, we expect an interaction between the background matter current and the propagating neutrinos. In this section, the effect of this interaction in neutrino oscillation is shown explicitly in a covariant manner. Here, we consider a phenomenological model in which the conserved matter current is coupled to the U(1) current of neutrinos, which gives rise to a point interaction. This kind of interaction can in principle be obtained if a gauge field is minimally coupled to both the above-mentioned currents.

2.1. Dirac field theory in the presence of a background conserved current

The conserved current corresponding to U(1) symmetry in Dirac field theory is given by $\bar{\psi }{\gamma }^{\mu }\psi $ where $\Psi$ is the spinor field. A natural way to describe one such interaction between this current and the above-mentioned background source is by adding the Lorentz invariant term ${J}_{\mu }\bar{\psi }{\gamma }^{\mu }\psi $ in the Lagrangian density, where Jμ is the background conserved current. Considering the background conserved current as a function of φ = k. x, the action can be expressed as
$\begin{eqnarray}\begin{array}{rcl}S & = & \displaystyle \int {{\rm{d}}}^{4}x\left[{\rm{i}}\bar{\psi }(x){\gamma }^{\mu }{\partial }_{\mu }\psi (x)-m\bar{\psi }(x)\psi (x)\right.\\ & & -\left.\,{{gJ}}_{\mu }(\phi )\bar{\psi }(x){\gamma }^{\mu }\psi (x)\right],\end{array}\end{eqnarray}$
where g is the effective interaction coupling constant of mass dimension one and k2 = 0. Since Jμ is covariantly conserved, ${k}_{\mu }\tfrac{{{\rm{d}}J}^{\mu }}{{\rm{d}}\phi }=0$ . Hence, apart from mass, there are two other dimensionful quantities which are the coupling strength g and the momentum k. The equation of motion corresponding to the action (2.1) is the following
$\begin{eqnarray}({\rm{i}}\,\,{/}\!\!\!\!{\partial }-g\,\,{/}\!\!\!\!{J}(\phi )-m)\psi (x)=0.\end{eqnarray}$
This is nothing but the Dirac–Volkov equation [31]. The solution of the above equation corresponding to a positive-energy particle carrying momentum p is given by
$\begin{eqnarray}\begin{array}{rcl}{\psi }_{p}(x) & = & \sqrt{\displaystyle \frac{m}{E}}\left({\mathbb{I}}+g\displaystyle \frac{\,\,{/}\!\!\!\!{k}\,\,{/}\!\!\!\!{J}(\phi )}{k.p}\right)u(p)\\ & & \times \,{{\rm{e}}}^{-{\rm{i}}p.x-{\rm{i}}{\displaystyle \int }_{{\phi }_{0}}^{\phi }\left[g\displaystyle \frac{p.J(\phi ^{\prime} )}{k.p}-\displaystyle \frac{{g}^{2}{J}^{2}(\phi ^{\prime} )}{2k.p}\right]{\rm{d}}\phi ^{\prime} },\end{array}\end{eqnarray}$
where $\sqrt{\tfrac{m}{E}}$ is a normalization factor, E = p0. u(p) is a spinor satisfying $(\,\,{/}\!\!\!\!{p}-m)u(p)=0$ , and ${\bar{u}}_{s}(p){\gamma }^{\mu }{u}_{s^{\prime} }(p)=\tfrac{{p}^{\mu }}{m}{\delta }_{{ss}^{\prime} }$ where p2 = m2. Here $s,s^{\prime} =+,-$ denotes the helicity of states. On the other hand, the solution of the anti-particle is given by
$\begin{eqnarray}\begin{array}{rcl}{\psi }_{p}^{({\rm{anti}})}(x) & = & \sqrt{\displaystyle \frac{m}{E}}\left({\mathbb{I}}-g\displaystyle \frac{\,\,{/}\!\!\!\!{k}\,\,{/}\!\!\!\!{J}(\phi )}{k.p}\right)v(p)\\ & & \times \,{{\rm{e}}}^{-{\rm{i}}p.x+{\rm{i}}{\displaystyle \int }_{{\phi }_{0}}^{\phi }\left[g\displaystyle \frac{p.J(\phi ^{\prime} )}{k.p}+\displaystyle \frac{{g}^{2}{J}^{2}(\phi ^{\prime} )}{2k.p}\right]{\rm{d}}\phi ^{\prime} },\end{array}\end{eqnarray}$
where v(p) is a spinor satisfying $(\,\,{/}\!\!\!\!{p}+m)v(p)=0$ , and ${\bar{v}}_{s}(p){\gamma }^{\mu }{v}_{s^{\prime} }(p)=\tfrac{{p}^{\mu }}{m}{\delta }_{{ss}^{\prime} }$ where p2 = m2.
The neutrinos are electrically neutral, however, due to the global U(1) symmetry, there is an associated conserved 4-current which is $\bar{\psi }{\gamma }^{\mu }\psi $ , and the associated conserved charge is given by the number of neutrinos minus the number of its antiparticles.
Consider quantum electrodynamics (QED) in which we consider the electrons, protons and other charged particles coupled to the photons. It is not hard to see that if we integrate out the photon degrees of freedom then there will be four-fermion interaction terms which involve different conserved 4-currents associated with different charged particles. This can also be seen in the two and higher loop Feynman diagrams at the level of generating functionals.
If an astrophysical source, for example a supernova explosion of a star, is emitting neutrinos and they are coupled to the plasma ejected in some direction, then we expect naturally such a current-current interaction which breaks the Lorentz symmetry due to a preferred direction. This is the motivation behind considering the vector current interaction in this section. Moreover, the above-mentioned model can also be explained from the point view of an induced electric charge of the neutrinos in a dispersive medium as shown in [40].

