Welcome to visit Communications in Theoretical Physics,
Mathematical Physics

The time-fractional (2+1)-dimensional Heisenberg ferromagnetic spin chain equation: its Lie symmetries, exact solutions and conservation laws

  • Jicheng Yu , 1, * ,
  • Yuqiang Feng 1, 2
Expand
  • 1School of Science, Wuhan University of Science and Technology, Wuhan 430081, Hubei, China
  • 2Hubei Province Key Laboratory of Systems Science in Metallurgical Process, Wuhan 430081, Hubei, China

*Author to whom any correspondence should be addressed.

Received date: 2024-08-29

  Revised date: 2024-10-24

  Accepted date: 2024-11-25

  Online published: 2025-01-29

Copyright

© 2025 Institute of Theoretical Physics CAS, Chinese Physical Society and IOP Publishing. All rights, including for text and data mining, AI training, and similar technologies, are reserved.
This article is available under the terms of the IOP-Standard License.

Cite this article

Jicheng Yu , Yuqiang Feng . The time-fractional (2+1)-dimensional Heisenberg ferromagnetic spin chain equation: its Lie symmetries, exact solutions and conservation laws[J]. Communications in Theoretical Physics, 2025 , 77(5) : 055002 . DOI: 10.1088/1572-9494/ad968f

1. Introduction

As is well known, nonlinear evolution equations play an important role in the field of mathematical physics. The (2+1)-dimensional Heisenberg ferromagnetic spin chain equation is a nonlinear integrable evolution equation, given by [1]
$\begin{eqnarray}{\rm{i}}{z}_{t}+{\gamma }_{1}{z}_{xx}+{\gamma }_{2}{z}_{yy}+{\gamma }_{3}{z}_{xy}-{\gamma }_{4}{\left|z\right|}^{2}z=0,\end{eqnarray}$
where z(txy) signifies the appropriate continuum approximation of the coherent magnetism amplitude to the bosonic operators at spin–lattice sites, and γi(i = 1, 2, 3, 4) are parameters regarding magnetic coupling coefficients. In recent years, this key nonlinear model has attracted the attention of many scholars and has become their research focus (see [211] and references therein). In particular, Osman et al [5], Sahoo and Tripathy [8] and Abdel-Aty [11] obtained new exact soliton solutions of the (2+1)-dimensional Heisenberg ferromagnetic spin chain equation using the new extended Fan sub-equation method, the modified Khater method and the $G^{\prime} /(bG^{\prime} +G+a)$-expansion method, respectively.
Fractional differential equations (FDEs), due to the nonlocal and memory effects of the fractional derivative [1215], have been successfully applied in many aspects of science and technology recently. This paper extends the classical (2+1)-dimensional Heisenberg ferromagnetic spin chain equation to the following time-fractional version:
$\begin{eqnarray}\begin{array}{l}{\rm{i}}{D}_{t}^{\alpha }z+{\gamma }_{1}{z}_{xx}+{\gamma }_{2}{z}_{yy}+{\gamma }_{3}{z}_{xy}-{\gamma }_{4}{\left|z\right|}^{2}z=0,\\ 0\lt \alpha \lt 1.\end{array}\end{eqnarray}$
Many scholars have used different methods to obtain analytical or numerical solutions of this equation in different forms of fractional derivative definitions [1623]. Among them, Bakcerler et al [18] used the modified extended tanh-function method to attain some analytic traveling wave solutions of the time-fractional (2+1)-dimensional nonlinear Heisenberg ferromagnetic spin chain equation with a conformable fractional derivative. Rani et al [20] applied the generalized Riccati equation mapping method to obtain some new optical soliton solutions for the space time conformable (2+1) dimensional Heisenberg ferromagnetic spin chain equation with Atangana's conformable derivative. Luo [23] investigated the soliton solutions and dynamical analysis of the (2+1)-dimensional Heisenberg ferromagnetic spin chains model with a beta fractional derivative by using the second-order complete discriminant system.
Assuming z(txy) = u(txy) + iv(txy), equation (2) can be rewritten as the following system:
$\begin{eqnarray}\left\{\begin{array}{l}{D}_{t}^{\alpha }u=-{\gamma }_{1}{v}_{xx}-{\gamma }_{2}{v}_{yy}-{\gamma }_{3}{v}_{xy}+{\gamma }_{4}v({u}^{2}+{v}^{2}),\\ {D}_{t}^{\alpha }v={\gamma }_{1}{u}_{xx}+{\gamma }_{2}{u}_{yy}+{\gamma }_{3}{u}_{xy}-{\gamma }_{4}u({u}^{2}+{v}^{2}).\end{array}\right.\end{eqnarray}$
Compared to numerical methods for FDEs, such as the finite difference method [24] and the finite element method [25], this paper adopts an analytical method: the Lie symmetry analysis method, which was initially advocated by Norwegian mathematician Sophus Lie at the end of the 19th century, and was further developed by Ovsianikov [26] and others [2731]. The Lie symmetry analysis method can effectively handle various forms of integer-order differential equations [3234] because it can treat differential equations uniformly, regardless of their forms, transforming some solutions of these equations into other forms of solutions [35]. It was extended to FDEs by Gazizov et al [36] in 2007, and then widely applied to various models of FDEs occurring in different areas of applied science (see [3748]).
It should be noted that this paper adopts the most widely used Riemann–Liouville fractional derivative defined by [12]
$\begin{eqnarray*}\begin{array}{l}{\mathrm{}}_{a}{D}_{t}^{\alpha }f(t,x)={D}_{t}^{n}{\mathrm{}}_{a}{I}_{t}^{n-\alpha }f(t,x)\\ \quad =\,\left\{\begin{array}{ll}\frac{1}{{\rm{\Gamma }}(n-\alpha )}\frac{{\partial }^{n}}{\partial {t}^{n}}{\displaystyle \int }_{a}^{t}\frac{f(s,x)}{{\left(t-s\right)}^{\alpha -n+1}}{\rm{d}}s, & n-1\lt \alpha \lt n,\\ {D}_{t}^{n}f(t,x), & \alpha =n\in {\mathbb{N}},\end{array}\right.\end{array}\end{eqnarray*}$
for t > a. We denote the operator ${}_{0}{D}_{t}^{\alpha }$ as ${D}_{t}^{\alpha }$ for simplicity.
This paper is organized as follows. In section 2, we present the Lie symmetry analysis of equation (3). In section 3, we obtain the power series solutions of equation (3) via similarity reduction and prove their convergence. The conserved vectors for all Lie symmetries admitted by equation (3) are constructed in section 4. The conclusion is given in the last section.