2.2. Neutrino oscillation

In mass eigenstates, the action describing neutrinos propagating in a background with a source current is given by
$\begin{eqnarray}\begin{array}{rcl}S & = & \displaystyle \int {{\rm{d}}}^{4}x\displaystyle \sum _{j}\left[i{\bar{\psi }}_{j}(x){\gamma }^{\mu }{\partial }_{\mu }{\psi }_{j}(x)-{m}_{j}{\bar{\psi }}_{j}(x){\psi }_{j}(x)\right.\\ & & -\left.\,{{gJ}}_{\mu }(\phi ){\bar{\psi }}_{j}(x){\gamma }^{\mu }{\psi }_{j}(x)\right],\phi =k.x,\end{array}\end{eqnarray}$
where {mj} are diagonal elements of a diagonalized mass matrix. However, this mass matrix is non-diagonal in flavor eigenstates {∣να⟩} which are represented by the linear superposition of the mass eigenstates {∣νi⟩}:
$\begin{eqnarray}| {\nu }_{\alpha }\rangle =\displaystyle \sum _{i}{U}_{\alpha i}| {\nu }_{i}\rangle ,\end{eqnarray}$
where U (PMNS matrix) is a unitary matrix through which we can transform the mass matrix into a diagonal form and it is parametrized as
$\begin{eqnarray}U=\left[\begin{array}{lll}{c}_{12}{c}_{13} & {s}_{12}{c}_{13} & {s}_{13}{{\rm{e}}}^{-{\rm{i}}{\delta }_{{CP}}}\\ -{s}_{12}{c}_{23}-{c}_{12}{s}_{23}{s}_{13}{{\rm{e}}}^{{\rm{i}}{\delta }_{{CP}}} & {c}_{12}{c}_{23}-{s}_{12}{s}_{23}{s}_{13}{{\rm{e}}}^{{\rm{i}}{\delta }_{{CP}}} & {s}_{23}{c}_{13}\\ {s}_{12}{s}_{23}-{c}_{12}{c}_{23}{s}_{13}{{\rm{e}}}^{{\rm{i}}{\delta }_{{CP}}} & -{c}_{12}{s}_{23}-{s}_{12}{c}_{23}{s}_{13}{{\rm{e}}}^{{\rm{i}}{\delta }_{{CP}}} & {c}_{23}{c}_{13},\end{array}\right]\end{eqnarray}$
where ${c}_{{ij}}=\cos {\theta }_{{ij}}$ and ${s}_{{ij}}=\sin {\theta }_{{ij}}$ . If a beam of pure να state is produced at initial time t = 0, then the initial state is a superposition of the mass eigenstates
$\begin{eqnarray}| {\nu }_{\alpha }(0)\rangle =\displaystyle \sum _{i}{U}_{\alpha i}| {\nu }_{i}\rangle .\end{eqnarray}$
The time evolution of a mass eigenstate ∣νi⟩ is determined by the Dirac equation for a propagating neutrino with definite mass mi. From the Dirac equation, we obtain the following expression of time-evolved mass eigenstate with momentum $\vec{p}$
$\begin{eqnarray}\begin{array}{rcl}| {\nu }_{j},s{\rangle }_{t} & = & \sqrt{\displaystyle \frac{{m}_{j}}{2{E}_{j}}}\left({\mathbb{I}}+g\displaystyle \frac{\,\,{/}\!\!\!\!{k}\,\,{/}\!\!\!\!{J}(\phi )}{k.{p}_{j}}\right){u}_{s}({p}_{j})\\ & & \times \,{{\rm{e}}}^{-{{\rm{i}}E}_{j}t-{\rm{i}}{\displaystyle \int }_{{\phi }_{0}}^{\phi }\left[g\displaystyle \frac{{p}_{j}.J(\phi ^{\prime} )}{k.{p}_{j}}-\displaystyle \frac{{g}^{2}{J}^{2}(\phi ^{\prime} )}{2k.{p}_{j}}\right]{\rm{d}}\phi ^{\prime} }| {\nu }_{j},s\rangle ,\end{array}\end{eqnarray}$
where ${p}_{j}=({E}_{j},\vec{p})$ and ${E}_{j}=\sqrt{{\vec{p}}^{2}+{m}_{j}^{2}}$ . On the other hand, $\phi (t,\vec{x})\equiv \phi $ and $\phi (t=0,\vec{x})\equiv {\phi }_{0}$ . As a consequence of (2.6), we obtain
$\begin{eqnarray}\begin{array}{rcl}| {\nu }_{\alpha }(t),s\rangle & = & \displaystyle \sum _{j}{U}_{\alpha j}\sqrt{\displaystyle \frac{{m}_{j}}{2{E}_{j}}}\left({\mathbb{I}}+g\displaystyle \frac{\,\,{/}\!\!\!\!{k}\,\,{/}\!\!\!\!{J}(\phi )}{k.{p}_{j}}\right){u}_{s}({p}_{j})\\ & & \times \,{{\rm{e}}}^{-{{\rm{i}}E}_{j}t-{\rm{i}}{\displaystyle \int }_{{\phi }_{0}}^{\phi }\left[g\displaystyle \frac{{p}_{j}.J(\phi ^{\prime} )}{k.{p}_{j}}-\displaystyle \frac{{g}^{2}{J}^{2}(\phi ^{\prime} )}{2k.{p}_{j}}\right]{\rm{d}}\phi ^{\prime} }| {\nu }_{j},s\rangle .\end{array}\end{eqnarray}$
Therefore, the probability amplitude of observing an initially created flavor eigenstate ∣να⟩ as the flavor eigenstate ∣νβ⟩ at some later time t becomes
$\begin{eqnarray}\begin{array}{l}\langle {\nu }_{\beta },{s}_{2}| {\nu }_{\alpha }(t),{s}_{1}\rangle =\displaystyle \sum _{j}{U}_{\alpha j}{U}_{\beta j}^{* }\displaystyle \frac{{m}_{j}}{2{E}_{j}}{\bar{u}}_{{s}_{2}}({p}_{j})\\ \quad \times \,\left({\mathbb{I}}+g\displaystyle \frac{\,\,{/}\!\!\!\!{J}({\phi }_{0})\,\,{/}\!\!\!\!{k}}{k.{p}_{j}}\right){\gamma }^{0}\left({\mathbb{I}}+g\displaystyle \frac{\,\,{/}\!\!\!\!{k}\,\,{/}\!\!\!\!{J}(\phi )}{k.{p}_{j}}\right){u}_{{s}_{1}}({p}_{j})\\ \quad \times \,{{\rm{e}}}^{-{{\rm{i}}E}_{j}t-{\rm{i}}{\displaystyle \int }_{{\phi }_{0}}^{\phi }\left[g\displaystyle \frac{{p}_{j}.J(\phi ^{\prime} )}{k.{p}_{j}}-\displaystyle \frac{{g}^{2}{J}^{2}(\phi ^{\prime} )}{2k.{p}_{j}}\right]{\rm{d}}\phi ^{\prime} }.\end{array}\end{eqnarray}$
Hence, the probability for a transition νανβ under the time evolution is given by
$\begin{eqnarray}\begin{array}{l}{{ \mathcal P }}_{{\nu }_{\alpha ,{s}_{1}}\to {\nu }_{\beta ,{s}_{2}}}(t)=| \langle {\nu }_{\beta }| {\nu }_{\alpha }(t)\rangle {| }^{2}=\displaystyle \sum _{j,l}{U}_{\alpha j}{U}_{\beta j}^{* }{U}_{\alpha l}^{* }{U}_{\beta l}{{\rm{e}}}^{-{\rm{i}}({E}_{j}-{E}_{l})t}\\ \qquad \times \,{{ \mathcal A }}_{\vec{p}}(\phi ,k,{m}_{j},t){{ \mathcal A }}_{\vec{p}}^{* }(\phi ,k,{m}_{l},t)\\ \qquad \times \,{{\rm{e}}}^{{\rm{i}}{\displaystyle \int }_{{\phi }_{0}}^{\phi }\left[g\displaystyle \frac{{p}_{l}.J(\phi ^{\prime} )}{k.{p}_{l}}-\displaystyle \frac{{g}^{2}{J}^{2}(\phi ^{\prime} )}{2k.{p}_{l}}\right]{\rm{d}}\phi ^{\prime} -{\rm{i}}{\displaystyle \int }_{{\phi }_{0}}^{\phi }\left[g\displaystyle \frac{{p}_{j}.J(\phi ^{\prime} )}{k.{p}_{j}}-\displaystyle \frac{{g}^{2}{J}^{2}(\phi ^{\prime} )}{2k.{p}_{j}}\right]{\rm{d}}\phi ^{\prime} },\end{array}\end{eqnarray}$
where ${p}_{l}=({E}_{l},\vec{p}),{E}_{l}=\sqrt{{\vec{p}}^{2}+{m}_{l}^{2}}$ , and
$\begin{eqnarray}\begin{array}{l}{{ \mathcal A }}_{\vec{p};{s}_{1},{s}_{2}}(\phi ,k,{m}_{j},t)\equiv \displaystyle \frac{{m}_{j}}{2{E}_{j}}{\bar{u}}_{{s}_{2}}({p}_{j})\left({\mathbb{I}}+g\displaystyle \frac{\,\,{/}\!\!\!\!{J}({\phi }_{0})\,\,{/}\!\!\!\!{k}}{k.{p}_{j}}\right){\gamma }^{0}\\ \qquad \times \,\left({\mathbb{I}}+g\displaystyle \frac{\,\,{/}\!\!\!\!{k}\,\,{/}\!\!\!\!{J}(\phi )}{k.{p}_{j}}\right){u}_{{s}_{1}}({p}_{j}).\end{array}\end{eqnarray}$
For high-energy neutrinos, EjEl in the exponent can be expressed as ${E}_{j}-{E}_{l}=\tfrac{{m}_{j}^{2}-{m}_{l}^{2}}{2| \vec{p}| }$ . Note that for g = 0, the expression ${{ \mathcal A }}_{\vec{p};{s}_{1},{s}_{2}}(\phi ,k,{m}_{j},t)$ reduces to ${\delta }_{{s}_{1}{s}_{2}}$ . However, for g ≠ 0, we expect the change in spin during the neutrino oscillation. On the other hand, in [41], it is claimed that vector current interaction does not play any role in the evolution of the spin of neutrinos during the neutrino oscillation. However, it is important to notice that the evolution of the spin operator in equation (5) of [41] indeed depends on the vector current interaction. However, under the approximation that the authors considered following [42], it is shown that the vector current interaction does not play any role in the evolution of the spin of neutrinos.
On the other hand, in our analysis, we have not made such a kind of approximation, and the reason behind why we expect the spin(-flavor) oscillations is due to the fact in the equation (2.11), $\,\,{/}\!\!\!\!{J}({\phi }_{0})\,\,{/}\!\!\!\!{k}$ can be expressed as k. J(φ0) + [γμ, γν]kμJν(φ0) where [γμ, γν] is related to spin operators for the spatial components (μ = i, ν = j, i, j = {1, 2, 3}). As a result of such a decomposition, we expect to have change in spin states during neutrino oscillations. The other reason behind such a neutrino spin-flip due to the vector interaction could be because of the presence of the inhomogeneous current Jμ(φ)[43].

3. Neutrino oscillation in the presence of an oscillating current

Considering the background source current to be of the following form
$\begin{eqnarray}{J}^{\mu }(x)={a}^{\mu }\cos \phi ,\phi =k.x,\end{eqnarray}$
where aμ is the dimensionless constant polarization vector of the current. Using the above expression in (2.3), the positive-energy solution of the Dirac–Volkov equation becomes the following
$\begin{eqnarray}{\psi }_{p}(x)=\sqrt{\displaystyle \frac{m}{Q}}\left(1+g\displaystyle \frac{\,\,{/}\!\!\!\!{k}\,\,{/}\!\!\!\!{a}\cos \phi }{2k.p}\right)u(p){{\rm{e}}}^{-{\rm{i}}q.x-{\rm{i}}g\tfrac{a.p}{k.p}\sin \phi +{\rm{i}}\tfrac{{g}^{2}{a}^{2}}{8k.p}\sin 2\phi },\end{eqnarray}$
where
$\begin{eqnarray}{q}^{\mu }={p}^{\mu }+\displaystyle \frac{{g}^{2}{\bar{a}}^{2}}{4k.p}{k}^{\mu },\bar{a}=\sqrt{-{a}^{2}}.\end{eqnarray}$
Since k2 = 0, the four-vector qμ satisfies the following relation
$\begin{eqnarray}{q}^{2}={m}^{2}+\displaystyle \frac{{g}^{2}{\bar{a}}^{2}}{2}\equiv {m}_{* }^{2},a.q=a.p,k.p=k.q,\end{eqnarray}$
where m* is the effective mass of the fermions and Q = q0 in equation (3.2). Furthermore, using the following result
$\begin{eqnarray}{{\rm{e}}}^{-{\rm{i}}\alpha \sin \theta +{\rm{i}}\beta \sin 2\theta }=\displaystyle \sum _{s=-\infty }^{\infty }{A}_{0}(s,\alpha ,\beta ){{\rm{e}}}^{-{\rm{i}}s\theta },\end{eqnarray}$
the solution can be expressed as follows
$\begin{eqnarray}\begin{array}{rcl}{\psi }_{p}(x) & = & \sqrt{\displaystyle \frac{m}{2Q}}\displaystyle \sum _{s=0}^{\infty }\left({A}_{0}(s,\alpha ,\beta )+g\displaystyle \frac{\,\,{/}\!\!\!\!{k}\,\,{/}\!\!\!\!{a}}{2k.p}{A}_{1}(s,\alpha ,\beta )\right)\\ & & \times \,u(p){{\rm{e}}}^{-{\rm{i}}(q+{sk}).x},\end{array}\end{eqnarray}$
where α, β are identified with $g\tfrac{a.q}{k.q}$ and $\tfrac{{g}^{2}{a}^{2}}{8k.q}$ respectively. A0(s, α, β) is the generalized Bessel function and A1(s, α, β) is expressed as
$\begin{eqnarray}{A}_{1}(s,\alpha ,\beta )=\displaystyle \frac{1}{2}[{A}_{0}(s+1,\alpha ,\beta )+{A}_{0}(s-1,\alpha ,\beta )].\end{eqnarray}$
Hence, we obtain the following expression for the transition amplitude between the flavor states
$\begin{eqnarray}\begin{array}{l}\langle {\nu }_{\beta },{s}_{2}| {\nu }_{\alpha }(t),{s}_{1}\rangle =\displaystyle \sum _{s=-\infty }^{\infty }\displaystyle \sum _{j}{U}_{\alpha j}{U}_{\beta j}^{* }\displaystyle \frac{{m}_{j}}{2{Q}_{j}}{\bar{u}}_{{s}_{2}}({p}_{j})\\ \quad \times \,\left({A}_{0}(s,{\alpha }_{j},{\beta }_{j})+g\displaystyle \frac{\,\,{/}\!\!\!\!{a}\,\,{/}\!\!\!\!{k}}{2k.p}{A}_{1}(s,{\alpha }_{j},{\beta }_{j})\right){\gamma }^{0}\\ \quad \times \,\left({A}_{0}(s,{\alpha }_{j},{\beta }_{j})+g\displaystyle \frac{\,\,{/}\!\!\!\!{k}\,\,{/}\!\!\!\!{a}}{2k.p}{A}_{1}(s,{\alpha }_{j},{\beta }_{j})\right){u}_{{s}_{1}}({p}_{j}){{\rm{e}}}^{-{\rm{i}}({Q}_{j}+s\omega )t},\end{array}\end{eqnarray}$
where ${q}_{j}^{\mu }={p}_{j}^{\mu }+\tfrac{{g}^{2}{\bar{a}}^{2}}{4k.{p}_{j}}{k}^{\mu },{Q}_{j}={q}_{j}^{0}$ and ω = k0. Therefore, the transition probability becomes
$\begin{eqnarray}\begin{array}{l}{{ \mathcal P }}_{{\nu }_{\alpha },{s}_{1}\to {\nu }_{\beta },{s}_{2}}(t,\vec{x})=| \langle {\nu }_{\beta }| {\nu }_{\alpha }(t)\rangle {| }^{2}\\ \quad =\,\displaystyle \sum _{{n}_{1},{n}_{2}=-\infty }^{\infty }\displaystyle \sum _{j,l}\displaystyle \frac{{m}_{j}}{2{Q}_{j}}\displaystyle \frac{{m}_{l}}{2{Q}_{l}}{U}_{\alpha j}{U}_{\beta j}^{* }{U}_{\alpha l}^{* }{U}_{\beta l}{{\rm{e}}}^{-{\rm{i}}[({Q}_{j}-{Q}_{l})+({n}_{1}-{n}_{2})\omega ]t}\\ \qquad \times \,\left[{\bar{u}}_{{s}_{2}}({p}_{j})\left({A}_{0}({n}_{1},{\alpha }_{j},{\beta }_{j})+g\displaystyle \frac{\,\,{/}\!\!\!\!{a}\,\,{/}\!\!\!\!{k}}{2k.{p}_{j}}{A}_{1}({n}_{1},{\alpha }_{j},{\beta }_{j})\right){\gamma }^{0}\right.\\ \qquad \times \left.\,\left({A}_{0}({n}_{1},{\alpha }_{j},{\beta }_{j})+g\displaystyle \frac{\,\,{/}\!\!\!\!{k}\,\,{/}\!\!\!\!{a}}{2k.{p}_{j}}{A}_{1}({n}_{1},{\alpha }_{j},{\beta }_{j})\right){u}_{{s}_{1}}({p}_{j})\right]\\ \qquad \times \,\left[{\bar{u}}_{{s}_{2}}({p}_{l})\left({A}_{0}({n}_{2},{\alpha }_{l},{\beta }_{l})+g\displaystyle \frac{\,\,{/}\!\!\!\!{a}\,\,{/}\!\!\!\!{k}}{2k.{p}_{l}}{A}_{1}({n}_{2},{\alpha }_{l},{\beta }_{l})\right){\gamma }^{0}\right.\\ \qquad \times {\left.\,\left({A}_{0}({n}_{2},{\alpha }_{l},{\beta }_{l})+g\displaystyle \frac{\,\,{/}\!\!\!\!{k}\,\,{/}\!\!\!\!{a}}{2k.{p}_{l}}{A}_{1}({n}_{2},{\alpha }_{l},{\beta }_{l})\right){u}_{{s}_{1}}({p}_{l})\right]}^{* }.\end{array}\end{eqnarray}$
The above two expressions of transition amplitude and probability of neutrino oscillation in (3.8) and (3.9), respectively show the nature of neutrino oscillation in the presence of a background current. The expression of transition probability in (3.9) also shows that neutrino oscillation in this case also depends on g and ${\bar{a}}^{2}$ . In (3.8), the contribution comes from the states with an equal number of quanta with momentum k present in the dressed fermionic states ∣να(t), s1⟩, ∣νβ, s2⟩, which is denoted by s. The concept of dressed fermionic states is often introduced in quantum electrodynamics in the presence of lasers [44]. Furthermore, the expressions in (3.8) and (3.9) also imply that the oscillating background conserved current can change helicity states during neutrino oscillation. This is a generic feature of the background conserved current which can be checked from (2.11) and (2.12).

4. Neutrino oscillation in an electromagnetic field

4.1. Dirac equation with a non-minimal coupling

We consider the following action
$\begin{eqnarray}S=\int {{\rm{d}}}^{4}x\left[\bar{\psi }({\rm{i}}\,\,{/}\!\!\!\!{\partial }-m)\psi -{\rm{i}}\displaystyle \frac{\mu }{2}{F}_{\mu \nu }\bar{\psi }[{\gamma }^{\mu },{\gamma }^{\nu }]\psi \right],\end{eqnarray}$
where the second term describes a non-minimal coupling between a background electromagnetic gauge field and fermions. We will come to the coupling μ later. The corresponding equation of motion is given by
$\begin{eqnarray}\left[({\rm{i}}\,\,{/}\!\!\!\!{\partial }-m)-{\rm{i}}\mu {F}_{\mu \nu }{\gamma }^{\mu }{\gamma }^{\nu }\right]\psi =0.\end{eqnarray}$
Like the previous section, we consider Aμ(x) = Aμ(φ) =ϵμf(φ), where φ = k. x and k2 = 0, k. A(φ) = 0. This makes the above equation
$\begin{eqnarray}\left[({\rm{i}}\,\,{/}\!\!\!\!{\partial }-m)-{\rm{i}}\mu [\,\,{/}\!\!\!\!{k},\,\,{/}\!\!\!\!{A}^{\prime} (\phi )]\right]\psi =0,\end{eqnarray}$
where ${A}_{\mu }^{{\prime} }(\phi )=\tfrac{{{dA}}_{\mu }}{d\phi }={\varepsilon }_{\mu }\tfrac{{df}}{d\phi }$ . In order to solve the above equation, we can multiply the above equation with the operator $\left[({\rm{i}}\,\,{/}\!\!\!\!{\partial }+m)-{\rm{i}}\mu [\,\,{/}\!\!\!\!{k},\,\,{/}\!\!\!\!{A}^{\prime} (\phi )]\right]$ from the left and we obtain the following relation
$\begin{eqnarray}\begin{array}{l}\left[-{\partial }^{2}-{m}^{2}+\mu \,\,{/}\!\!\!\!{\partial }[\,\,{/}\!\!\!\!{k},\,\,{/}\!\!\!\!{A}^{\prime} (\phi )]+\mu [\,\,{/}\!\!\!\!{k},\,\,{/}\!\!\!\!{A}^{\prime} (\phi )]\,\,{/}\!\!\!\!{\partial }\right.\\ \quad -\,\left.{\mu }^{2}{\left[\,\,{/}\!\!\!\!{k},\,\,{/}\!\!\!\!{A}^{\prime} (\phi )\right]}^{2}\right]\psi =0.\end{array}\end{eqnarray}$
We consider the ansatz of the following form
$\begin{eqnarray}{\psi }_{p}(x)={{\rm{e}}}^{-{\rm{i}}p.x}{F}_{p}(\phi )u(p),\end{eqnarray}$
which makes equation (4.4) the following
$\begin{eqnarray}\begin{array}{l}\left[-2k.{{pF}}_{p}^{{\prime} }(\phi )+\mu \,\,{/}\!\!\!\!{p}[\,\,{/}\!\!\!\!{k},\,\,{/}\!\!\!\!{A}^{\prime} (\phi )]{F}_{p}(\phi )\right.\\ +\left.\,\mu [\,\,{/}\!\!\!\!{k},\,\,{/}\!\!\!\!{A}^{\prime} (\phi )]\,\,{/}\!\!\!\!{p}{F}_{p}(\phi )\right]u(p)=0,\end{array}\end{eqnarray}$
where we used the following identities and results
$\begin{eqnarray}\begin{array}{rcl}{\gamma }^{\mu }{\gamma }^{\nu }{\gamma }^{\rho } & = & {\gamma }^{\mu }{\eta }^{\nu \rho }+{\gamma }^{\rho }{\eta }^{\mu \nu }-{\gamma }^{\nu }{\eta }^{\mu \rho }-{\rm{i}}{\epsilon }^{\sigma \mu \nu \rho }{\gamma }_{\sigma }{\gamma }^{5}\\ \Rightarrow [\,\,{/}\!\!\!\!{k},\,\,{/}\!\!\!\!{A}^{\prime} (\phi )]\,\,{/}\!\!\!\!{k} & = & \,\,{/}\!\!\!\!{k}[\,\,{/}\!\!\!\!{k},\,\,{/}\!\!\!\!{A}^{\prime} (\phi )]=\,\,{/}\!\!\!\!{k}[\,\,{/}\!\!\!\!{k},\,\,{/}\!\!\!\!{A}^{\prime\prime} (\phi )]\\ & = & 0={\left[\,\,{/}\!\!\!\!{k},\,\,{/}\!\!\!\!{A}^{\prime} (\phi )\right]}^{2}.\end{array}\end{eqnarray}$
Furthermore, the on-shell relation is p2 = m2 and the positive-energy spinor satisfies $(\,\,{/}\!\!\!\!{p}-m)u(p)=0$ . On the other hand, the solution of equation (4.6)
$\begin{eqnarray}2k.{{pF}}_{p}^{{\prime} }(\phi )=\mu \,\,{/}\!\!\!\!{p}[\,\,{/}\!\!\!\!{k},\,\,{/}\!\!\!\!{A}^{\prime} (\phi )]{F}_{p}(\phi )+\mu [\,\,{/}\!\!\!\!{k},\,\,{/}\!\!\!\!{A}^{\prime} (\phi )]\,\,{/}\!\!\!\!{p}{F}_{p}(\phi ),\end{eqnarray}$
is given by
$\begin{eqnarray}{F}_{p}(\phi )={{\rm{e}}}^{\tfrac{\mu }{2k.p}{\int }_{{\phi }_{0}}^{\phi }\{\,\,{/}\!\!\!\!{p},[\,\,{/}\!\!\!\!{k},\,\,{/}\!\!\!\!{A}^{\prime} (\phi ^{\prime} )]\}{\rm{d}}\phi ^{\prime} }.\end{eqnarray}$
Hence, the positive-energy solution of Dirac fermion is given by
$\begin{eqnarray}{\psi }_{p}(x)=\sqrt{\displaystyle \frac{m}{2E}}{{\rm{e}}}^{-{\rm{i}}p.x+\tfrac{\mu }{2k.p}{\int }_{{\phi }_{0}}^{\phi }\{\,\,{/}\!\!\!\!{p},[\,\,{/}\!\!\!\!{k},\,\,{/}\!\!\!\!{A}^{\prime} (\phi ^{\prime} )]\}{\rm{d}}\phi ^{\prime} }u(p),\end{eqnarray}$
where
$\begin{eqnarray}\begin{array}{rcl}\{\,\,{/}\!\!\!\!{p},[\,\,{/}\!\!\!\!{k},\,\,{/}\!\!\!\!{A}^{\prime} (\phi )]\} & = & 2{p}_{\mu }{k}_{\nu }{A}_{\rho }^{{\prime} }(\phi )[{\gamma }^{\mu }{\gamma }^{\nu }{\gamma }^{\rho }+{\gamma }^{\nu }{\gamma }^{\rho }{\gamma }^{\mu }]\\ & = & -4{{\rm{i}}p}_{\mu }{k}_{\nu }{A}_{\rho }^{{\prime} }(\phi ){\epsilon }^{\sigma \nu \rho \mu }{\gamma }_{\sigma }{\gamma }^{5}.\end{array}\end{eqnarray}$
Therefore, the solution in (4.10) can be expressed as
$\begin{eqnarray}{\psi }_{p}(x)=\sqrt{\displaystyle \frac{m}{2E}}{{\rm{e}}}^{-{\rm{i}}p.x-{\rm{i}}\tfrac{2\mu }{k.p}{\int }_{{\phi }_{0}}^{\phi }{p}_{\mu }{k}_{\nu }{A}_{\rho }^{{\prime} }(\phi ^{\prime} ){\epsilon }^{\sigma \nu \rho \mu }{\gamma }_{\sigma }{\gamma }^{5}{\rm{d}}\phi ^{\prime} }u(p).\end{eqnarray}$