2. Lie symmetry analysis of equation (3)

Let equation (3) remain invariant under the following one-parameter (ε) continuous point transformation group:
$\begin{eqnarray}\begin{array}{rcl}{t}^{* } & = & t+\epsilon \tau (t,x,y,u,v)+o(\epsilon ),\\ {x}^{* } & = & x+\epsilon \xi (t,x,y,u,v)+o(\epsilon ),\\ {y}^{* } & = & y+\epsilon \theta (t,x,y,u,v)+o(\epsilon ),\\ {u}^{* } & = & u+\epsilon \eta (t,x,y,u,v)+o(\epsilon ),\\ {v}^{* } & = & v+\epsilon \zeta (t,x,y,u,v)+o(\epsilon ),\\ {D}_{{t}^{* }}^{\alpha }{u}^{* } & = & {D}_{t}^{\alpha }u+\epsilon {\eta }^{\alpha ,t}+o(\epsilon ),\\ {D}_{{t}^{* }}^{\alpha }{v}^{* } & = & {D}_{t}^{\alpha }v+\epsilon {\zeta }^{\alpha ,t}+o(\epsilon ),\\ {D}_{{x}^{* }}{u}^{* } & = & {D}_{x}u+\epsilon {\eta }^{x}+o(\epsilon ),\\ {D}_{{x}^{* }}{v}^{* } & = & {D}_{x}v+\epsilon {\zeta }^{x}+o(\epsilon ),\\ {D}_{{y}^{* }}{u}^{* } & = & {D}_{y}u+\epsilon {\eta }^{y}+o(\epsilon ),\\ {D}_{{y}^{* }}{v}^{* } & = & {D}_{y}v+\epsilon {\zeta }^{y}+o(\epsilon ),\\ {D}_{{x}^{* }}^{2}{u}^{* } & = & {D}_{x}^{2}u+\epsilon {\eta }^{xx}+o(\epsilon ),\\ {D}_{{x}^{* }}^{2}{v}^{* } & = & {D}_{x}^{2}v+\epsilon {\zeta }^{xx}+o(\epsilon ),\\ {D}_{{y}^{* }}^{2}{u}^{* } & = & {D}_{y}^{2}u+\epsilon {\eta }^{yy}+o(\epsilon ),\\ {D}_{{y}^{* }}^{2}{v}^{* } & = & {D}_{y}^{2}v+\epsilon {\zeta }^{yy}+o(\epsilon ),\\ {D}_{{x}^{* }}{D}_{{y}^{* }}{u}^{* } & = & {D}_{x}{D}_{y}u+\epsilon {\eta }^{xy}+o(\epsilon ),\\ {D}_{{x}^{* }}{D}_{{y}^{* }}{v}^{* } & = & {D}_{x}{D}_{y}v+\epsilon {\zeta }^{xy}+o(\epsilon ),\end{array}\end{eqnarray}$
where τ, ξ, θ, η and ζ are infinitesimals and ηα,t, ζα,t, ηx, ζx, ηy, ζy, ηxx, ζxx, ηyy, ζyy, ηxy, ζxy are the corresponding prolongations of orders α, 1 and 2, respectively. The corresponding group generator is defined by
$\begin{eqnarray}X=\tau \frac{\partial }{\partial t}+\xi \frac{\partial }{\partial x}+\theta \frac{\partial }{\partial y}+\eta \frac{\partial }{\partial u}+\zeta \frac{\partial }{\partial v}.\end{eqnarray}$
Then, the corresponding prolongation of X has the form
$\begin{eqnarray}\begin{array}{rcl}{\rm{P}}{{\rm{r}}}^{(\alpha ,2)}X & = & X+{\eta }^{\alpha ,t}\frac{\partial }{\partial {u}_{t}^{\alpha }}+{\zeta }^{\alpha ,t}\frac{\partial }{\partial {v}_{t}^{\alpha }}+{\eta }^{xx}\frac{\partial }{\partial {u}_{xx}}\\ & & +{\zeta }^{xx}\frac{\partial }{\partial {v}_{xx}}+{\eta }^{yy}\frac{\partial }{\partial {u}_{yy}}+{\zeta }^{yy}\frac{\partial }{\partial {v}_{yy}}\\ & & +{\eta }^{xy}\frac{\partial }{\partial {u}_{xy}}+{\zeta }^{xy}\frac{\partial }{\partial {v}_{xy}},\end{array}\end{eqnarray}$
where
$\begin{eqnarray}{\eta }^{x}={D}_{x}(\eta )-{u}_{t}{D}_{x}(\tau )-{u}_{x}{D}_{x}(\xi )-{u}_{y}{D}_{x}(\theta ),\end{eqnarray}$
$\begin{eqnarray}{\zeta }^{x}={D}_{x}(\zeta )-{v}_{t}{D}_{x}(\tau )-{v}_{x}{D}_{x}(\xi )-{v}_{y}{D}_{x}(\theta ),\end{eqnarray}$
$\begin{eqnarray}{\eta }^{y}={D}_{y}(\eta )-{u}_{t}{D}_{y}(\tau )-{u}_{x}{D}_{y}(\xi )-{u}_{y}{D}_{y}(\theta ),\end{eqnarray}$
$\begin{eqnarray}{\zeta }^{y}={D}_{y}(\zeta )-{v}_{t}{D}_{y}(\tau )-{v}_{x}{D}_{y}(\xi )-{v}_{y}{D}_{y}(\theta ),\end{eqnarray}$
$\begin{eqnarray}{\eta }^{xx}={D}_{x}({\eta }^{x})-{u}_{xt}{D}_{x}(\tau )-{u}_{xx}{D}_{x}(\xi )-{u}_{xy}{D}_{x}(\theta ),\end{eqnarray}$
$\begin{eqnarray}{\zeta }^{xx}={D}_{x}({\zeta }^{x})-{v}_{xt}{D}_{x}(\tau )-{v}_{xx}{D}_{x}(\xi )-{v}_{xy}{D}_{x}(\theta ),\end{eqnarray}$
$\begin{eqnarray}{\eta }^{yy}={D}_{y}({\eta }^{y})-{u}_{yt}{D}_{y}(\tau )-{u}_{yx}{D}_{y}(\xi )-{u}_{yy}{D}_{y}(\theta ),\end{eqnarray}$
$\begin{eqnarray}{\zeta }^{yy}={D}_{y}({\zeta }^{y})-{v}_{yt}{D}_{y}(\tau )-{v}_{yx}{D}_{y}(\xi )-{v}_{yy}{D}_{y}(\theta ),\end{eqnarray}$
$\begin{eqnarray}{\eta }^{xy}={D}_{x}({\eta }^{y})-{u}_{xt}{D}_{x}(\tau )-{u}_{xx}{D}_{x}(\xi )-{u}_{xy}{D}_{x}(\theta ),\end{eqnarray}$
$\begin{eqnarray}{\zeta }^{xy}={D}_{x}({\zeta }^{y})-{v}_{xt}{D}_{x}(\tau )-{v}_{xx}{D}_{x}(\xi )-{v}_{xy}{D}_{x}(\theta ),\end{eqnarray}$
$\begin{eqnarray}\begin{array}{rcl}{\eta }^{\alpha ,t} & = & \frac{{\partial }^{\alpha }\eta }{\partial {t}^{\alpha }}+({\eta }_{u}-\alpha {D}_{t}(\tau ))\frac{{\partial }^{\alpha }u}{\partial {t}^{\alpha }}-u\frac{{\partial }^{\alpha }{\eta }_{u}}{\partial {t}^{\alpha }}\\ & & +({\eta }_{v}\frac{{\partial }^{\alpha }v}{\partial {t}^{\alpha }}-v\frac{{\partial }^{\alpha }{\eta }_{v}}{\partial {t}^{\alpha }})\\ & & +\displaystyle \sum _{n=1}^{\infty }[\left(\genfrac{}{}{0.0pt}{}{\alpha }{n}\right)\frac{{\partial }^{n}{\eta }_{u}}{\partial {t}^{n}}-\left(\genfrac{}{}{0.0pt}{}{\alpha }{n+1}\right){D}_{t}^{n+1}(\tau )]{D}_{t}^{\alpha -n}(u)\\ & & +\displaystyle \sum _{n=1}^{\infty }\left(\genfrac{}{}{0.0pt}{}{\alpha }{n}\right)\frac{{\partial }^{n}{\eta }_{v}}{\partial {t}^{n}}{D}_{t}^{\alpha -n}(v)\\ & & -\displaystyle \sum _{n=1}^{\infty }\left(\genfrac{}{}{0.0pt}{}{\alpha }{n}\right){D}_{t}^{n}(\xi ){D}_{t}^{\alpha -n}({u}_{x})\\ & & -\displaystyle \sum _{n=1}^{\infty }\left(\genfrac{}{}{0.0pt}{}{\alpha }{n}\right){D}_{t}^{n}(\theta ){D}_{t}^{\alpha -n}({u}_{y})+{\mu }_{1}+{\mu }_{2},\end{array}\end{eqnarray}$
with
$\begin{eqnarray*}\begin{array}{rcl}{\mu }_{1} & = & \displaystyle \sum _{n=2}^{\infty }\displaystyle \sum _{m=2}^{n}\displaystyle \sum _{k=2}^{m}\displaystyle \sum _{r=0}^{k-1}\left(\genfrac{}{}{0.0pt}{}{\alpha }{n}\right)\left(\genfrac{}{}{0.0pt}{}{n}{m}\right)\left(\genfrac{}{}{0.0pt}{}{k}{r}\right)\\ & & \times \frac{{t}^{n-\alpha }{(-u)}^{r}}{k!{\rm{\Gamma }}(n+1-\alpha )}\frac{{\partial }^{m}{u}^{k-r}}{\partial {t}^{m}}\frac{{\partial }^{n-m+k}\eta }{\partial {t}^{n-m}\partial {u}^{k}},\\ {\mu }_{2} & = & \displaystyle \sum _{n=2}^{\infty }\displaystyle \sum _{m=2}^{n}\displaystyle \sum _{k=2}^{m}\displaystyle \sum _{r=0}^{k-1}\left(\genfrac{}{}{0.0pt}{}{\alpha }{n}\right)\left(\genfrac{}{}{0.0pt}{}{n}{m}\right)\left(\genfrac{}{}{0.0pt}{}{k}{r}\right)\\ & & \times \frac{{t}^{n-\alpha }{(-v)}^{r}}{k!{\rm{\Gamma }}(n+1-\alpha )}\frac{{\partial }^{m}{v}^{k-r}}{\partial {t}^{m}}\frac{{\partial }^{n-m+k}\eta }{\partial {t}^{n-m}\partial {v}^{k}},\end{array}\end{eqnarray*}$
and
$\begin{eqnarray}\begin{array}{rcl}{\zeta }^{\alpha ,t} & = & \frac{{\partial }^{\alpha }\zeta }{\partial {t}^{\alpha }}+({\zeta }_{v}-\alpha {D}_{t}(\tau ))\frac{{\partial }^{\alpha }v}{\partial {t}^{\alpha }}-v\frac{{\partial }^{\alpha }{\zeta }_{v}}{\partial {t}^{\alpha }}\\ & & +({\zeta }_{u}\frac{{\partial }^{\alpha }u}{\partial {t}^{\alpha }}-u\frac{{\partial }^{\alpha }{\zeta }_{u}}{\partial {t}^{\alpha }})\\ & & +\displaystyle \sum _{n=1}^{\infty }[\left(\genfrac{}{}{0.0pt}{}{\alpha }{n}\right)\frac{{\partial }^{n}{\zeta }_{v}}{\partial {t}^{n}}-\left(\genfrac{}{}{0.0pt}{}{\alpha }{n+1}\right){D}_{t}^{n+1}(\tau )]{D}_{t}^{\alpha -n}(v)\\ & & +\displaystyle \sum _{n=1}^{\infty }\left(\genfrac{}{}{0.0pt}{}{\alpha }{n}\right)\frac{{\partial }^{n}{\zeta }_{u}}{\partial {t}^{n}}{D}_{t}^{\alpha -n}(u)\\ & & -\displaystyle \sum _{n=1}^{\infty }\left(\genfrac{}{}{0.0pt}{}{\alpha }{n}\right){D}_{t}^{n}(\xi ){D}_{t}^{\alpha -n}({v}_{x})\\ & & -\displaystyle \sum _{n=1}^{\infty }\left(\genfrac{}{}{0.0pt}{}{\alpha }{n}\right){D}_{t}^{n}(\theta ){D}_{t}^{\alpha -n}({v}_{y})+{\mu }_{3}+{\mu }_{4},\end{array}\end{eqnarray}$
with
$\begin{eqnarray*}\begin{array}{rcl}{\mu }_{3} & = & \displaystyle \sum _{n=2}^{\infty }\displaystyle \sum _{m=2}^{n}\displaystyle \sum _{k=2}^{m}\displaystyle \sum _{r=0}^{k-1}\left(\genfrac{}{}{0.0pt}{}{\alpha }{n}\right)\left(\genfrac{}{}{0.0pt}{}{n}{m}\right)\left(\genfrac{}{}{0.0pt}{}{k}{r}\right)\\ & & \times \frac{{t}^{n-\alpha }{(-u)}^{r}}{k!{\rm{\Gamma }}(n+1-\alpha )}\frac{{\partial }^{m}{u}^{k-r}}{\partial {t}^{m}}\frac{{\partial }^{n-m+k}\zeta }{\partial {t}^{n-m}\partial {u}^{k}},\\ {\mu }_{4} & = & \displaystyle \sum _{n=2}^{\infty }\displaystyle \sum _{m=2}^{n}\displaystyle \sum _{k=2}^{m}\displaystyle \sum _{r=0}^{k-1}\left(\genfrac{}{}{0.0pt}{}{\alpha }{n}\right)\left(\genfrac{}{}{0.0pt}{}{n}{m}\right)\left(\genfrac{}{}{0.0pt}{}{k}{r}\right)\\ & & \times \frac{{t}^{n-\alpha }{(-v)}^{r}}{k!{\rm{\Gamma }}(n+1-\alpha )}\frac{{\partial }^{m}{v}^{k-r}}{\partial {t}^{m}}\frac{{\partial }^{n-m+k}\zeta }{\partial {t}^{n-m}\partial {v}^{k}},\end{array}\end{eqnarray*}$
where Dt, Dx and Dy are the total derivatives with respect to t, x and y, respectively.

The infinitesimal transformations, equation (4), should conserve the structure of the Riemann–Liouville fractional derivative operator, of which the lower limit in the integral is fixed. It means that t = 0 should be invariant with respect to such transformations, i.e.

$\begin{eqnarray}\tau (t,x,y,u,v){| }_{t=0}=0.\end{eqnarray}$

From the expressions of μi(i = 1, 2, 3, 4), if the infinitesimals η and ζ are linear with respect to the variables u and v, then μi = 0, that is,

$\begin{eqnarray}\frac{{\partial }^{2}\eta }{\partial {u}^{2}}=\frac{{\partial }^{2}\eta }{\partial {v}^{2}}=\frac{{\partial }^{2}\zeta }{\partial {u}^{2}}=\frac{{\partial }^{2}\zeta }{\partial {v}^{2}}=0.\end{eqnarray}$

The invariance criterion of equation (3) under equation (4) is
$\begin{eqnarray}\left\{\begin{array}{l}{\rm{P}}{{\rm{r}}}^{(\alpha ,2)}X({D}_{t}^{\alpha }u+{\gamma }_{1}{v}_{xx}+{\gamma }_{2}{v}_{yy}+{\gamma }_{3}{v}_{xy}-{\gamma }_{4}v({u}^{2}+{v}^{2})){| }_{()}=0,\\ {\rm{P}}{{\rm{r}}}^{(\alpha ,2)}X({D}_{t}^{\alpha }v-{\gamma }_{1}{u}_{xx}-{\gamma }_{2}{u}_{yy}-{\gamma }_{3}{u}_{xy}+{\gamma }_{4}u({u}^{2}+{v}^{2})){| }_{()}=0,\end{array}\right.\end{eqnarray}$
which can be rewritten as
$\begin{eqnarray}\left\{\begin{array}{l}({\eta }^{\alpha ,t}+{\gamma }_{1}{\zeta }^{xx}+{\gamma }_{2}{\zeta }^{yy}+{\gamma }_{3}{\zeta }^{xy}-2{\gamma }_{4}uv\eta -{\gamma }_{4}({u}^{2}+3{v}^{2})\zeta ){| }_{()}=0,\\ ({\zeta }^{\alpha ,t}-{\gamma }_{1}{\eta }^{xx}-{\gamma }_{2}{\eta }^{yy}-{\gamma }_{3}{\eta }^{xy}+2{\gamma }_{4}uv\zeta +{\gamma }_{4}(3{u}^{2}+{v}^{2})\eta ){| }_{()}=0.\end{array}\right.\end{eqnarray}$
Putting ηα,t, ζα,t, ηxx, ζxx, ηyy, ζyy, ηxy, ζxy into equation (22) and solving the obtained determining equations, we can get the infinitesimals as follows:
$\begin{eqnarray}\begin{array}{rcl}\tau & = & {c}_{1}t,\,\,\xi =\frac{\alpha }{2}{c}_{1}x+{c}_{2},\,\,\theta =\frac{\alpha }{2}{c}_{1}y+{c}_{3},\\ \eta & = & -\frac{\alpha }{2}{c}_{1}u+{c}_{4}v,\,\,\zeta =-\frac{\alpha }{2}{c}_{1}v-{c}_{4}u,\end{array}\end{eqnarray}$
where c1, c2, c3 and c4 are arbitrary constants. Therefore, equation (3) admitted the four-dimension Lie algebra spanned by
$\begin{eqnarray}\begin{array}{rcl}{X}_{1} & = & t\frac{\partial }{\partial t}+\frac{\alpha }{2}x\frac{\partial }{\partial x}+\frac{\alpha }{2}y\frac{\partial }{\partial y}-\frac{\alpha }{2}u\frac{\partial }{\partial u}-\frac{\alpha }{2}v\frac{\partial }{\partial v},\\ {X}_{2} & = & v\frac{\partial }{\partial u}-u\frac{\partial }{\partial v},\,\,{X}_{3}=\frac{\partial }{\partial x},\,\,{X}_{4}=\frac{\partial }{\partial y}.\end{array}\end{eqnarray}$

3. Similarity reductions and exact solutions of equation (3)

In this section, the aimed equations (3) can be reduced to solvable (1+1)-dimensional fractional partial differential equations with the left-hand Erdélyi–Kober fractional derivative.
Case 1: ${X}_{1}=t\frac{{\rm{\partial }}}{{\rm{\partial }}t}+\frac{\alpha }{2}x\frac{{\rm{\partial }}}{{\rm{\partial }}x}+\frac{\alpha }{2}y\frac{{\rm{\partial }}}{{\rm{\partial }}y}-\frac{\alpha }{2}u\frac{{\rm{\partial }}}{{\rm{\partial }}u}-\frac{\alpha }{2}v\frac{{\rm{\partial }}}{{\rm{\partial }}v}.$
From the characteristic equation corresponding to the group generator X1, i.e.
$\begin{eqnarray}\frac{{\rm{d}}t}{t}=\frac{{\rm{d}}x}{\frac{\alpha }{2}x}=\frac{{\rm{d}}y}{\frac{\alpha }{2}y}=\frac{{\rm{d}}u}{-\frac{\alpha }{2}u}=\frac{{\rm{d}}v}{-\frac{\alpha }{2}v},\end{eqnarray}$
we obtain the similarity variables $x{t}^{-\frac{\alpha }{2}}$, $y{t}^{-\frac{\alpha }{2}}$, $u{t}^{\frac{\alpha }{2}}$ and $v{t}^{\frac{\alpha }{2}}$. Therefore, we get the invariant solutions of equation (3) as follows:
$\begin{eqnarray}u(t,x,y)={t}^{-\frac{\alpha }{2}}f({\omega }_{1},{\omega }_{2}),\,\,v(t,x,y)={t}^{-\frac{\alpha }{2}}g({\omega }_{1},{\omega }_{2}),\end{eqnarray}$
with ${\omega }_{1}=x{t}^{-\frac{\alpha }{2}}$, ${\omega }_{2}=y{t}^{-\frac{\alpha }{2}}$.

The similarity transformations $u(t,x,y)\,={t}^{-\frac{\alpha }{2}}f({\omega }_{1},{\omega }_{2})$, $v(t,x,y)={t}^{-\frac{\alpha }{2}}g({\omega }_{1},{\omega }_{2})$ with the similarity variable ${\omega }_{1}=x{t}^{-\frac{\alpha }{2}}$, ${\omega }_{2}=y{t}^{-\frac{\alpha }{2}}$ reduce equation (3) to the (1+1)-dimensional fractional partial differential equations given by

$\begin{eqnarray}\left\{\begin{array}{l}({{ \mathcal P }}_{\frac{2}{\alpha },\frac{2}{\alpha }}^{1-\frac{3\alpha }{2},\alpha }f)({\omega }_{1},{\omega }_{2})=-{\gamma }_{1}{g}_{{\omega }_{1}{\omega }_{1}}-{\gamma }_{2}{g}_{{\omega }_{2}{\omega }_{2}}-{\gamma }_{3}{g}_{{\omega }_{1}{\omega }_{2}}+{\gamma }_{4}g({f}^{2}+{g}^{2}),\\ ({{ \mathcal P }}_{\frac{2}{\alpha },\frac{2}{\alpha }}^{1-\frac{3\alpha }{2},\alpha }g)({\omega }_{1},{\omega }_{2})={\gamma }_{1}{f}_{{\omega }_{1}{\omega }_{1}}+{\gamma }_{2}{f}_{{\omega }_{2}{\omega }_{2}}+{\gamma }_{3}{f}_{{\omega }_{1}{\omega }_{2}}-{\gamma }_{4}f({f}^{2}+{g}^{2}),\end{array}\right.\end{eqnarray}$
where $({{ \mathcal P }}_{{\delta }_{1},{\delta }_{2}}^{\iota ,\kappa })$ is the left-hand Erdélyi–Kober fractional differential operator defined by
$\begin{eqnarray}\begin{array}{l}(\underset{{\delta }_{1},{\delta }_{2}}{\overset{\iota ,\kappa }{{ \mathcal P }}}\psi )({\omega }_{1},{\omega }_{2}):= {\prod }_{j=0}^{m-1}\left(\iota +j-\frac{1}{{\delta }_{1}}{\omega }_{1}\frac{{\rm{d}}}{{\rm{d}}{\omega }_{1}}-\frac{1}{{\delta }_{2}}{\omega }_{2}\frac{{\rm{d}}}{{\rm{d}}{\omega }_{2}}\right)\\ \quad \times \,\left({{ \mathcal K }}_{{\delta }_{1},{\delta }_{2}}^{\iota +\kappa ,m-\kappa }\psi \right)({\omega }_{1},{\omega }_{2}),\,\kappa \gt 0,\\ m=\left\{\begin{array}{l}[\kappa ]+1,\,\,\kappa \notin {\mathbb{N}},\\ \kappa ,\,\,\,\,\,\kappa \in {\mathbb{N}},\end{array}\right.\end{array}\end{eqnarray}$
where
$\begin{eqnarray}\begin{array}{c}({{ \mathcal K }}_{{\delta }_{1},{\delta }_{2}}^{\iota ,\kappa }\psi )({\omega }_{1},{\omega }_{2})\\ \,:=\left\{\begin{array}{cc}\frac{1}{\left.{\rm{\Gamma }}(\kappa \right)}{\displaystyle \int }_{1}^{\infty }{\left(s-1\right)}^{\kappa -1}{s}^{\left.-(\iota +\kappa \right)}\psi ({\omega }_{1}{s}^{\frac{1}{{\delta }_{1}}},{\omega }_{2}{s}^{\frac{1}{{\delta }_{2}}}){\rm{d}}s,\,\, & \kappa \gt 0,\\ \psi ({\omega }_{1},{\omega }_{2}),\,\, & \kappa =0.\end{array}\right.\end{array}\end{eqnarray}$

For 0 < α < 1, the Riemann–Liouville time-fractional derivative of u(txy) can be obtained as follows:

$\begin{eqnarray*}\begin{array}{rcl}\frac{{\partial }^{\alpha }u}{\partial {t}^{\alpha }} & = & \frac{{\partial }^{\alpha }}{\partial {t}^{\alpha }}({t}^{-\frac{\alpha }{2}}f({\omega }_{1},{\omega }_{2}))=\frac{\partial }{\partial t}\left[\frac{1}{{\rm{\Gamma }}(1-\alpha )}\right.\\ & & \left.\times {\displaystyle \int }_{0}^{t}{(t-s)}^{-\alpha }{s}^{\frac{-\alpha }{2}}f(x{s}^{-\frac{\alpha }{2}},y{s}^{-\frac{\alpha }{2}}){\rm{d}}s\right].\end{array}\end{eqnarray*}$
Assuming $r=\frac{t}{s}$, we have
$\begin{eqnarray*}\begin{array}{rcl}\frac{{\partial }^{\alpha }u}{\partial {t}^{\alpha }} & = & \frac{\partial }{\partial t}\left[\frac{{t}^{1-\frac{3\alpha }{2}}}{{\rm{\Gamma }}(1-\alpha )}{\displaystyle \int }_{1}^{\infty }{(r-1)}^{-\alpha }{r}^{\frac{3\alpha }{2}-2}f({\omega }_{1}{r}^{\frac{\alpha }{2}},{\omega }_{2}{r}^{\frac{\alpha }{2}}){\rm{d}}r\right]\\ & = & \frac{\partial }{\partial t}\left[{t}^{1-\frac{3\alpha }{2}}({{ \mathcal K }}_{\frac{2}{\alpha },\frac{2}{\alpha }}^{1-\frac{\alpha }{2},1-\alpha }f)({\omega }_{1},{\omega }_{2})\right].\end{array}\end{eqnarray*}$
Because of ${\omega }_{1}=x{t}^{-\frac{\alpha }{2}}$ and ${\omega }_{2}=y{t}^{-\frac{\alpha }{2}}$, the following relation holds:
$\begin{eqnarray*}\begin{array}{l}t\frac{\partial }{\partial t}\psi ({\omega }_{1},{\omega }_{2})=t(-\frac{\alpha }{2}x{t}^{-\frac{\alpha }{2}-1}{\psi }_{{\omega }_{1}}-\frac{\alpha }{2}x{t}^{-\frac{\alpha }{2}-1}{\psi }_{{\omega }_{2}})\\ \quad =-\frac{\alpha }{2}{\omega }_{1}\frac{{\rm{d}}}{{\rm{d}}{\omega }_{1}}\psi -\frac{\alpha }{2}{\omega }_{2}\frac{{\rm{d}}}{{\rm{d}}{\omega }_{2}}\psi .\end{array}\end{eqnarray*}$
Hence, we arrive at
$\begin{eqnarray*}\begin{array}{rcl}\frac{{\partial }^{\alpha }u}{\partial {t}^{\alpha }} & = & {t}^{-\frac{3\alpha }{2}}\left[\left(1-\frac{3\alpha }{2}-\frac{\alpha }{2}{\omega }_{1}\frac{{\rm{d}}}{{\rm{d}}{\omega }_{1}}-\frac{\alpha }{2}{\omega }_{2}\frac{{\rm{d}}}{{\rm{d}}{\omega }_{2}}\right)\right.\\ & & \left.\times \left({{ \mathcal K }}_{\frac{2}{\alpha },\frac{2}{\alpha }}^{1-\frac{\alpha }{2},1-\alpha }f\right)(\omega )\right]={t}^{-\frac{3\alpha }{2}}({{ \mathcal P }}_{\frac{2}{\alpha },\frac{2}{\alpha }}^{1-\frac{3\alpha }{2},\alpha }f)({\omega }_{1},{\omega }_{2}).\end{array}\end{eqnarray*}$
Similarly,
$\begin{eqnarray*}\frac{{\partial }^{\alpha }v}{\partial {t}^{\alpha }}={t}^{-\frac{3\alpha }{2}}({{ \mathcal P }}_{\frac{2}{\alpha },\frac{2}{\alpha }}^{1-\frac{3\alpha }{2},\alpha }g)({\omega }_{1},{\omega }_{2}).\end{eqnarray*}$
Meanwhile,
$\begin{eqnarray*}\begin{array}{l}-{\gamma }_{1}{v}_{xx}-{\gamma }_{2}{v}_{yy}-{\gamma }_{3}{v}_{xy}+{\gamma }_{4}v({u}^{2}+{v}^{2})={t}^{-\frac{3\alpha }{2}}\\ \quad \times \,(-{\gamma }_{1}{g}_{{\omega }_{1}{\omega }_{1}}-{\gamma }_{2}{g}_{{\omega }_{2}{\omega }_{2}}-{\gamma }_{3}{g}_{{\omega }_{1}{\omega }_{2}}+{\gamma }_{4}g({f}^{2}+{g}^{2})),\\ \quad {\gamma }_{1}{u}_{xx}+{\gamma }_{2}{u}_{yy}+{\gamma }_{3}{u}_{xy}-{\gamma }_{4}u({u}^{2}+{v}^{2})={t}^{-\frac{3\alpha }{2}}\\ \quad \times \,({\gamma }_{1}{f}_{{\omega }_{1}{\omega }_{1}}+{\gamma }_{2}{f}_{{\omega }_{2}{\omega }_{2}}+{\gamma }_{3}{f}_{{\omega }_{1}{\omega }_{2}}-{\gamma }_{4}f({f}^{2}+{g}^{2})).\end{array}\end{eqnarray*}$
This completes the proof.  □