4.2. Neutrino oscillation in a background electromagnetic field

Although neutrinos are chargeless fermions, it is proposed that the neutrinos carry a non-zero magnetic moment due to their masses which can couple to the electromagnetic gauge field [45, 46]. An upper bound on the values of these magnetic moments is also put in [4750]. Considering the non-minimal model suggested in [51, 52], we consider the following action describing the interaction between neutrinos and electromagnetic gauge fields
$\begin{eqnarray}S=\int {{\rm{d}}}^{4}x\left[\displaystyle \sum _{{\rm{i}}}{\bar{\psi }}_{{\rm{i}}}({\rm{i}}\,\,{/}\!\!\!\!{\partial }-{m}_{{\rm{i}}}){\psi }_{{\rm{i}}}-{\rm{i}}\displaystyle \sum _{{jk}}\displaystyle \frac{{\mu }_{{jk}}}{2}{F}_{\mu \nu }{\bar{\psi }}_{j}[{\gamma }^{\mu },{\gamma }^{\nu }]{\psi }_{k}\right],\end{eqnarray}$
where μjk is a non-diagonal magnetic moment matrix in the mass eigenstates basis of neutrinos and Aμ(x) = Aμ(φ) =ϵμf(φ) with φ = k. x, k2 = 0, and k. A(φ) = 0. The expression for μjk derived in [53, 54] shows that the non-diagonal elements of the magnetic moment matrix are small compared to the diagonal terms, hence, in leading order, we can write the above action as
$\begin{eqnarray}S=\int {{\rm{d}}}^{4}x\displaystyle \sum _{j}\left[{\bar{\psi }}_{j}({\rm{i}}\,\,{/}\!\!\!\!{\partial }-{m}_{{\rm{i}}}){\psi }_{j}-{\rm{i}}\displaystyle \frac{{\mu }_{j}}{2}{F}_{\mu \nu }{\bar{\psi }}_{j}[{\gamma }^{\mu },{\gamma }^{\nu }]{\psi }_{j}\right],\end{eqnarray}$
where μjμjj. Therefore, using the expression in (4.10), we obtain the following expression for the transition amplitude of neutrino oscillation
$\begin{eqnarray}\begin{array}{l}\langle {\nu }_{\beta }(t^{\prime} ),{s}_{2}| {\nu }_{\alpha }(t),{s}_{1}\rangle =\displaystyle \sum _{j}\displaystyle \frac{{m}_{j}}{2{E}_{j}}{U}_{\alpha j}{U}_{\beta j}^{* }{\bar{u}}_{{s}_{2}}({p}_{j})\\ \quad \times \,{{\rm{e}}}^{-{\rm{i}}\tfrac{2{\mu }_{j}}{k.{p}_{j}}{\displaystyle \int }_{{\phi }_{0}}^{\phi ^{\prime} }{p}_{j,\mu }{k}_{\nu }{A}_{\rho }^{{\prime} }(\bar{\phi }){\epsilon }^{\sigma \nu \rho \mu }{\gamma }^{5}{\gamma }_{\sigma }{\rm{d}}\bar{\phi }}{\gamma }^{0}\\ \quad \times \,{{\rm{e}}}^{-{\rm{i}}\tfrac{2{\mu }_{j}}{k.{p}_{j}}{\displaystyle \int }_{{\phi }_{0}}^{\phi }{p}_{j,\mu }{k}_{\nu }{A}_{\rho }^{{\prime} }(\bar{\phi }){\epsilon }^{\sigma \nu \rho \mu }{\gamma }_{\sigma }{\gamma }^{5}{\rm{d}}\bar{\phi }}{u}_{{s}_{1}}({p}_{j}){{\rm{e}}}^{-{{\rm{i}}E}_{j}(t-t^{\prime} )},\end{array}\end{eqnarray}$
where $\phi ^{\prime} =k.x^{\prime} $ and $x{{\prime} }^{0}=t^{\prime} ,x{{\prime} }^{{\rm{i}}}={x}^{{\rm{i}}}$ . Hence, the expression for the corresponding transition probability is given by
$\begin{eqnarray}\begin{array}{rcl}{{ \mathcal P }}_{{\nu }_{\alpha },{s}_{1}\to {\nu }_{\beta },{s}_{2}}(t,t^{\prime} ) & = & | \langle {\nu }_{\beta }(t^{\prime} ),{s}_{2}| {\nu }_{\alpha }(t),{s}_{1}\rangle {| }^{2}\\ & = & \displaystyle \sum _{j,l}\displaystyle \frac{{m}_{j}}{2{E}_{j}}\displaystyle \frac{{m}_{l}}{2{E}_{l}}{U}_{\alpha j}{U}_{\beta j}^{* }{U}_{\alpha l}^{* }{U}_{\beta l}{{\rm{e}}}^{-{\rm{i}}({E}_{j}-{E}_{l})(t-t^{\prime} )}\\ & & \times \,\left[{\bar{u}}_{{s}_{2}}({p}_{j}){{\rm{e}}}^{-{\rm{i}}\tfrac{2{\mu }_{j}}{k.{p}_{j}}{\displaystyle \int }_{{\phi }_{0}}^{\phi ^{\prime} }{p}_{j,\mu }{k}_{\nu }{A}_{\rho }^{{\prime} }(\bar{\phi }){\epsilon }^{\sigma \nu \rho \mu }{\gamma }^{5}{\gamma }_{\sigma }{\rm{d}}\bar{\phi }}{\gamma }^{0}\right.\\ & & \times \left.\,{{\rm{e}}}^{-{\rm{i}}\tfrac{2{\mu }_{j}}{k.{p}_{j}}{\displaystyle \int }_{{\phi }_{0}}^{\phi }{p}_{j,\mu }{k}_{\nu }{A}_{\rho }^{{\prime} }(\bar{\phi }){\epsilon }^{\sigma \nu \rho \mu }{\gamma }_{\sigma }{\gamma }^{5}{\rm{d}}\bar{\phi }}{u}_{{s}_{1}}({p}_{j})\right]\\ & & \times \,\left[{\bar{u}}_{{s}_{2}}({p}_{l}){{\rm{e}}}^{-{\rm{i}}\tfrac{2{\mu }_{l}}{k.{p}_{l}}{\displaystyle \int }_{{\phi }_{0}}^{\phi ^{\prime} }{p}_{l,\mu }{k}_{\nu }{A}_{\rho }^{{\prime} }(\bar{\phi }){\epsilon }^{\sigma \nu \rho \mu }{\gamma }^{5}{\gamma }_{\sigma }{\rm{d}}\bar{\phi }}{\gamma }^{0}\right.\\ & & \times {\left.\,{{\rm{e}}}^{-{\rm{i}}\tfrac{2{\mu }_{l}}{k.{p}_{l}}{\displaystyle \int }_{{\phi }_{0}}^{\phi }{p}_{l,\mu }{k}_{\nu }{A}_{\rho }^{{\prime} }(\bar{\phi }){\epsilon }^{\sigma \nu \rho \mu }{\gamma }_{\sigma }{\gamma }^{5}{\rm{d}}\bar{\phi }}{u}_{{s}_{1}}({p}_{l})\right]}^{* }.\end{array}\end{eqnarray}$
The above expression shows that both the amplitude and nature of oscillation depend on the magnetic moments of neutrinos, four-momenta kμ, and the derivative of the gauge field. Furthermore, it also shows that in general, helicity changes in neutrino oscillation due to the coupling between the magnetic moments of neutrinos and the electromagnetic gauge field. The above conclusions are indeed consistent with the results found in [55, 56]. However, the approach that we followed here is completely different compared to the one followed in [55, 56]. Moreover, in our analysis, we considered the magnetic moments of neutrinos to be different in mass-basis.