Next, we use the power series method to derive the power series solutions of equation (27). Assuming
$\begin{eqnarray}\begin{array}{rcl}f({\omega }_{1},{\omega }_{2}) & = & \displaystyle \sum _{k=0}^{\infty }{a}_{k}{\omega }^{k},\,\,g({\omega }_{1},{\omega }_{2})=\displaystyle \sum _{k=0}^{\infty }{b}_{k}{\omega }^{k},\\ \omega & = & {C}_{1}{\omega }_{1}+{C}_{2}{\omega }_{2},\end{array}\end{eqnarray}$
with constants ak and bk to be known later, we can get
$\begin{eqnarray}\begin{array}{rcl}f^{\prime} (\omega ) & = & \displaystyle \sum _{k=0}^{\infty }(k+1){a}_{k+1}{\omega }^{k},\\ f^{\prime\prime} (\omega ) & = & \displaystyle \sum _{k=0}^{\infty }(k+2)(k+1){a}_{k+2}{\omega }^{k},\\ g^{\prime} (\omega ) & = & \displaystyle \sum _{k=0}^{\infty }(k+1){b}_{k+1}{\omega }^{k},\\ g^{\prime\prime} (\omega ) & = & \displaystyle \sum _{k=0}^{\infty }(k+2)(k+1){b}_{k+2}{\omega }^{k},\end{array}\end{eqnarray}$
and
$\begin{eqnarray}\begin{array}{l}({{ \mathcal P }}_{\frac{2}{\alpha }}^{1-\frac{3\alpha }{2},\alpha }f)(\omega )=(1-\frac{3\alpha }{2}-\frac{\alpha }{2}\omega \frac{{\rm{d}}}{{\rm{d}}\omega })(\frac{1}{\left.{\rm{\Gamma }}(1-\alpha \right)}\\ \,\times {\displaystyle \int }_{1}^{\infty }{\left(s-1\right)}^{-\alpha }{s}^{\frac{3\alpha }{2}-2}f(\omega {s}^{\frac{\alpha }{2}}){\rm{d}}s)\\ \,=(1-\frac{3\alpha }{2}-\frac{\alpha }{2}\omega \frac{{\rm{d}}}{{\rm{d}}\omega })(\frac{1}{\left.{\rm{\Gamma }}(1-\alpha \right)}{\displaystyle \int }_{1}^{\infty }{\left(s-1\right)}^{-\alpha }{s}^{\frac{3\alpha }{2}-2}\\ \,\times \displaystyle \sum _{k=0}^{\infty }({a}_{k}{\omega }^{k}{s}^{\frac{k\alpha }{2}}){\rm{d}}s)\\ \,=(1-\frac{3\alpha }{2}-\frac{\alpha }{2}\omega \frac{{\rm{d}}}{{\rm{d}}\omega })(\displaystyle \sum _{k=0}^{\infty }{a}_{k}{\omega }^{k}\frac{1}{\left.{\rm{\Gamma }}(1-\alpha \right)}\\ \,\times {\displaystyle \int }_{1}^{\infty }{\left(s-1\right)}^{-\alpha }{s}^{\frac{k+3}{2}\alpha -2}{\rm{d}}s)\\ \,=(1-\frac{3\alpha }{2}-\frac{\alpha }{2}\omega \frac{{\rm{d}}}{{\rm{d}}\omega })\left(\displaystyle \sum _{k=0}^{\infty }{a}_{k}{\omega }^{k}\frac{B\left(1-\frac{\left(k+1)\alpha \right.}{2},1-\alpha \right)}{\left.{\rm{\Gamma }}(1-\alpha \right)}\right)\\ \,=(1-\frac{3\alpha }{2}-\frac{\alpha }{2}\omega \frac{{\rm{d}}}{{\rm{d}}\omega })(\displaystyle \sum _{k=0}^{\infty }\frac{{\rm{\Gamma }}\left(1-\frac{\left(k+1)\alpha \right.}{2}\right)}{{\rm{\Gamma }}\left(2-\frac{\left(k+3)\alpha \right.}{2}\right)}{a}_{k}{\omega }^{k})\\ \,=\displaystyle \sum _{k=0}^{\infty }\frac{{\rm{\Gamma }}\left(1-\frac{\left(k+1)\alpha \right.}{2}\right)}{{\rm{\Gamma }}\left(1-\frac{\left(k+3)\alpha \right.}{2}\right)}{a}_{k}{\omega }^{k}.\end{array}\end{eqnarray}$
Similarly,
$\begin{eqnarray}\begin{array}{l}({{ \mathcal P }}_{\frac{2}{\alpha },\frac{2}{\alpha }}^{1-\frac{3\alpha }{2},\alpha }g)({\omega }_{1},{\omega }_{2})=({{ \mathcal P }}_{\frac{2}{\alpha }}^{1-\frac{3\alpha }{2},\alpha }g)(\omega )\\ \quad =\displaystyle \sum _{k=0}^{\infty }\frac{{\rm{\Gamma }}(1-\frac{(k+1)\alpha }{2})}{{\rm{\Gamma }}(1-\frac{(k+3)\alpha }{2})}{b}_{k}{\omega }^{k}.\end{array}\end{eqnarray}$
Substituting equations (30)–(33) into equation (27) arrives at the following system:
$\begin{eqnarray*}\begin{array}{l}\displaystyle \sum _{k=0}^{\infty }\frac{{\rm{\Gamma }}(1-\frac{(k+1)\alpha }{2})}{{\rm{\Gamma }}(1-\frac{(k+3)\alpha }{2})}{a}_{k}{\omega }^{k}=-({\gamma }_{1}{C}_{1}^{2}+{\gamma }_{2}{C}_{2}^{2}+{\gamma }_{3}{C}_{1}{C}_{2})\\ \quad \times \displaystyle \sum _{k=0}^{\infty }(k+2)(k+1){b}_{k+2}{\omega }^{k}\\ \quad +{\gamma }_{4}(\displaystyle \sum _{l+m+n=k}^{}{a}_{l}{a}_{m}{b}_{n}+\displaystyle \sum _{l+m+n=k}^{}{b}_{l}{b}_{m}{b}_{n}){\omega }^{k},\\ \displaystyle \sum _{k=0}^{\infty }\frac{{\rm{\Gamma }}(1-\frac{(k+1)\alpha }{2})}{{\rm{\Gamma }}(1-\frac{(k+3)\alpha }{2})}{b}_{k}{\omega }^{k}=({\gamma }_{1}{C}_{1}^{2}+{\gamma }_{2}{C}_{2}^{2}+{\gamma }_{3}{C}_{1}{C}_{2})\\ \quad \times \displaystyle \sum _{k=0}^{\infty }(k+2)(k+1){a}_{k+2}{\omega }^{k}\\ \quad -{\gamma }_{4}(\displaystyle \sum _{l+m+n=k}^{}{a}_{l}{a}_{m}{a}_{n}+\displaystyle \sum _{l+m+n=k}^{}{a}_{l}{b}_{m}{b}_{n}){\omega }^{k}.\end{array}\end{eqnarray*}$
Next, we equate the coefficients of different powers of ω to obtain the explicit expressions of ak and bk. For k≥0, we have
$\begin{eqnarray}\left\{\begin{array}{l}{a}_{k+2}=\frac{1}{({\gamma }_{1}{C}_{1}^{2}+{\gamma }_{2}{C}_{2}^{2}+{\gamma }_{3}{C}_{1}{C}_{2})(k+2)(k+1)}\left[\frac{{\rm{\Gamma }}(1-\frac{(k+1)\alpha }{2})}{{\rm{\Gamma }}(1-\frac{(k+3)\alpha }{2})}{b}_{k}\right.\\ \left.+{\gamma }_{4}(\displaystyle \sum _{l+m+n=k}^{}{a}_{l}{a}_{m}{a}_{n}+\displaystyle \sum _{l+m+n=k}^{}{a}_{l}{b}_{m}{b}_{n})\right],\\ {b}_{k+2}=\frac{-1}{({\gamma }_{1}{C}_{1}^{2}+{\gamma }_{2}{C}_{2}^{2}+{\gamma }_{3}{C}_{1}{C}_{2})(k+2)(k+1)}\left[\frac{{\rm{\Gamma }}(1-\frac{(k+1)\alpha }{2})}{{\rm{\Gamma }}(1-\frac{(k+3)\alpha }{2})}{a}_{k}\right.\\ \left.-{\gamma }_{4}(\displaystyle \sum _{l+m+n=k}^{}{a}_{l}{a}_{m}{b}_{n}+\displaystyle \sum _{l+m+n=k}^{}{b}_{l}{b}_{m}{b}_{n})\right],\end{array}\right.\end{eqnarray}$
with the initial conditions a0 = f(0), b0 = g(0), ${a}_{1}=f^{\prime} (0)$ and ${b}_{1}=g^{\prime} (0)$. Therefore, the power series solutions of equation (3) are
$\begin{eqnarray}\begin{array}{l}u(t,x,y)={a}_{0}{t}^{-\frac{\alpha }{2}}+{a}_{1}({C}_{1}x+{C}_{2}y){t}^{-\alpha }\\ \quad +\displaystyle \sum _{k=0}^{\infty }\frac{{({C}_{1}x+{C}_{2}y)}^{k+2}{t}^{-\frac{(k+3)\alpha }{2}}}{({\gamma }_{1}{C}_{1}^{2}+{\gamma }_{2}{C}_{2}^{2}+{\gamma }_{3}{C}_{1}{C}_{2})(k+2)(k+1)}\\ \quad \times \,\left[\frac{{\rm{\Gamma }}(1-\frac{(k+1)\alpha }{2})}{{\rm{\Gamma }}(1-\frac{(k+3)\alpha }{2})}{b}_{k}+{\gamma }_{4}(\displaystyle \sum _{l+m+n=k}^{}{a}_{l}{a}_{m}{a}_{n}+\displaystyle \sum _{l+m+n=k}^{}{a}_{l}{b}_{m}{b}_{n})\right],\\ \quad v(t,x,y)={b}_{0}{t}^{-\frac{\alpha }{2}}+{b}_{1}({C}_{1}x+{C}_{2}y){t}^{-\alpha }\\ \quad -\displaystyle \sum _{k=0}^{\infty }\frac{{({C}_{1}x+{C}_{2}y)}^{k+2}{t}^{-\frac{(k+3)\alpha }{2}}}{({\gamma }_{1}{C}_{1}^{2}+{\gamma }_{2}{C}_{2}^{2}+{\gamma }_{3}{C}_{1}{C}_{2})(k+2)(k+1)}\\ \quad \times \,\left[\frac{{\rm{\Gamma }}(1-\frac{(k+1)\alpha }{2})}{{\rm{\Gamma }}(1-\frac{(k+3)\alpha }{2})}{a}_{k}-{\gamma }_{4}(\displaystyle \sum _{l+m+n=k}^{}{a}_{l}{a}_{m}{b}_{n}+\displaystyle \sum _{l+m+n=k}^{}{b}_{l}{b}_{m}{b}_{n})\right].\end{array}\end{eqnarray}$

The power series solutions, equation (35), are convergent in a neighborhood of the point (0, ∣a0∣, ∣b0∣).

From equation (34), according to the generalized absolute value triangle inequality, i.e. $| \displaystyle {\sum }_{i=1}^{n}{d}_{i}| \leqslant \displaystyle {\sum }_{i=1}^{n}| {d}_{i}| $, we can obtain

$\begin{eqnarray}\left\{\begin{array}{l}| {a}_{k+2}| \leqslant \frac{1}{| {\gamma }_{1}{C}_{1}^{2}+{\gamma }_{2}{C}_{2}^{2}+{\gamma }_{3}{C}_{1}{C}_{2}| (k+2)(k+1)}\left[\frac{\left|{\rm{\Gamma }}(1-\frac{(k+1)\alpha }{2})\right|}{\left|{\rm{\Gamma }}(1-\frac{(k+3)\alpha }{2})\right|}| {b}_{k}| \right.\\ \left.+| {\gamma }_{4}| (\displaystyle \sum _{l+m+n=k}^{}| {a}_{l}\parallel {a}_{m}\parallel {a}_{n}| +\displaystyle \sum _{l+m+n=k}^{}| {a}_{l}\parallel {b}_{m}\parallel {b}_{n}| )\right],\\ | {b}_{k+2}| \leqslant \frac{1}{| {\gamma }_{1}{C}_{1}^{2}+{\gamma }_{2}{C}_{2}^{2}+{\gamma }_{3}{C}_{1}{C}_{2}| (k+2)(k+1)}\left[\frac{\left|{\rm{\Gamma }}(1-\frac{(k+1)\alpha }{2})\right|}{\left|{\rm{\Gamma }}(1-\frac{(k+3)\alpha }{2})\right|}| {a}_{k}| \right.\\ \left.+| {\gamma }_{4}| (\displaystyle \sum _{l+m+n=k}^{}| {a}_{l}\parallel {a}_{m}\parallel {b}_{n}| +\displaystyle \sum _{l+m+n=k}^{}| {b}_{l}\parallel {b}_{m}\parallel {b}_{n}| )\right].\end{array}\right.\end{eqnarray}$
From the properties of the gamma function, it can be found that $\frac{\left|{\rm{\Gamma }}(1-\frac{(k+1)\alpha }{2})\right|}{\left|{\rm{\Gamma }}(1-\frac{(k+3)\alpha }{2})\right|}\leqslant 1$ for arbitrary k. Thus, equation (36) can be written as
$\begin{eqnarray}\begin{array}{l}| {a}_{k+2}| \leqslant M\left(\left|{b}_{k}| +\displaystyle \sum _{l+m+n=k}^{}| {a}_{l}\parallel {a}_{m}\parallel {a}_{n}\right|\right.\\ \quad \left.+\displaystyle \sum _{l+m+n=k}^{}| {a}_{l}\parallel {b}_{m}\parallel {b}_{n}| \right),\,\,k\geqslant 0,\end{array}\end{eqnarray}$
$\begin{eqnarray}\begin{array}{l}| {b}_{k+2}| \leqslant M\left(\left|{a}_{k}| +\displaystyle \sum _{l+m+n=k}^{}| {a}_{l}\parallel {a}_{m}\parallel {b}_{n}\right|\right.\\ \quad \left.+\displaystyle \sum _{l+m+n=k}^{}| {b}_{l}\parallel {b}_{m}\parallel {b}_{n}| \right),\,\,k\geqslant 0,\end{array}\end{eqnarray}$
where $M={\rm{\max }}\{\frac{1}{| {\gamma }_{1}{C}_{1}^{2}+{\gamma }_{2}{C}_{2}^{2}+{\gamma }_{3}{C}_{1}{C}_{2}| (k+2)(k+1)},\frac{| {\gamma }_{4}| }{| {\gamma }_{1}{C}_{1}^{2}+{\gamma }_{2}{C}_{2}^{2}+{\gamma }_{3}{C}_{1}{C}_{2}| (k+2)(k+1)}\}$.

Consider another power series

$\begin{eqnarray}P(\omega )=\displaystyle \sum _{k=0}^{\infty }{p}_{k}{\omega }^{k},\,\,Q(\omega )=\displaystyle \sum _{k=0}^{\infty }{q}_{k}{\omega }^{k},\end{eqnarray}$
where p0 = ∣a0∣, p1 = ∣a1∣, q0 = ∣b0∣, q1 = ∣b1∣ and
$\begin{eqnarray}\begin{array}{l}{p}_{k+2}=M\left({q}_{k}+\displaystyle \sum _{l+m+n=k}^{}{p}_{l}{p}_{m}{p}_{n}+\displaystyle \sum _{l+m+n=k}^{}{p}_{l}{q}_{m}{q}_{n}\right),\\ k\geqslant 0,\end{array}\end{eqnarray}$
$\begin{eqnarray}\begin{array}{l}{q}_{k+2}=M\left({p}_{k}+\displaystyle \sum _{l+m+n=k}^{}{p}_{l}{p}_{m}{q}_{n}+\displaystyle \sum _{l+m+n=k}^{}{q}_{l}{q}_{m}{q}_{n}\right),\\ k\geqslant 0.\end{array}\end{eqnarray}$
Therefore, it is easily seen that ∣ak∣≤pk and ∣bk∣≤qk for k = 0, 1, 2, …, that is, the power series, equation (39), are the majorant series of equation (30). We next show that the power series, equation (39), are convergent. By simple calculation, we can get
$\begin{eqnarray}P(\omega )={p}_{0}+{p}_{1}\omega +M\left(\right.Q(\omega )+{P}^{3}(\omega )+P(\omega ){Q}^{2}(\omega )\left)\right.{\omega }^{2},\end{eqnarray}$
$\begin{eqnarray}Q(\omega )={q}_{0}+{q}_{1}\omega +M\left(\right.P(\omega )+{Q}^{3}(\omega )+Q(\omega ){P}^{2}(\omega )\left)\right.{\omega }^{2}.\end{eqnarray}$
Consider the following implicit function with respect to the independent variable ω:
$\begin{eqnarray}\begin{array}{l}F(\omega ,P,Q)=P-{P}_{0}-{P}_{1}\omega \\ \quad -M\left(\right.Q(\omega )+{P}^{3}(\omega )+P(\omega ){Q}^{2}(\omega )\left)\right.{\omega }^{2},\end{array}\end{eqnarray}$
$\begin{eqnarray}\begin{array}{l}G(\omega ,P,Q)=Q-{q}_{0}-{q}_{1}\omega \\ \quad -M\left(\right.P(\omega )+{Q}^{3}(\omega )+Q(\omega ){P}^{2}(\omega )\left)\right.{\omega }^{2},\end{array}\end{eqnarray}$
which are analytic in a neighborhood of (0, p0q0), and F(0, p0q0) = 0, G(0, p0q0) = 0, $\frac{\partial (F,G)}{\partial (P,Q)}{| }_{(0,{p}_{0},{q}_{0})}=1\ne 0$. Therefore, via the implicit function theorem, the power series, equation (39), are analytic in the neighborhood of the point (0, p0q0). It implies that the power series solutions, equation (30), are convergent in a neighborhood of the point (0, ∣a0∣, ∣b0∣).  □