5. Effect of torsion in neutrino oscillation in Minkowski spacetime

Following the results in [7], the Dirac equation in Minkowski spacetime in the presence of torsion can be expressed as
$\begin{eqnarray}\left[{\rm{i}}\,\,{/}\!\!\!\!{\partial }-m+\displaystyle \frac{{\rm{i}}}{8}{K}_{\rho \sigma \mu }{\gamma }^{\mu }[{\gamma }^{\rho },{\gamma }^{\sigma }]\right]\psi =0,\end{eqnarray}$
where Kρσμ = − Kσρμ is the contorsion tensor. Here, we restrict our discussion to the case in which Kρσμ(x) = κρσμK(φ) is a plane-wave field where φ = k. x, k2 = 0. Now we use the operator $\left[{\rm{i}}\,\,{/}\!\!\!\!{\partial }+m+\tfrac{{\rm{i}}}{8}{K}_{\rho \sigma \mu }{\gamma }^{\mu }[{\gamma }^{\rho },{\gamma }^{\sigma }]\right]$ on the above equation from the left and obtain the following relation
$\begin{eqnarray}\begin{array}{l}\left[-{\partial }^{2}-{m}^{2}-\displaystyle \frac{1}{8}\,\,{/}\!\!\!\!{\partial }{K}_{\rho \sigma \mu }{\gamma }^{\mu }[{\gamma }^{\rho },{\gamma }^{\sigma }]\right.\\ \quad -\left.\,\displaystyle \frac{1}{8}{K}_{\rho \sigma \mu }{\gamma }^{\mu }[{\gamma }^{\rho },{\gamma }^{\sigma }]\,\,{/}\!\!\!\!{\partial }-\displaystyle \frac{1}{64}{\left({K}_{\rho \sigma \mu }{\gamma }^{\mu }[{\gamma }^{\rho },{\gamma }^{\sigma }]\right)}^{2}\right]\psi =0.\end{array}\end{eqnarray}$
Using the ansatz ${\psi }_{p}(x)={{\rm{e}}}^{-{ip}.x}{ \mathcal G }(\phi )u(p)$ , the above equation becomes
$\begin{eqnarray}\begin{array}{l}\left[{p}^{2}{ \mathcal G }(\phi )+2{\rm{i}}k.p{ \mathcal G }^{\prime} (\phi )-{m}^{2}{ \mathcal G }(\phi )+\displaystyle \frac{{\rm{i}}}{4}\,\,{/}\!\!\!\!{p}{K}_{\rho \sigma \mu }{\gamma }^{\mu }{\gamma }^{\rho }{\gamma }^{\sigma }{ \mathcal G }(\phi )\right.\\ \quad +\displaystyle \frac{{\rm{i}}}{4}{K}_{\rho \sigma \mu }{\gamma }^{\mu }{\gamma }^{\rho }{\gamma }^{\sigma }\,\,{/}\!\!\!\!{p}{ \mathcal G }(\phi )\\ \quad -\,\displaystyle \frac{1}{4}\,\,{/}\!\!\!\!{k}{K}_{\rho \sigma \mu }^{{\prime} }{\gamma }^{\mu }{\gamma }^{\rho }{\gamma }^{\sigma }{ \mathcal G }(\phi )-\displaystyle \frac{1}{4}\,\,{/}\!\!\!\!{k}{K}_{\rho \sigma \mu }{\gamma }^{\mu }{\gamma }^{\rho }{\gamma }^{\sigma }{ \mathcal G }^{\prime} (\phi )\\ \quad -\,\displaystyle \frac{1}{4}{K}_{\rho \sigma \mu }{\gamma }^{\mu }{\gamma }^{\rho }{\gamma }^{\sigma }\,\,{/}\!\!\!\!{k}{ \mathcal G }^{\prime} (\phi )\\ \quad -\,\left.\displaystyle \frac{1}{16}{\left({K}_{\rho \sigma \mu }{\gamma }^{\mu }{\gamma }^{\rho }{\gamma }^{\sigma }\right)}^{2}{ \mathcal G }(\phi )\right]u(p)=0.\end{array}\end{eqnarray}$
We define the following quantity
$\begin{eqnarray}{ \mathcal K }(\phi )\equiv {K}_{\rho \sigma \mu }(\phi ){\gamma }^{\mu }{\gamma }^{\rho }{\gamma }^{\sigma }={K}_{\rho \sigma \mu }(\phi )[2{\gamma }^{\sigma }{\eta }^{\mu \rho }-{\rm{i}}{\epsilon }^{\lambda \mu \rho \sigma }{\gamma }_{\lambda }{\gamma }^{5}],\end{eqnarray}$
in terms of which equation (5.3) can be expressed as
$\begin{eqnarray}\begin{array}{l}k.p{ \mathcal G }^{\prime} (\phi )+\displaystyle \frac{1}{8}\{\,\,{/}\!\!\!\!{p},{ \mathcal K }\}{ \mathcal G }(\phi )+\displaystyle \frac{{\rm{i}}}{8}\,\,{/}\!\!\!\!{k}{ \mathcal K }^{\prime} { \mathcal G }(\phi )\\ \quad +\displaystyle \frac{{\rm{i}}}{8}\{\,\,{/}\!\!\!\!{k},{ \mathcal K }\}{ \mathcal G }^{\prime} (\phi )+\displaystyle \frac{{\rm{i}}}{16}{{ \mathcal K }}^{2}{ \mathcal G }(\phi )=0.\end{array}\end{eqnarray}$
The solution of the above equation is given by
$\begin{eqnarray}{ \mathcal G }(\phi )={{\rm{e}}}^{{\int }_{{\phi }_{0}}^{\phi }{\left[k.p{\mathbb{I}}+\displaystyle \frac{{\rm{i}}}{8}\{\,\,{/}\!\!\!\!{k},{ \mathcal K }(\bar{\phi })\}\right]}^{-1}\left[-\displaystyle \frac{1}{8}\{\,\,{/}\!\!\!\!{p},{ \mathcal K }(\bar{\phi })\}-\displaystyle \frac{{\rm{i}}}{8}\,\,{/}\!\!\!\!{k}{ \mathcal K }^{\prime} (\bar{\phi })-\displaystyle \frac{{\rm{i}}}{16}{{ \mathcal K }}^{2}(\bar{\phi })\right]{\rm{d}}\bar{\phi }},\end{eqnarray}$
with the boundary condition ${ \mathcal G }({\phi }_{0})={\mathbb{I}}$ . Hence, the positive-energy solution is given by
$\begin{eqnarray}{\psi }_{p}(x)=\sqrt{\tfrac{m}{2E}}{{\rm{e}}}^{-{\rm{i}}p.x-\tfrac{1}{8}{\int }_{{\phi }_{0}}^{\phi }{\left[k.p{\mathbb{I}}+\displaystyle \frac{{\rm{i}}}{8}\{\,\,{/}\!\!\!\!{k},{ \mathcal K }(\bar{\phi })\}\right]}^{-1}\left[\{\,\,{/}\!\!\!\!{p},{ \mathcal K }(\bar{\phi })\}+{\rm{i}}\,\,{/}\!\!\!\!{k}{ \mathcal K }^{\prime} (\bar{\phi })+\displaystyle \frac{{\rm{i}}}{2}{{ \mathcal K }}^{2}(\bar{\phi })\right]{\rm{d}}\bar{\phi }}u(p)\equiv {{\rm{e}}}^{-{\rm{i}}p.x}{{ \mathcal M }}_{p}(\phi ){u}_{p}.\end{eqnarray}$
Therefore, the expression of transition amplitude for the neutrino oscillation in this case is given by
$\begin{eqnarray}\begin{array}{l}\langle {\nu }_{\beta },{s}_{2}| {\nu }_{\alpha }(t),{s}_{1}\rangle \\ \quad =\,\displaystyle \sum _{j}\displaystyle \frac{{m}_{j}}{2{E}_{j}}{U}_{\alpha j}{U}_{\beta j}^{* }{\bar{u}}_{{s}_{2}}({p}_{j}){\gamma }^{0}{{ \mathcal M }}_{{p}_{j}}(\phi ){u}_{{s}_{1}}({p}_{j}){{\rm{e}}}^{-{{\rm{i}}E}_{j}t},\end{array}\end{eqnarray}$
whereas the transition probability becomes
$\begin{eqnarray}\begin{array}{rcl}{{ \mathcal P }}_{{\nu }_{\alpha },{s}_{1}\to {\nu }_{\beta },{s}_{2}}(t) & = & | \langle {\nu }_{\beta },{s}_{2}| {\nu }_{\alpha }(t),{s}_{1}\rangle {| }^{2}\\ & = & \displaystyle \sum _{j,l}{U}_{\alpha j}{U}_{\beta j}^{* }{U}_{\alpha l}^{* }{U}_{\beta l}{{\rm{e}}}^{-{\rm{i}}({E}_{j}-{E}_{l})t}\\ & & \times \,\left[[{\bar{u}}_{{s}_{2}}({p}_{j}){\gamma }^{0}{{ \mathcal M }}_{{p}_{j}}(\phi ){u}_{{s}_{1}}({p}_{j})]\right.\\ & & \times \,\left.{\left[{\bar{u}}_{{s}_{2}}({p}_{l}){\gamma }^{0}{{ \mathcal M }}_{{p}_{l}}(\phi ){u}_{{s}_{1}}({p}_{l})\right]}^{* }\right]\displaystyle \frac{{m}_{j}}{2{E}_{j}}\displaystyle \frac{{m}_{l}}{2{E}_{l}}.\end{array}\end{eqnarray}$
The above expression also shows that non-trivial torsion can indeed change the helicity state in neutrino oscillation.