In figure 1, we illustrate the physical features of the power series solutions, equation (35), for different chosen parameters. Assuming a0 = b0 = a1 = b1 = 1, ${C}_{1}={C}_{2}=\frac{1}{2}$ and γi = 1(i = 1, 2, 3, 4), these graphs show that as the fractional order changes slightly, the solutions, equation (35), exhibit subtle differences for the initial values and constants C1, C2 and γi. Therefore, the fractional form is more suitable for adjusting the evolution of the model in practical situations based on changes in order α.
Figure 1. Dynamical profiles of the truncated power series solution, equation (35).
Case 2: ${X}_{3}=\frac{{\rm{\partial }}}{{\rm{\partial }}x}.$
From the characteristic equation corresponding to the group generator X3, i.e.
$\begin{eqnarray}\frac{{\rm{d}}t}{0}=\frac{{\rm{d}}x}{1}=\frac{{\rm{d}}y}{0}=\frac{{\rm{d}}u}{0}=\frac{{\rm{d}}v}{0},\end{eqnarray}$
we obtain the similarity variables t, y, u and v. Therefore, we get the invariant solutions of equation (3) as follows:
$\begin{eqnarray}u=f(t,y),\,\,v=g(t,y).\end{eqnarray}$
Substituting equation (47) into equation (3), we have the following reduced equations:
$\begin{eqnarray}\left\{\begin{array}{l}{D}_{t}^{\alpha }f=-{\gamma }_{2}{g}_{yy}+{\gamma }_{4}g({f}^{2}+{g}^{2}),\\ {D}_{t}^{\alpha }g={\gamma }_{2}{f}_{yy}-{\gamma }_{4}f({f}^{2}+{g}^{2}),\end{array}\right.\end{eqnarray}$
which is the time-fractional cubic Schrödinger equation [40] with γ2 = 1 and γ4 = − γ. Similar to [40], we can further reduce equation (48) to fractional ordinary differential equations using the Lie symmetry analysis method again, and obtain the following convergent power series solutions:
$\begin{eqnarray}\begin{array}{l}u(t,y)={a}_{0}{t}^{-\frac{\alpha }{2}}+{a}_{1}y{t}^{-\alpha }+\displaystyle \sum _{k=0}^{\infty }\frac{{y}^{k+2}{t}^{-\frac{(k+3)\alpha }{2}}}{{\gamma }_{2}(k+2)(k+1)}\\ \quad \times \,\left[\frac{{\rm{\Gamma }}(1-\frac{(k+1)\alpha }{2})}{{\rm{\Gamma }}(1-\frac{(k+3)\alpha }{2})}{b}_{k}+{\gamma }_{4}(\displaystyle \sum _{l+m+n=k}^{}{a}_{l}{a}_{m}{a}_{n}+\displaystyle \sum _{l+m+n=k}^{}{a}_{l}{b}_{m}{b}_{n})\right],\\ v(t,y)={b}_{0}{t}^{-\frac{\alpha }{2}}+{b}_{1}y{t}^{-\alpha }-\displaystyle \sum _{k=0}^{\infty }\frac{{y}^{k+2}{t}^{-\frac{(k+3)\alpha }{2}}}{{\gamma }_{2}(k+2)(k+1)}\\ \quad \times \,\left[\frac{{\rm{\Gamma }}(1-\frac{(k+1)\alpha }{2})}{{\rm{\Gamma }}(1-\frac{(k+3)\alpha }{2})}{a}_{k}-{\gamma }_{4}(\displaystyle \sum _{l+m+n=k}^{}{a}_{l}{a}_{m}{b}_{n}+\displaystyle \sum _{l+m+n=k}^{}{b}_{l}{b}_{m}{b}_{n})\right],\end{array}\end{eqnarray}$
which is consistent with equation (35) when C1 = 0 and C2 = 1.
Case 3: ${X}_{4}=\frac{{\rm{\partial }}}{{\rm{\partial }}y}.$
From the characteristic equation corresponding to the group generator X4, i.e.
$\begin{eqnarray}\frac{{\rm{d}}t}{0}=\frac{{\rm{d}}x}{0}=\frac{{\rm{d}}y}{1}=\frac{{\rm{d}}u}{0}=\frac{{\rm{d}}v}{0},\end{eqnarray}$
we obtain the similarity variables t, x, u and v. Therefore, we get the invariant solutions of equation (3) as follows:
$\begin{eqnarray}u=f(t,x),\,\,v=g(t,x).\end{eqnarray}$
Substituting equation (51) into equation (3), we have the following reduced equations:
$\begin{eqnarray}\left\{\begin{array}{l}{D}_{t}^{\alpha }f=-{\gamma }_{1}{g}_{xx}+{\gamma }_{4}g({f}^{2}+{g}^{2}),\\ {D}_{t}^{\alpha }g={\gamma }_{1}{f}_{xx}-{\gamma }_{4}f({f}^{2}+{g}^{2}),\end{array}\right.\end{eqnarray}$
which is the time-fractional cubic Schrödinger equation [40] with γ1 = 1 and γ4 = − γ. Similar to case 2, we can obtain the following convergent power series solutions:
$\begin{eqnarray}\begin{array}{l}u(t,x)={a}_{0}{t}^{-\frac{\alpha }{2}}+{a}_{1}x{t}^{-\alpha }+\displaystyle \sum _{k=0}^{\infty }\frac{{x}^{k+2}{t}^{-\frac{(k+3)\alpha }{2}}}{{\gamma }_{1}(k+2)(k+1)}\\ \quad \times \,\left[\frac{{\rm{\Gamma }}(1-\frac{(k+1)\alpha }{2})}{{\rm{\Gamma }}(1-\frac{(k+3)\alpha }{2})}{b}_{k}+{\gamma }_{4}(\displaystyle \sum _{l+m+n=k}^{}{a}_{l}{a}_{m}{a}_{n}+\displaystyle \sum _{l+m+n=k}^{}{a}_{l}{b}_{m}{b}_{n})\right],\\ v(t,x)={b}_{0}{t}^{-\frac{\alpha }{2}}+{b}_{1}x{t}^{-\alpha }-\displaystyle \sum _{k=0}^{\infty }\frac{{x}^{k+2}{t}^{-\frac{(k+3)\alpha }{2}}}{{\gamma }_{1}(k+2)(k+1)}\\ \quad \times \,\left[\frac{{\rm{\Gamma }}(1-\frac{(k+1)\alpha }{2})}{{\rm{\Gamma }}(1-\frac{(k+3)\alpha }{2})}{a}_{k}-{\gamma }_{4}(\displaystyle \sum _{l+m+n=k}^{}{a}_{l}{a}_{m}{b}_{n}+\displaystyle \sum _{l+m+n=k}^{}{b}_{l}{b}_{m}{b}_{n})\right],\end{array}\end{eqnarray}$
which is consistent with equation (35) when C1 = 1 and C2 = 0.
Case 4: ${X}_{3}-{X}_{4}=\frac{{\rm{\partial }}}{{\rm{\partial }}x}-\frac{{\rm{\partial }}}{{\rm{\partial }}y}.$
The characteristic equation corresponding to the group generator X3 − X4 is
$\begin{eqnarray}\frac{{\rm{d}}t}{0}=\frac{{\rm{d}}x}{1}=\frac{{\rm{d}}y}{-1}=\frac{{\rm{d}}u}{0}=\frac{{\rm{d}}v}{0},\end{eqnarray}$
from which, we obtain the similarity variables t, x + y, u and v. Therefore, we get the invariant solutions of equation (3)
$\begin{eqnarray}\begin{array}{rcl}u(t,x,y) & = & f({\omega }_{1},{\omega }_{2}),\,\,v(t,x,y)=g({\omega }_{1},{\omega }_{2}),\\ {\omega }_{1} & = & t,\,\,{\omega }_{2}=x+y,\end{array}\end{eqnarray}$
and the reduced equations
$\begin{eqnarray}\left\{\begin{array}{l}{D}_{{\omega }_{1}}^{\alpha }f=-({\gamma }_{1}+{\gamma }_{2}+{\gamma }_{3}){g}_{{\omega }_{2}{\omega }_{2}}+{\gamma }_{4}g({f}^{2}+{g}^{2}),\\ {D}_{{\omega }_{1}}^{\alpha }g=({\gamma }_{1}+{\gamma }_{2}+{\gamma }_{3}){f}_{{\omega }_{2}{\omega }_{2}}-{\gamma }_{4}f({f}^{2}+{g}^{2}).\end{array}\right.\end{eqnarray}$
Similar to cases 2 and 3, we can apply the Lie symmetry analysis method again to obtain the following convergent power series solutions:
$\begin{eqnarray}\begin{array}{l}u(t,x,y)={a}_{0}{t}^{-\frac{\alpha }{2}}+{a}_{1}(x+y){t}^{-\alpha }+\displaystyle \sum _{k=0}^{\infty }\frac{{(x+y)}^{k+2}{t}^{-\frac{(k+3)\alpha }{2}}}{({\gamma }_{1}+{\gamma }_{2}+{\gamma }_{3})(k+2)(k+1)}\\ \quad \times \,\left[\frac{{\rm{\Gamma }}(1-\frac{(k+1)\alpha }{2})}{{\rm{\Gamma }}(1-\frac{(k+3)\alpha }{2})}{b}_{k}+{\gamma }_{4}(\displaystyle \sum _{l+m+n=k}^{}{a}_{l}{a}_{m}{a}_{n}+\displaystyle \sum _{l+m+n=k}^{}{a}_{l}{b}_{m}{b}_{n})\right],\\ v(t,x,y)={b}_{0}{t}^{-\frac{\alpha }{2}}+{b}_{1}(x+y){t}^{-\alpha }-\displaystyle \sum _{k=0}^{\infty }\frac{{(x+y)}^{k+2}{t}^{-\frac{(k+3)\alpha }{2}}}{({\gamma }_{1}+{\gamma }_{2}+{\gamma }_{3})(k+2)(k+1)}\\ \quad \times \,\left[\frac{{\rm{\Gamma }}(1-\frac{(k+1)\alpha }{2})}{{\rm{\Gamma }}(1-\frac{(k+3)\alpha }{2})}{a}_{k}-{\gamma }_{4}(\displaystyle \sum _{l+m+n=k}^{}{a}_{l}{a}_{m}{b}_{n}+\displaystyle \sum _{l+m+n=k}^{}{b}_{l}{b}_{m}{b}_{n})\right],\end{array}\end{eqnarray}$
which is consistent with equation (35) when C1 = 1 and C2 = 1.