6. Neutrino oscillation in the presence of gravitational waves

The action describing the Dirac-fermions interacting with GW is given by
$\begin{eqnarray}S[\bar{\psi },\psi ]=\int {{\rm{d}}}^{4}x\left[\bar{\psi }({\rm{i}}\,\,{/}\!\!\!\!{\partial }-m)\psi +{\rm{i}}\kappa {h}_{\mu \nu }\bar{\psi }{\gamma }^{\mu }{\partial }^{\nu }\psi \right],\end{eqnarray}$
where $\kappa =\sqrt{8\pi G}$ , and we have used the stress-energy tensor ${T}^{\mu \nu }(x)=\tfrac{{\rm{i}}}{2}\bar{\psi }(x)[{\gamma }^{(\mu }{\partial }^{\nu )}-{\gamma }^{(\mu }{\overleftarrow{\partial }}^{\nu )}]\psi (x)$ of the Dirac-fermions. The corresponding equation of motion is given by
$\begin{eqnarray}({\rm{i}}\,\,{/}\!\!\!\!{\partial }-m)\psi (x)+{\rm{i}}\kappa {h}_{\mu \nu }(x){\gamma }^{\mu }{\partial }^{\nu }\psi (x)=0.\end{eqnarray}$
Like earlier, we consider the gravitational wave to be a plane-wave field of the following form
$\begin{eqnarray}{h}_{\mu \nu }(x)={\epsilon }_{\mu \nu }{ \mathcal R }[\phi ],{\epsilon }_{\ \mu }^{\mu }=0,\phi =k.x,{k}^{2}=0,\end{eqnarray}$
where εμν denotes the polarization of the gravitational wave and it satisfies kμεμν = 0 which follows from the gauge choice ∂μhμν = 0. Multiplying equation (6.2) by the operator $({\rm{i}}\,\,{/}\!\!\!\!{\partial }+m)+{\rm{i}}\kappa {h}_{\mu \nu }(x){\gamma }^{\mu }{\partial }^{\nu }$ from the left, we obtain the following equation
$\begin{eqnarray}\begin{array}{l}\left[-\square -{m}^{2}-\kappa \,\,{/}\!\!\!\!{\partial }{h}_{\mu \nu }(x){\gamma }^{\mu }{\partial }^{\nu }-\kappa {h}_{\mu \nu }(x){\gamma }^{\mu }{\partial }^{\nu }\,\,{/}\!\!\!\!{\partial }\right.\\ -\left.\,{\kappa }^{2}{h}_{\mu \nu }(x){\gamma }^{\mu }{\partial }^{\nu }{h}_{\rho \sigma }(x){\gamma }^{\rho }{\partial }^{\sigma }\right]\psi (x)=0,\end{array}\end{eqnarray}$
where every operator acts on all the quantities in its right. We consider the ansatz ${\psi }_{p}(x)={{ \mathcal O }}_{p}[\phi ]u(p){{\rm{e}}}^{-{\rm{i}}p.x}$ for the positive-energy solution of the above equation (6.4). Plugging this ansatz into equation (6.4), we obtain the following relation
$\begin{eqnarray}\begin{array}{l}\left[({p}^{2}-{m}^{2}){{ \mathcal O }}_{p}[\phi ]+2{\rm{i}}k.p{{ \mathcal O }}_{p}^{{\prime} }[\phi ]+\kappa {\epsilon }_{\mu \nu }{ \mathcal R }[\phi ]\,\,{/}\!\!\!\!{p}\left({\gamma }^{\mu }{p}^{\nu }{{ \mathcal O }}_{p}[\phi ]+{\rm{i}}{\gamma }^{\mu }{k}^{\nu }{{ \mathcal O }}_{p}^{{\prime} }[\phi ]\right)\right.\\ \quad +\,\kappa {\epsilon }_{\mu \nu }{ \mathcal R }[\phi ]\left({\gamma }^{\mu }{p}^{\nu }\,\,{/}\!\!\!\!{p}{{ \mathcal O }}_{p}[\phi ]+{\rm{i}}{\gamma }^{\mu }{k}^{\nu }\,\,{/}\!\!\!\!{p}{{ \mathcal O }}_{p}^{{\prime} }[\phi ]\right)\\ \quad +\,{\rm{i}}\kappa {\epsilon }_{\mu \nu }{ \mathcal R }^{\prime} [\phi ]\,\,{/}\!\!\!\!{k}\left({\gamma }^{\mu }{p}^{\nu }{{ \mathcal O }}_{p}[\phi ]+{\rm{i}}{\gamma }^{\mu }{k}^{\nu }{{ \mathcal O }}_{p}^{{\prime} }[\phi ]\right)\\ \quad +\,{\rm{i}}\kappa {\epsilon }_{\mu \nu }{ \mathcal R }[\phi ]\,\,{/}\!\!\!\!{k}\left({\gamma }^{\mu }{p}^{\nu }{{ \mathcal O }}_{p}^{{\prime} }[\phi ]+{\rm{i}}{\gamma }^{\mu }{k}^{\nu }{ \mathcal O }{{\prime\prime} }_{p}[\phi ]\right)\\ \quad +\,{\rm{i}}\kappa {\epsilon }_{\mu \nu }{ \mathcal R }[\phi ]\,\,{/}\!\!\!\!{k}\left({\gamma }^{\mu }{p}^{\nu }{{ \mathcal O }}_{p}[\phi ]+{\rm{i}}{\gamma }^{\mu }{k}^{\nu }{{ \mathcal O }}_{p}^{{\prime} }[\phi ]\right){{ \mathcal O }}_{p}^{{\prime} }[\phi ]\\ \quad +\,{\rm{i}}\kappa {\epsilon }_{\mu \nu }{ \mathcal R }[\phi ]\left({\gamma }^{\mu }{p}^{\nu }\,\,{/}\!\!\!\!{k}{{ \mathcal O }}_{p}[\phi ]+{\rm{i}}{\gamma }^{\mu }{k}^{\nu }\,\,{/}\!\!\!\!{k}{{ \mathcal O }}_{p}^{{\prime} }[\phi ]\right){{ \mathcal O }}_{p}^{{\prime} }[\phi ]\\ \quad +\,{\rm{i}}{\kappa }^{2}{ \mathcal R }[\phi ]{ \mathcal R }^{\prime} [\phi ]{\epsilon }_{\mu \nu }{\epsilon }_{\rho \sigma }{\gamma }^{\mu }{k}^{\nu }\left({\gamma }^{\rho }{p}^{\sigma }{{ \mathcal O }}_{p}[\phi ]+{\rm{i}}{\gamma }^{\rho }{k}^{\sigma }{{ \mathcal O }}_{p}^{{\prime} }[\phi ]\right)\\ \quad +\,{\rm{i}}{\kappa }^{2}{{ \mathcal R }}^{2}[\phi ]{\epsilon }_{\mu \nu }{\epsilon }_{\rho \sigma }{\gamma }^{\mu }{k}^{\nu }\left({\gamma }^{\rho }{p}^{\sigma }{{ \mathcal O }}_{p}^{{\prime} }[\phi ]+{\rm{i}}{\gamma }^{\rho }{k}^{\sigma }{ \mathcal O }{{\prime\prime} }_{p}[\phi ]\right)\\ \quad +\,{\kappa }^{2}{\epsilon }_{\mu \nu }{\epsilon }_{\rho \sigma }{{ \mathcal R }}^{2}[\phi ]\left[{\gamma }^{\mu }{p}^{\nu }{\gamma }^{\rho }{p}^{\sigma }{{ \mathcal O }}_{p}^{2}[\phi ]\right.\\ \quad +\,{\rm{i}}{\gamma }^{\mu }{k}^{\nu }{\gamma }^{\rho }{p}^{\sigma }{{ \mathcal O }}_{p}[\phi ]{{ \mathcal O }}_{p}^{{\prime} }[\phi ]\\ \quad +\left.\left.\,{\rm{i}}{\gamma }^{\mu }{p}^{\nu }{\gamma }^{\rho }{k}^{\sigma }{{ \mathcal O }}_{p}[\phi ]{{ \mathcal O }}_{p}^{{\prime} }[\phi ]-{\gamma }^{\mu }{k}^{\nu }{\gamma }^{\rho }{k}^{\sigma }{{ \mathcal O }}_{p}^{{\prime} 2}[\phi ]\right]\right]=0.\end{array}\end{eqnarray}$
The transverse traceless condition reduces the above equation (6.5) in the following form
$\begin{eqnarray}\begin{array}{l}\left[2{\rm{i}}k.p{{ \mathcal O }}_{p}^{{\prime} }[\phi ]+\kappa {\epsilon }_{\mu \nu }{ \mathcal R }[\phi ]\,\,{/}\!\!\!\!{p}{\gamma }^{\mu }{p}^{\nu }{{ \mathcal O }}_{p}[\phi ]\right.\\ \quad +\,\kappa {\epsilon }_{\mu \nu }{ \mathcal R }[\phi ]{\gamma }^{\mu }{p}^{\nu }\,\,{/}\!\!\!\!{p}{{ \mathcal O }}_{p}[\phi ]\\ \quad +\,{\rm{i}}\kappa {\epsilon }_{\mu \nu }{ \mathcal R }^{\prime} [\phi ]\,\,{/}\!\!\!\!{k}{\gamma }^{\mu }{p}^{\nu }{{ \mathcal O }}_{p}[\phi ]+{\rm{i}}\kappa {\epsilon }_{\mu \nu }{ \mathcal R }[\phi ]\,\,{/}\!\!\!\!{k}{\gamma }^{\mu }{p}^{\nu }{{ \mathcal O }}_{p}^{{\prime} }[\phi ]\\ \quad +\,{\rm{i}}\kappa {\epsilon }_{\mu \nu }{ \mathcal R }[\phi ]\,\,{/}\!\!\!\!{k}{\gamma }^{\mu }{p}^{\nu }{{ \mathcal O }}_{p}[\phi ]{{ \mathcal O }}_{p}^{{\prime} }[\phi ]\\ \quad +\,{\rm{i}}\kappa {\epsilon }_{\mu \nu }{ \mathcal R }[\phi ]{\gamma }^{\mu }\,\,{/}\!\!\!\!{k}{p}^{\nu }{{ \mathcal O }}_{p}[\phi ]{{ \mathcal O }}_{p}^{{\prime} }[\phi ]\\ \quad +\left.\,{\kappa }^{2}{\epsilon }_{\mu \nu }{\epsilon }_{\rho \sigma }{{ \mathcal R }}^{2}[\phi ]{\gamma }^{\mu }{p}^{\nu }{\gamma }^{\rho }{p}^{\sigma }{{ \mathcal O }}_{p}^{2}[\phi ]\right]=0,\end{array}\end{eqnarray}$
where we have used the dispersion p2 = m2. Using the identity ${\epsilon }_{\mu \nu }\{\,\,{/}\!\!\!\!{k},{\gamma }^{\mu }\}=2{\epsilon }_{\mu \nu }{k}^{\mu }=0$ in the above equation, we obtain the following first-order differential equation in ${{ \mathcal O }}_{p}[\phi ]$
$\begin{eqnarray}\begin{array}{l}\left[2{\rm{i}}k.p+{\rm{i}}\kappa {\epsilon }_{\mu \nu }{ \mathcal R }[\phi ]\,\,{/}\!\!\!\!{k}{\gamma }^{\mu }{p}^{\nu }\right]{{ \mathcal O }}_{p}^{{\prime} }[\phi ]\\ \ =\,-[2\kappa {\epsilon }_{\mu \nu }{ \mathcal R }[\phi ]{p}^{\mu }{p}^{\nu }+{\rm{i}}\kappa {\epsilon }_{\mu \nu }{ \mathcal R }^{\prime} [\phi ]\,\,{/}\!\!\!\!{k}{\gamma }^{\mu }{p}^{\nu }]{{ \mathcal O }}_{p}[\phi ]\\ \quad -\,{\kappa }^{2}{\epsilon }_{\mu \nu }{\epsilon }_{\ \sigma }^{\mu }{{ \mathcal R }}^{2}[\phi ]{p}^{\nu }{p}^{\sigma }{{ \mathcal O }}_{p}^{2}[\phi ].\end{array}\end{eqnarray}$
Since κ2 ≪ 1, we neglect it in the above equation. Furthermore, in order to consider κ2 term in the above equation, we also need to consider the ${ \mathcal O }({\kappa }^{2})$ terms in the action (6.1) which generates the ${ \mathcal O }({\kappa }^{3})$ term in the above equation, then we need to consider the ${ \mathcal O }({\kappa }^{3})$ terms in the action (6.1) and it goes on. Therefore, we truncate the terms beyond ${ \mathcal O }(\kappa )$ . Hence, equation (6.7) reduces to the following
$\begin{eqnarray}\begin{array}{rcl}{{ \mathcal O }}_{p}^{{\prime} }[\phi ] & = & {\rm{i}}{\left[2k.p+\kappa {\epsilon }_{\mu \nu }{ \mathcal R }[\phi ]\,\,{/}\!\!\!\!{k}{\gamma }^{\mu }{p}^{\nu }\right]}^{-1}\left(2\kappa {\epsilon }_{\mu \nu }{ \mathcal R }[\phi ]{p}^{\mu }{p}^{\nu }\right.\\ & & +\,\left.{\rm{i}}\kappa {\epsilon }_{\mu \nu }{ \mathcal R }^{\prime} [\phi ]\,\,{/}\!\!\!\!{k}{\gamma }^{\mu }{p}^{\nu }\right){{ \mathcal O }}_{p}[\phi ]\equiv {\rm{i}}U[p,k;\phi ]{{ \mathcal O }}_{p}[\phi ].\end{array}\end{eqnarray}$
The solution of the above equation is given by
$\begin{eqnarray}{{ \mathcal O }}_{p}[\phi ]={{\rm{e}}}^{{\rm{i}}{\int }_{{\phi }_{0}}^{\phi }U[p,k;\bar{\phi }]d\bar{\phi }}{{ \mathcal O }}_{p}[{\phi }_{0}].\end{eqnarray}$
Hence, the positive-energy solution of the Dirac equation (6.2) becomes
$\begin{eqnarray}{\psi }_{p}(x)=\sqrt{\displaystyle \frac{m}{2{E}_{p}}}{{\rm{e}}}^{{\rm{i}}{\int }_{{\phi }_{0}}^{\phi }U[p,k;\bar{\phi }]d\bar{\phi }}{{ \mathcal O }}_{p}[{\phi }_{0}]u(p){{\rm{e}}}^{{\rm{i}}\vec{p}.\vec{x}-{{\rm{i}}E}_{p}t}.\end{eqnarray}$
Therefore, the expression for the transition amplitude in this case is given by
$\begin{eqnarray}\begin{array}{rcl}\langle {\nu }_{\beta },{s}_{2}| {\nu }_{\alpha }(t),{s}_{1}\rangle & = & \displaystyle \sum _{j}\displaystyle \frac{{m}_{j}}{2{E}_{j}}{U}_{\alpha j}{U}_{\beta j}^{* }{\bar{u}}_{{s}_{2}}({p}_{j}){\gamma }^{0}\\ & & \times \,{{\rm{e}}}^{{\rm{i}}{\displaystyle \int }_{{\phi }_{0}}^{\phi }U[{p}_{j},k;\bar{\phi }]d\bar{\phi }}{u}_{{s}_{1}}({p}_{j}){{\rm{e}}}^{-{{\rm{i}}E}_{j}t},\end{array}\end{eqnarray}$
where we consider ${{ \mathcal O }}_{p}[{\phi }_{0}]={\mathbb{I}}$ . Hence, the transition probability becomes
$\begin{eqnarray}\begin{array}{l}{{ \mathcal P }}_{{\nu }_{\alpha },{s}_{1}\to {\nu }_{\beta },{s}_{2}}(t)=| \langle {\nu }_{\beta },{s}_{2}| {\nu }_{\alpha }(t),{s}_{1}\rangle {| }^{2}\\ \quad =\,\displaystyle \sum _{j,l}{U}_{\alpha j}{U}_{\beta j}^{* }{U}_{\alpha l}^{* }{U}_{\beta l}{{\rm{e}}}^{-{\rm{i}}({E}_{j}-{E}_{l})t}\\ \qquad \times \,\left[\left({\bar{u}}_{{s}_{2}}({p}_{j}){\gamma }^{0}{{\rm{e}}}^{{\rm{i}}{\displaystyle \int }_{{\phi }_{0}}^{\phi }U[{p}_{j},k;\bar{\phi }]d\bar{\phi }}{u}_{{s}_{1}}({p}_{j})\right)\right.\\ \qquad \left.\times \,\left({\bar{u}}_{{s}_{1}}({p}_{l}){\gamma }^{0}{{\rm{e}}}^{-{\rm{i}}{\displaystyle \int }_{{\phi }_{0}}^{\phi }{U}^{\dagger }[{p}_{l},k;\bar{\phi }]d\bar{\phi }}{u}_{{s}_{2}}({p}_{l})\right)\right]\displaystyle \frac{{m}_{j}}{2{E}_{j}}\displaystyle \frac{{m}_{l}}{2{E}_{l}}.\end{array}\end{eqnarray}$
The non-trivial nature of the operator U[p, k; φ] in the exponential changes the spin state of neutrinos during the neutrino oscillation. This follows on from the fact that $U[p,k;\bar{\phi }]$ contains terms like ${\epsilon }_{\mu \nu }{ \mathcal R }[\phi ]\,\,{/}\!\!\!\!{k}{\gamma }^{\mu }{p}^{\nu }$ and ${\epsilon }_{\mu \nu }{ \mathcal R }^{\prime} [\phi ]\,\,{/}\!\!\!\!{k}{\gamma }^{\mu }{p}^{\nu }$ which can be expressed as
$\begin{eqnarray}\begin{array}{rcl}{\epsilon }_{\mu \nu }{ \mathcal R }[\phi ]\,\,{/}\!\!\!\!{k}{\gamma }^{\mu }{p}^{\nu } & = & {\epsilon }_{\mu \nu }{ \mathcal R }[\phi ]{k}^{\mu }{p}^{\nu }+\displaystyle \frac{1}{2}{\epsilon }_{\mu \nu }{ \mathcal R }[\phi ]{k}_{\rho }[{\gamma }^{\rho },{\gamma }^{\mu }]{p}^{\nu }\\ & = & \displaystyle \frac{1}{2}{\epsilon }_{\mu \nu }{ \mathcal R }[\phi ]{k}_{\rho }[{\gamma }^{\rho },{\gamma }^{\mu }]{p}^{\nu }\\ {\epsilon }_{\mu \nu }{ \mathcal R }^{\prime} [\phi ]\,\,{/}\!\!\!\!{k}{\gamma }^{\mu }{p}^{\nu } & = & \displaystyle \frac{1}{2}{\epsilon }_{\mu \nu }{ \mathcal R }^{\prime} [\phi ]{k}_{\rho }[{\gamma }^{\rho },{\gamma }^{\mu }]{p}^{\nu }\end{array}\end{eqnarray}$
where we used the transversality condition εμνkμ = 0. In the above expressions, we can see the appearance of the spin operators for spatial components of ρ and μ. It is also important here to emphasize that the computation of transition amplitude in equation (6.11) involves the initial state which effectively evolves under the exponential operator ${{\rm{e}}}^{{\rm{i}}{\int }_{{\phi }_{0}}^{\phi }U[{p}_{j},k;\bar{\phi }]{\rm{d}}\bar{\phi }}$ in the Schr$\ddot{{\rm{o}}}$ dinger picture. This operator in a way captures the essence of one-particle scattering in the presence of gravitons which transfers non-zero four-momentum k. Thus, GW affects the nature of neutrino oscillation, although this effect is relatively small since the coupling κ is very small.

7. Discussion

Neutrinos play an important role in understanding various astrophysical and cosmological phenomena [5760]. In order to predict and explain astrophysical and cosmological observations through models, it is often required to know about the fluxes of different flavors of neutrinos. Hence, the nature of neutrino oscillations in the presence of background classical sources must be understood. Here, using the Dirac–Volkov equation, we show explicitly the nature of neutrino oscillations in the presence of class of plane-wave classical sources. Furthermore, the effect of coupling between the magnetic moments of neutrinos and the electromagnetic gauge field is also shown explicitly. Similarly, we also show that the couplings with torsion and GW in Minkowski spacetime also affects the nature of neutrino oscillation in which the helicity state can change. This is consistent with the results in the literature [6165] discussed in a different context. Moreover, the change in the helicity states during the neutrino flavor oscillation is consistent with similar results and observations in the literature [6569], however, the mathematical approach shown here is different. Even though the results in the present article are shown through some formal expressions, in principle those complicated expressions can be evaluated using numerical techniques. It is important here to emphasize that the change in the helicity states during the neutrino oscillation could in principle be used as a detection technique in GW. Moreover, it can also be used to probe the nature of the interaction between the neutrinos and various classical sources during the neutrino emissions in various astrophysical sources like supernovae. However, the probability of the helicity changing during neutrino oscillation completely depends on the coupling strength of the interaction between neutrinos and background classical sources. As a result, we expect that the helicity change during the neutrino oscillation due to a passage of gravitational wave at asymptotic infinity would be very small due to the very small value of $\kappa =\sqrt{8\pi G}$ and the strength of the metric perturbation. On the other hand, if we consider the interaction between GW and neutrinos near the supernova explosions, the strength of this coupling would be high which makes the probability of helicity changing in the neutrino oscillation during this period relatively higher.
Although the present analysis depends on the Dirac nature of neutrinos, a similar analysis can also be applicable to the Majorana nature of neutrinos where one might see new emerging features like CP violation which has been recently shown in [70]. This analysis is beyond the scope of the present article as it requires a separate detailed computation altogether.