4. Conservation laws of equation (3)

We denote equation (3) as
$\begin{eqnarray}\left\{\begin{array}{l}{F}_{1}={D}_{t}^{\alpha }u+{\gamma }_{1}{v}_{xx}+{\gamma }_{2}{v}_{yy}+{\gamma }_{3}{v}_{xy}-{\gamma }_{4}v({u}^{2}+{v}^{2})=0,\\ {F}_{2}={D}_{t}^{\alpha }v-{\gamma }_{1}{u}_{xx}-{\gamma }_{2}{u}_{yy}-{\gamma }_{3}{u}_{xy}+{\gamma }_{4}u({u}^{2}+{v}^{2})=0,\end{array}\right.\end{eqnarray}$
of which the formal Lagrangian is given by
$\begin{eqnarray}\begin{array}{rcl}{ \mathcal L } & = & p(t,x,y){F}_{1}+q(t,x,y){F}_{2}\\ & = & p(t,x,y)\left({D}_{t}^{\alpha }u+{\gamma }_{1}{v}_{xx}+{\gamma }_{2}{v}_{yy}+{\gamma }_{3}{v}_{xy}\right.\\ & & \left.-{\gamma }_{4}v({u}^{2}+{v}^{2})\right)\\ & & +q(t,x,y)\left({D}_{t}^{\alpha }v-{\gamma }_{1}{u}_{xx}-{\gamma }_{2}{u}_{yy}\right.\\ & & \left.-{\gamma }_{3}{u}_{xy}+{\gamma }_{4}u({u}^{2}+{v}^{2})\right),\end{array}\end{eqnarray}$
where p(txy) and q(txy) are new dependent variables. The Euler–Lagrange operators are
$\begin{eqnarray}\begin{array}{rcl}\frac{\delta }{\delta u} & = & \frac{\partial }{\partial u}+{({D}_{t}^{\alpha })}^{* }\frac{\partial }{\partial ({D}_{t}^{\alpha }u)}\\ & & +\displaystyle \sum _{s=1}^{\infty }{(-1)}^{s}{D}_{{i}_{1}}\cdots {D}_{{i}_{s}}\frac{\partial }{\partial {u}_{{i}_{1}\cdots {i}_{s}}},\end{array}\end{eqnarray}$
$\begin{eqnarray}\begin{array}{rcl}\frac{\delta }{\delta v} & = & \frac{\partial }{\partial v}+{({D}_{t}^{\alpha })}^{* }\frac{\partial }{\partial ({D}_{t}^{\alpha }v)}\\ & & +\displaystyle \sum _{s=1}^{\infty }{(-1)}^{s}{D}_{{i}_{1}}\cdots {D}_{{i}_{s}}\frac{\partial }{\partial {v}_{{i}_{1}\cdots {i}_{s}}},\end{array}\end{eqnarray}$
where ${({D}_{t}^{\alpha })}^{* }$ is the adjoint operator of ${D}_{t}^{\alpha }$. It is defined by the right-side of the Caputo fractional derivative, i.e.
$\begin{eqnarray*}\begin{array}{l}{({D}_{t}^{\alpha })}^{* }f(t,x){\equiv }_{t}^{c}{D}_{T}^{\alpha }f(t,x)\\ \quad =\left\{\begin{array}{ll}\frac{1}{{\rm{\Gamma }}(n-\alpha )}{\displaystyle \int }_{t}^{T}\frac{1}{{(t-s)}^{\alpha -n+1}}\frac{{\partial }^{n}}{\partial {s}^{n}}f(s,x){\rm{d}}s, & n-1\lt \alpha \lt n,\\ {D}_{t}^{n}f(t,x), & \alpha =n\in {\mathbb{N}}.\end{array}\right.\end{array}\end{eqnarray*}$
The adjoint equations to equation (58) are given by
$\begin{eqnarray}\left\{\begin{array}{l}{F}_{1}^{* }=\frac{\delta { \mathcal L }}{\delta u}={({D}_{t}^{\alpha })}^{* }p+{\gamma }_{1}{q}_{xx}+{\gamma }_{2}{q}_{yy}+{\gamma }_{3}{q}_{xy}-{\gamma }_{4}(2puv-3q{u}^{2}-q{v}^{2})=0,\\ {F}_{2}^{* }=\frac{\delta { \mathcal L }}{\delta v}={({D}_{t}^{\alpha })}^{* }q-{\gamma }_{1}{p}_{xx}-{\gamma }_{2}{p}_{yy}-{\gamma }_{3}{p}_{xy}+{\gamma }_{4}(2quv-3p{v}^{2}-p{u}^{2})=0.\end{array}\right.\end{eqnarray}$
Next, we will use the above adjoint equations and the new conservation theorem [49] to construct conservation laws of equation (3). From the classical definition of the conservation laws, a vector C = (CtCxCy) is called the conserved vector for the governing equation if it satisfies the conservation equation ${[{D}_{t}{C}^{t}+{D}_{x}{C}^{x}+{D}_{y}{C}^{y}]}_{{F}_{1},{F}_{2}=0}=0$. We can obtain the components of the conserved vector using the generalization of the Noether operators [50]. From the fundamental operator identity, i.e.
$\begin{eqnarray}\begin{array}{l}{\rm{P}}{{\rm{r}}}^{(\alpha ,2)}X+{D}_{t}\tau \cdot { \mathcal I }+{D}_{x}\xi \cdot { \mathcal I }+{D}_{y}\theta \cdot { \mathcal I }\\ \quad ={W}^{u}\cdot \frac{\delta }{\delta u}+{W}^{v}\cdot \frac{\delta }{\delta v}+{D}_{t}{{ \mathcal N }}^{t}+{D}_{x}{{ \mathcal N }}^{x}+{D}_{y}{{ \mathcal N }}^{y},\end{array}\end{eqnarray}$
where Pr(α,2)X is mentioned in equation (6), ${ \mathcal I }$ is the identity operator, and Wu = η − τut − ξux − θuy, Wv = ζ − τvt − ξvx − θuy are the characteristics for the group generator X. We can get the Noether operators as follows:
$\begin{eqnarray}\begin{array}{rcl}{{ \mathcal N }}^{t} & = & \tau { \mathcal I }+\displaystyle \sum _{k=0}^{n-1}{(-1)}^{k}{D}_{t}^{\alpha -1-k}({W}^{u}){D}_{t}^{k}\frac{\partial }{\partial ({D}_{t}^{\alpha }u)}\\ & & -{(-1)}^{n}J({W}^{u},{D}_{t}^{n}\frac{\partial }{\partial ({D}_{t}^{\alpha }u)})\\ & & +\displaystyle \sum _{k=0}^{n-1}{(-1)}^{k}{D}_{t}^{\alpha -1-k}({W}^{v}){D}_{t}^{k}\frac{\partial }{\partial ({D}_{t}^{\alpha }v)}\\ & & -{(-1)}^{n}J({W}^{v},{D}_{t}^{n}\frac{\partial }{\partial ({D}_{t}^{\alpha }v)}),\,\,\end{array}\end{eqnarray}$
$\begin{eqnarray}\begin{array}{rcl}{{ \mathcal N }}^{x} & = & \xi { \mathcal I }-{W}^{u}({D}_{x}\frac{\partial }{\partial {u}_{xx}}+{D}_{y}\frac{\partial }{\partial {u}_{xy}})\\ & & -{W}^{v}({D}_{x}\frac{\partial }{\partial {v}_{xx}}+{D}_{y}\frac{\partial }{\partial {v}_{xy}})\\ & & +{D}_{x}({W}^{u})\frac{\partial }{\partial {u}_{xx}}+{D}_{y}({W}^{u})\frac{\partial }{\partial {u}_{xy}}\\ & & +{D}_{x}({W}^{v})\frac{\partial }{\partial {v}_{xx}}+{D}_{y}({W}^{v})\frac{\partial }{\partial {v}_{xy}},\end{array}\end{eqnarray}$
$\begin{eqnarray}\begin{array}{rcl}{{ \mathcal N }}^{y} & = & \theta { \mathcal I }-{W}^{u}({D}_{y}\frac{\partial }{\partial {u}_{yy}}+{D}_{x}\frac{\partial }{\partial {u}_{yx}})\\ & & -{W}^{v}({D}_{y}\frac{\partial }{\partial {v}_{yy}}+{D}_{x}\frac{\partial }{\partial {v}_{yx}})\\ & & +{D}_{y}({W}^{u})\frac{\partial }{\partial {u}_{yy}}+{D}_{x}({W}^{u})\frac{\partial }{\partial {u}_{yx}}\\ & & +{D}_{y}({W}^{v})\frac{\partial }{\partial {v}_{yy}}+{D}_{x}({W}^{v})\frac{\partial }{\partial {v}_{yx}},\end{array}\end{eqnarray}$
where n = [α] + 1, and J is given by
$\begin{eqnarray}J(f,g)=\frac{1}{{\rm{\Gamma }}(n-\alpha )}{\int }_{0}^{t}{\int }_{t}^{T}\frac{f(\tau ,x)g(\theta ,x)}{{(\theta -\tau )}^{\alpha +1-n}}{\rm{d}}\theta {\rm{d}}\tau .\end{eqnarray}$
The components of the conserved vector are defined by
$\begin{eqnarray}{C}^{t}={{ \mathcal N }}^{t}{ \mathcal L },\,\,{C}^{x}={{ \mathcal N }}^{x}{ \mathcal L },\,\,{C}^{y}={{ \mathcal N }}^{y}{ \mathcal L }.\end{eqnarray}$
Case 1: ${X}_{1}=t\frac{{\rm{\partial }}}{{\rm{\partial }}t}+\frac{\alpha }{2}x\frac{{\rm{\partial }}}{{\rm{\partial }}x}+\frac{\alpha }{2}y\frac{{\rm{\partial }}}{{\rm{\partial }}y}-\frac{\alpha }{2}u\frac{{\rm{\partial }}}{{\rm{\partial }}u}-\frac{\alpha }{2}v\frac{{\rm{\partial }}}{{\rm{\partial }}v}.$
The characteristics of X1 are
$\begin{eqnarray}\begin{array}{rcl}{W}^{u} & = & -\frac{\alpha }{2}u-t{u}_{t}-\frac{\alpha }{2}x{u}_{x}-\frac{\alpha }{2}y{u}_{y},\\ {W}^{v} & = & -\frac{\alpha }{2}v-t{v}_{t}-\frac{\alpha }{2}x{v}_{x}-\frac{\alpha }{2}y{v}_{y}.\end{array}\end{eqnarray}$
Therefore, for 0 < α < 1,
$\begin{eqnarray}\begin{array}{rcl}{C}^{t} & = & -p{D}_{t}^{\alpha -1}(\frac{\alpha }{2}u+t{u}_{t}+\frac{\alpha }{2}x{u}_{x}+\frac{\alpha }{2}y{u}_{y})\\ & & -J(\frac{\alpha }{2}u+t{u}_{t}+\frac{\alpha }{2}x{u}_{x}+\frac{\alpha }{2}y{u}_{y},{p}_{t})\\ & & -q{D}_{t}^{\alpha -1}(\frac{\alpha }{2}v+t{v}_{t}+\frac{\alpha }{2}x{v}_{x}+\frac{\alpha }{2}y{v}_{y})\\ & & -J(\frac{\alpha }{2}v+t{v}_{t}+\frac{\alpha }{2}x{v}_{x}+\frac{\alpha }{2}y{v}_{y},{q}_{t}),\end{array}\end{eqnarray}$
$\begin{eqnarray}\begin{array}{rcl}{C}^{x} & = & -({\gamma }_{1}{q}_{x}+{\gamma }_{3}{q}_{y})(\frac{\alpha }{2}u+t{u}_{t}+\frac{\alpha }{2}x{u}_{x}+\frac{\alpha }{2}y{u}_{y})\\ & & +({\gamma }_{1}{p}_{x}+{\gamma }_{3}{p}_{y})(\frac{\alpha }{2}v+t{v}_{t}+\frac{\alpha }{2}x{v}_{x}+\frac{\alpha }{2}y{v}_{y})\\ & & +{\gamma }_{1}q(\alpha {u}_{x}+t{u}_{tx}+\frac{\alpha }{2}{u}_{xx}+\frac{\alpha }{2}y{u}_{xy})\\ & & +{\gamma }_{3}q(\alpha {u}_{y}+t{u}_{ty}+\frac{\alpha }{2}x{u}_{xy}+\frac{\alpha }{2}y{u}_{yy})\\ & & -{\gamma }_{1}p(\alpha {v}_{x}+t{v}_{tx}+\frac{\alpha }{2}{v}_{xx}+\frac{\alpha }{2}y{v}_{xy})\\ & & -{\gamma }_{3}p(\alpha {v}_{y}+t{v}_{ty}+\frac{\alpha }{2}x{v}_{xy}+\frac{\alpha }{2}y{v}_{yy}),\end{array}\end{eqnarray}$
$\begin{eqnarray}\begin{array}{rcl}{C}^{y} & = & -({\gamma }_{1}{q}_{y}+{\gamma }_{3}{q}_{x})(\frac{\alpha }{2}u+t{u}_{t}+\frac{\alpha }{2}x{u}_{x}+\frac{\alpha }{2}y{u}_{y})\\ & & +({\gamma }_{1}{p}_{y}+{\gamma }_{3}{p}_{x})(\frac{\alpha }{2}v+t{v}_{t}+\frac{\alpha }{2}x{v}_{x}+\frac{\alpha }{2}y{v}_{y})\\ & & +{\gamma }_{1}q(\alpha {u}_{y}+t{u}_{ty}+\frac{\alpha }{2}x{u}_{xy}+\frac{\alpha }{2}y{u}_{yy})\\ & & +{\gamma }_{3}q(\alpha {u}_{x}+t{u}_{tx}+\frac{\alpha }{2}{u}_{xx}+\frac{\alpha }{2}y{u}_{xy})\\ & & -{\gamma }_{1}p(\alpha {v}_{y}+t{v}_{ty}+\frac{\alpha }{2}x{v}_{xy}+\frac{\alpha }{2}y{v}_{yy})\\ & & -{\gamma }_{3}p(\alpha {v}_{x}+t{v}_{tx}+\frac{\alpha }{2}{v}_{xx}+\frac{\alpha }{2}y{v}_{xy}).\end{array}\end{eqnarray}$
Case 2: ${X}_{2}=v\frac{{\rm{\partial }}}{{\rm{\partial }}u}-u\frac{{\rm{\partial }}}{{\rm{\partial }}v}.$
The characteristics of X2 are
$\begin{eqnarray}{W}^{u}=v,\,\,{W}^{v}=-u.\end{eqnarray}$
Therefore, for 0 < α < 1,
$\begin{eqnarray}{C}^{t}=p{D}_{t}^{\alpha -1}v+J(v,{p}_{t})-q{D}_{t}^{\alpha -1}u-J(u,{q}_{t}),\end{eqnarray}$
$\begin{eqnarray}\begin{array}{rcl}{C}^{x} & = & v({\gamma }_{1}{q}_{x}+{\gamma }_{3}{q}_{y})+u({\gamma }_{1}{p}_{x}+{\gamma }_{3}{p}_{y})\\ & & -{\gamma }_{1}q{v}_{x}-{\gamma }_{3}q{v}_{y}-{\gamma }_{1}p{u}_{x}-{\gamma }_{3}p{u}_{y},\end{array}\end{eqnarray}$
$\begin{eqnarray}\begin{array}{rcl}{C}^{y} & = & v({\gamma }_{1}{q}_{y}+{\gamma }_{3}{q}_{x})+u({\gamma }_{1}{p}_{x}+{\gamma }_{3}{p}_{y})\\ & & -{\gamma }_{1}q{v}_{y}-{\gamma }_{3}q{v}_{x}-{\gamma }_{1}p{u}_{y}-{\gamma }_{3}p{u}_{x}.\end{array}\end{eqnarray}$
Case 3: ${X}_{3}=\frac{{\rm{\partial }}}{{\rm{\partial }}x}.$
The characteristics of X3 are
$\begin{eqnarray}{W}^{u}=-{u}_{x},\,\,{W}^{v}=-{v}_{x}.\end{eqnarray}$
Therefore, for 0 < α < 1,
$\begin{eqnarray}{C}^{t}=-p{D}_{t}^{\alpha -1}{u}_{x}-J({u}_{x},{p}_{t})-q{D}_{t}^{\alpha -1}{v}_{x}-J({v}_{x},{q}_{t}),\end{eqnarray}$
$\begin{eqnarray}\begin{array}{rcl}{C}^{x} & = & -{u}_{x}({\gamma }_{1}{q}_{x}+{\gamma }_{3}{q}_{y})+{v}_{x}({\gamma }_{1}{p}_{x}+{\gamma }_{3}{p}_{y})\\ & & +{\gamma }_{1}q{u}_{xx}+{\gamma }_{3}q{u}_{xy}-{\gamma }_{1}p{v}_{xx}-{\gamma }_{3}p{v}_{xy},\end{array}\end{eqnarray}$
$\begin{eqnarray}\begin{array}{rcl}{C}^{y} & = & -{u}_{x}({\gamma }_{1}{q}_{y}+{\gamma }_{3}{q}_{x})+{v}_{x}({\gamma }_{1}{p}_{x}+{\gamma }_{3}{p}_{y})\\ & & +{\gamma }_{1}q{u}_{xy}+{\gamma }_{3}q{u}_{xx}-{\gamma }_{1}p{v}_{xy}-{\gamma }_{3}p{v}_{xx}.\end{array}\end{eqnarray}$
Case 4: ${X}_{4}=\frac{{\rm{\partial }}}{{\rm{\partial }}y}.$
The characteristics of X4 are
$\begin{eqnarray}{W}^{u}=-{u}_{y},\,\,{W}^{v}=-{v}_{y}.\end{eqnarray}$
Therefore, for 0 < α < 1,
$\begin{eqnarray}{C}^{t}=-p{D}_{t}^{\alpha -1}{u}_{y}-J({u}_{y},{p}_{t})-q{D}_{t}^{\alpha -1}{v}_{y}-J({v}_{y},{q}_{t}),\end{eqnarray}$
$\begin{eqnarray}\begin{array}{rcl}{C}^{x} & = & -{u}_{y}({\gamma }_{1}{q}_{x}+{\gamma }_{3}{q}_{y})+{v}_{y}({\gamma }_{1}{p}_{x}+{\gamma }_{3}{p}_{y})\\ & & +{\gamma }_{1}q{u}_{xy}+{\gamma }_{3}q{u}_{yy}-{\gamma }_{1}p{v}_{xy}-{\gamma }_{3}p{v}_{yy},\end{array}\end{eqnarray}$
$\begin{eqnarray}\begin{array}{rcl}{C}^{y} & = & -{u}_{y}({\gamma }_{1}{q}_{y}+{\gamma }_{3}{q}_{x})+{v}_{y}({\gamma }_{1}{p}_{x}+{\gamma }_{3}{p}_{y})\\ & & +{\gamma }_{1}q{u}_{yy}+{\gamma }_{3}q{u}_{xy}-{\gamma }_{1}p{v}_{yy}-{\gamma }_{3}p{v}_{xy}.\end{array}\end{eqnarray}$