Acknowledgments

SM is supported by the SERB-Core Research Grant (Project RD/0122-SERB000-044).
1
Bilenky S M, Pontecorvo B 1978 Lepton mixing and neutrino oscillations Phys. Rep. 41 225 261

DOI

2
Gonzalez-Garcia M C, Grossman Y, Gusso A, Nir Y 2001 New CP violation in neutrino oscillations Phys. Rev. D 64 096006

DOI

3
Barger V, Pakvasa S, Weiler T J, Whisnant K 2000 CPT-odd resonances in neutrino oscillations Phys. Rev. Lett. 85 5055

DOI

4
Nunokawa H, Parke S, Valle J W F 2008 CP violation and neutrino oscillations Prog. Part. Nucl. Phys. 60 338 402

DOI

5
Dolgov A D, Hansen S H, Pastor S, Petcov S T, Raffelt G G, Semikoz D V 2002 Cosmological bounds on neutrino degeneracy improved by flavor oscillations Nucl. Phys. B 632 363 382

DOI

6
Kaplan D B, Nelson A E, Weiner N 2004 Neutrino oscillations as a probe of dark energy Phys. Rev. Lett. 93 091801

DOI

7
Mandal S 2021 Neutrino oscillations in cosmological spacetime Nucl. Phys. B 965 115338

DOI

8
Lesgourgues J, Pastor S 2006 Massive neutrinos and cosmology Phys. Rep. 429 307 379

DOI

9
Akhmedov E K, Rubakov V A, Smirnov A Y 1998 Baryogenesis via neutrino oscillations Phys. Rev. Lett. 81 1359

DOI

10
Canetti L, Drewes M, Frossard T, Shaposhnikov M 2013 Dark matter, baryogenesis and neutrino oscillations from right-handed neutrinos Phys. Rev. D 87 093006

DOI

11
Pontecorvo B 1957 Mesonium and antimesonium Sov. Phys. Jept. 6 429

12
Fukuda Y 1998 Evidence for oscillation of atmospheric neutrinos Phys. Rev. Lett. 81 1562

DOI

13
Fukuda Y 1999 Measurement of the flux and zenith-angle distribution of upward throughgoing muons by super-kamiokande Phys. Rev. Lett. 82 2644

DOI

14
Fukuda S 2000 Tau neutrinos favored over sterile neutrinos in atmospheric muon neutrino oscillations Phys. Rev. Lett. 85 3999

DOI

15
Surdo A 2002 Atmospheric neutrino oscillations in the macro experiment Nucl. Phys. B. Proc. Supp. 110 342 345

DOI

16
Giacomelli G, Margiotta A 2004 Macro results on atmospheric neutrino oscillations Euro. Phys. J. C. Part. Fields 33 s826 s828

DOI

17
Ahmad Q R 2002 Direct evidence for neutrino flavor transformation from neutral-current interactions in the sudbury neutrino observatory Phys. Rev. Lett. 89 011301

DOI

18
Altmann M 2005 Complete results for five years of GNO solar neutrino observations Phys. Lett. B 616 174 190

DOI

19
Hosaka J 2006 Solar neutrino measurements in super-kamiokande-I Phys. Rev. D 73 112001

DOI

20
Abe S 2008 Precision measurement of neutrino oscillation parameters with kamLAND Phys. Rev. Lett. 100 221803

DOI

21
Adamson P 2013 Measurement of neutrino and antineutrino oscillations using beam and atmospheric data in minos Phys. Rev. Lett. 110 251801

DOI

22
Ahn M H 2006 Measurement of neutrino oscillation by the K2K experiment Phys. Rev. D 74 072003

DOI

23
Nieves J F, Sahu S 2018 Neutrino propagation in an electron background with an inhomogeneous magnetic field Eur. Phys. J. C 78 1 17

DOI

24
Duan H 2013 Flavor oscillation modes in dense neutrino media Phys. Rev. D 88 125008

DOI

25
Abbar S, Duan H 2018 Fast neutrino flavor conversion: roles of dense matter and spectrum crossing Phys. Rev. D 98 043014

DOI

26
Wolfenstein L 1979 Effects of matter on neutrino oscillations AIP. Conf. proc. 52 108 112 College Park, MDAmerican Institute of Physics

DOI

27
Grigoriev A, Kupcheva E, Ternov A 2019 Neutrino spin oscillations in polarized matter Phys. Lett. B 797 134861

DOI

28
Fabbricatore R, Grigoriev A, Studenikin A 2016 Neutrino spin-flavor oscillations derived from the mass basis J. Phys. Conf. Ser. 718 062058

DOI

29
Dobrynina A, Georg Raffelt Kartavtsev 2016 Helicity oscillations of dirac and majorana neutrinos Phys. Rev. D 93 125030

DOI

30
Kartavtsev A, Raffelt G, Vogel H 2015 Neutrino propagation in media: flavor, helicity, and pair correlations Phys. Rev. D 91 125020

DOI

31
Daniil D M 1935 Über eine klasse von lösungen der diracschen gleichung Zeitschrift für Physik 94 250 260

DOI

32
Abbott B P 2016 GW151226: observation of gravitational waves from a 22-solar-mass binary black hole coalescence Phys. Rev. Lett. 116 241103

DOI

33
Shandera S, Jeong D, Gebhardt H S G 2018 Gravitational waves from binary mergers of subsolar mass dark black holes Phys. Rev. Lett. 120 241102

DOI

34
Abbott B P 2016 Observation of gravitational waves from a binary black hole merger Phys. Rev. Lett. 116 061102

DOI

35
Abbott B P 2017 GW170817: observation of gravitational waves from a binary neutron star inspiral Phys. Rev. Lett. 119 161101

DOI

36
Kopczyński W 1972 A non-singular universe with torsion Phys. Lett. A 39 219 220

DOI

37
Shapiro I S 2002 Physical aspects of the space–time torsion Phys. Rep. 357 113 213

DOI

38
Kuchowicz B 1978 Friedmann-like cosmological models without singularity Gen. Relativ. Gravit. 9 511 517

DOI

39
Poplawski N J 2010 Cosmology with torsion: An alternative to cosmic inflation Phys. Lett. B 694 181 185

DOI

40
Oraevsky V N, Semikoz V B 1987 Induced electric charge of the neutrino in a dispersive medium Physica A 142 135 156

DOI

41
Dvornikov M, Studenikin A 2002 Neutrino spin evolution in presence of general external fields J. High Energy Phys. JHEP09(2002)016

DOI

42
Ternov I M 1990 Evolution equation for the spin of a relativistic electron in the Heisenberg representation Sov. Phys. JETP 71 654 656

43
Ansarifard S, Gonzalez-Garcia M C, Maltoni M, Pinheiro J P 2024 Solar neutrinos and leptonic spin forces J. High Energy Phys. JHEP07(2024)172

DOI

44
Lötstedt E, Jentschura U D 2009 Correlated two-photon emission by transitions of dirac-volkov states in intense laser fields: Qed predictions Phys. Rev. A 80 053419

DOI

45
Cisneros A 1971 Effect of neutrino magnetic moment on solar neutrino observations Astrophys. Space Sci. 10 87 92

DOI

46
Fujikawa K, Shrock R E 1980 Magnetic moment of a massive neutrino and neutrino-spin rotation Phys. Rev. Lett. 45 963

DOI

47
Bell N F, Gorchtein M, Ramsey-Musolf M J, Vogel P, Wang P 2006 Model independent bounds on magnetic moments of majorana neutrinos Phys. Lett. B 642 377 383

DOI

48
Akhmedov E K, Pulido J 2003 Solar neutrino oscillations and bounds on neutrino magnetic moment and solar magnetic field Phys. Lett. B 553 7 17

DOI

49
Cañas B C, Miranda O G, Parada A, Tortola M, Valle J W F 2016 Updating neutrino magnetic moment constraints Phys. Lett. B 753 191 198

DOI

50
Beacom J F, Vogel P 1999 Neutrino magnetic moments, flavor mixing, and the super-kamiokande solar data Phys. Rev. Lett. 83 5222

DOI

51
Giunti C, Studenikin A 2009 Neutrino electromagnetic properties Phys. At. Nucl. 72 2089 2125

DOI

52
Jenkins E E, Manohar A V, Trott M 2013 On gauge invariance and minimal coupling J. High Energy Phys. 2013 63

DOI

53
Balantekin A B, Vassh N 2014 Magnetic moments of active and sterile neutrinos Phys. Rev. D 89 073013

DOI

54
Broggini C, Giunti C, Studenikin A 2012 Electromagnetic properties of neutrinos Adv. High Energy Phys. 2012

DOI

55
Dvornikov M 2018 Spin-flavor oscillations of Dirac neutrinos in a plane electromagnetic wave Phys. Rev. D 98 075025

DOI

56
Dvornikov M 2019 Spin-flavor oscillations of Dirac neutrinos in matter under the influence of a plane electromagnetic wave Phys. Rev. D 99 035027

DOI

57
Dolgov A D 2002 Neutrinos in cosmology Phys. Rep. 370 333 535

DOI

58
Abazajian K N 2017 Sterile neutrinos in cosmology Phys. Rep. 711 1 28

DOI

59
Boyarsky A, Ruchayskiy O, Shaposhnikov M 2009 The role of sterile neutrinos in cosmology and astrophysics Annual Rev. Nuclear Part. Sci. 59 191 214

DOI

60
Dupuy H, Bernardeau F 2014 Describing massive neutrinos in cosmology as a collection of independent flows J. Cosmol. Astropart. Phys. 2014 030

DOI

61
Cirilo-Lombardo D J 2013 Solar neutrinos, helicity effects and new affine gravity with torsion Astropart. Phys. 50 51 56

DOI

62
Cirilo-Lombardo D J 2019 Fermion helicity flip and fermion oscillation induced by dynamical torsion field Europhys. Lett. 127 10002

DOI

63
Dvornikov M 2020 Spin effects in neutrino gravitational scattering Phys. Rev. D 101 056018

DOI

64
Lambiase G, Papini G, Punzi R, Scarpetta G 2005 Neutrino optics and oscillations in gravitational fields Phys. Rev. D 71 073011

DOI

65
Dvornikov M 2019 Neutrino spin oscillations in external fields in curved spacetime Phys. Rev. D 99 116021

DOI

66
Dvornikov M 2013 Neutrino spin oscillations in matter under the influence of gravitational and electromagnetic fields J. Cosmol. Astropart. Phys. 2013 015

DOI

67
Joshi S, Jain S R 2020 Neutrino spin-flavor oscillations in solar environment Res. Astron. Astrophys. 20 123

DOI

68
Guzzo M M, De Holanda P C, Peres O L G 2005 Random magnetic fields inducing solar neutrino spin-flavor precession in a three generation context Phys. Rev. D 72 073004

DOI

69
Chauhan B C, Pulido J, Raghavan R S 2005 Low energy solar neutrinos and spin flavour precession J. High Energy Phys. 2005 051

DOI

70
Dixit K, Pradhan A K, Sankar S U 2023 CP violation due to a Majorana phase in two flavor neutrino oscillations with decays Phys. Rev. D 107 013002

DOI

Outlines

/