5. Conclusion

This paper shows that the Lie symmetry analysis method is effective in solving nonlinear fractional evolution equations. We obtained all the Lie symmetries of the (2+1)-dimensional time-fractional Heisenberg ferromagnetic spin chain equation and used them to reduce the equation, thereby getting some convergent power series solutions. In addition, the new conservation theorem and the generalization of the Noether operators are developed to construct the conservation laws for the equation studied. Inspired by this, our next step is to apply the Lie symmetry analysis method to more nonlinear fractional evolution equations that have significant value in mathematics and physics.

Acknowledgments

This research is partially supported by the State Key Program of the National Natural Science Foundation of China (72031009).

Confict of interest

The authors have no competing interests to declare that are relevant to the content of this article.
1
Hosseini K, Salahshour S, Mirzazadeh M, Ahmadian A, Baleanu D, Khoshrang A 2021 The dimensional Heisenberg ferromagnetic spin chain equation: its solitons and Jacobi elliptic function solutions Eur. Phys. J. Plus 136 1 9

DOI

2
Mohammed W W, Al-Askar F M, Cesarano C, Botmart T, El-Morshedy M 2022 Wiener process effects on the solutions of the fractional (2+1)-dimensional Heisenberg ferromagnetic spin chain equation Mathematics 10 2043

DOI

3
Bashar M H, Islam S R, Kumar D 2021 Construction of traveling wave solutions of the (2+ 1)-dimensional Heisenberg ferromagnetic spin chain equation Part. Differ. Eq. Appl. Math. 4 100040

DOI

4
Bakcerler G, Alfaqeih S, Msrl E 2021 Analytic solutions of a (2+1)-dimensional nonlinear Heisenberg ferromagnetic spin chain equation Physica A 582 126255

DOI

5
Osman M S, Tariq K U, Bekir A, Elmoasry A, Elazab N S, Younis M, Abdel-Aty M 2020 Investigation of soliton solutions with different wave structures to the (2+1)-dimensional Heisenberg ferromagnetic spin chain equation Commun. Theor. Phys. 72 035002

DOI

6
Bashar M H, Islam S R 2020 Exact solutions to the (2+1)-dimensional Heisenberg ferromagnetic spin chain equation by using modified simple equation and improve F-expansion methods Phys. Open 5 100027

DOI

7
Seadawy A R, Nasreen N, Lu D, Arshad M 2020 Arising wave propagation in nonlinear media for the (2+1)-dimensional Heisenberg ferromagnetic spin chain dynamical model Physica A 538 122846

DOI

8
Sahoo S, Tripathy A 2022 New exact solitary solutions of the (2+1)-dimensional Heisenberg ferromagnetic spin chain equation Eur. Phys. J. Plus 137 390

DOI

9
Islam S, Halder B, Refaie Ali A 2023 Optical and rogue type soliton solutions of the (2+ 1) dimensional nonlinear Heisenberg ferromagnetic spin chains equation Sci. Rep. 13 9906

DOI

10
Kumar S, Niwas M 2023 Exploring lump soliton solutions and wave interactions using new Inverse (G'/G)-expansion approach: applications to the (2+1)-dimensional nonlinear Heisenberg ferromagnetic spin chain equation Nonlinear Dynam. 111 20257 20273

DOI

11
Abdel-Aty A H 2024 New soliton solutions and dynamical analysis of (2+ 1)-dimensional Heisenberg ferromagnetic spin-chain model arising in quantum information Res. Phys. 57 107428

DOI

12
Samko S G, Kilbas A A, Marichev O I 1993 Fractional Integrals and Derivatives: Theory and Applications London Gordon and Breach

13
Podlubny I 1999 Fractional Differential Equations New York Academic

14
Hilfer R 2000 Applications of Fractional Calculus in Physics Singapore World Scientific

15
Kilbas A A, Srivastava H M, Trujillo J J 2006 Theory and Applications of Fractional Differential Equations Amsterdam Elsevier

16
Hashemi M S 2018 Some new exact solutions of (2+1)-dimensional nonlinear Heisenberg ferromagnetic spin chain with the conformable time fractional derivative Opt. Quant. Electron. 50 79

DOI

17
Hosseini K, Kaur L, Mirzazadeh M, Baskonus H M 2021 1-soliton solutions of the (2+ 1)-dimensional Heisenberg ferromagnetic spin chain model with the beta time derivative Opt. Quant. Electron. 53 1 10

DOI

18
Bakcerler G, Alfaqeih S, Msrl E 2021 Analytic solutions of a (2+1)-dimensional nonlinear Heisenberg ferromagnetic spin chain equation Physica A 582 126255

DOI

19
Uddin M F, Hafez M G, Hammouch Z, Baleanu D 2021 Periodic and rogue waves for Heisenberg models of ferromagnetic spin chains with fractional beta derivative evolution and obliqueness Wave Random Complex 31 2135 2149

DOI

20
Rani M, Ahmed N, Dragomir S S, Mohyud-Din S T 2021 New travelling wave solutions to (2+1)-Heisenberg ferromagnetic spin chain equation using Atanganas conformable derivative Phys. Scr. 96 094007

DOI

21
Seadawy A R, Yasmeen A, Raza N, Althobaiti S 2021 Novel solitary waves for fractional (2+ 1)-dimensional Heisenberg ferromagnetic model via new extended generalized Kudryashov method Phys. Scr. 96 125240

DOI

22
Devnath S, Khatun M M, Akbar M A 2024 Analytical solutions and soliton behaviors in the space fractional Heisenberg ferromagnetic spin chain equation Part. Differ. Eq. Appl. Math. 11 100783

DOI

23
Luo J 2024 Dynamical analysis and the soliton solutions of (2+ 1)-dimensional Heisenberg ferromagnetic spin chains model with beta fractional derivative Sci. Rep. 14 17684

DOI

24
Yang X, Qiu W, Zhang H, Tang L 2021 An efficient alternating direction implicit finite difference scheme for the three-dimensional time-fractional telegraph equation Comput. Math. Appl. 102 233 247

DOI

25
Yang X, Qiu W, Chen H, Zhang H 2022 Second-order BDF ADI Galerkin finite element method for the evolutionary equation with a nonlocal term in three-dimensional space Appl. Numer. Math. 172 497 513

DOI

26
Ovsiannikov L V 1982 Group Analysis of Differential Equations New York Academic

27
Olver P J 1986 Applications of Lie Groups to Differential Equations Berlin Springer

28
Ibragimov N H 1993 CRC Handbook of Lie Group Analysis of Differential Equations Symmetries, Exact Solutions and Conservation Laws Vol. 1 Boca Raton, FL CRC Press

29
Ibragimov N H 1994 CRC Handbook of Lie Group analysis of Differential Equations Applications in Engineering and Physical Sciences Vol. 2 Boca Raton, FL CRC Press

30
Ibragimov N H 1995 CRC Handbook of Lie Group Analysis of Differential Equations New Trends in Theoretical Developments and Computational Methods Vol. 3 Boca Raton, FL CRC Press

31
Hydon P E 2000 Symmetry Methods for Differential Equations Cambridge Cambridge University Press

32
Kumar S, Dhiman S K 2024 Exploring cone-shaped solitons, breather, and lump-forms solutions using the Lie symmetry method and unified approach to a coupled breaking soliton model Phys. Scr. 99 025243

DOI

33
Kumar S, Ma W X, Dhiman S K, Chauhan A 2023 Lie group analysis with the optimal system, generalized invariant solutions, and an enormous variety of different wave profiles for the higher-dimensional modified dispersive water wave system of equations Eur. Phys. J. Plus 138 434

DOI

34
Hussain A, Usman M, Zaman F D, Ibrahim T F, Dawood A A 2023 Symmetry analysis, closed-form invariant solutions and dynamical wave structures of the Benney–Luke equation using optimal system of Lie subalgebras Chinese J. Phys. 84 66 88

DOI

35
Feng Y Q, Yu J C 2023 Lie group method for constructing integrating factors of first-order ordinary differential equations Int. J. Math. Educ. Sci. 54 292 308

DOI

36
Gazizov R K, Kasatkin A A, Lukashchuk S Y 2007 Continuous transformation groups of fractional differential equations Vestnik USATU 9 125 135

37
Yourdkhany M, Nadjafikhah M 2020 Symmetries, similarity invariant solution, conservation laws and exact solutions of the time-fractional Harmonic Oscillator equation J. Geom. Phys. 153 103661

DOI

38
Zhang Z Y, Li G F 2020 Lie symmetry analysis and exact solutions of the time-fractional biological population model Phys. A 540 123134

DOI

39
Yu J C 2024 Lie symmetry, exact solutions and conservation laws of time fractional Black–Scholes equation derived by the fractional Brownian motion J. Appl. Anal. 30 137 145

DOI

40
Yu J C, Feng Y Q 2022 Lie symmetry analysis and exact solutions of space-time fractional cubic Schrödinger equation Int. J. Geom. Meth. Mod. Phys. 19 2250077

DOI

41
Yu J C, Feng Y Q 2024 Lie symmetry analysis, power series solutions and conservation laws of (2+1)-dimensional time fractional modified Bogoyavlenskii–Schiff equations J. Nonlinear Math. Phys. 31 27

DOI

42
Nass A M 2019 Symmetry analysis of space-time fractional Poisson equation with a delay Quaest. Math. 42 1221 1235

DOI

43
Feng Y Q, Yu J C 2021 Lie symmetry analysis of fractional ordinary differential equation with neutral delay AIMS Math 6 3592 3605

DOI

44
Yu J C 2022 Lie symmetry analysis of time fractional Burgers equation, Korteweg–de Vries equation and generalized reaction-diffusion equation with delays Int. J. Geom. Meth. Mod. Phys. 19 2250219

DOI

45
Yu J C, Feng Y Q 2023 Lie symmetry, exact solutions and conservation laws of some fractional partial differential equations J. Appl. Anal. Comput. 13 1872 1889

DOI

46
Yu J C, Feng Y Q 2024 On the generalized time fractional reaction diffusion equation: Lie symmetries, exact solutions and conservation laws Chaos Solitons Fractals 182 114855

DOI

47
Yu J C, Feng Y Q 2024 Symmetry analysis, optimal system, conservation laws and exact solutions of time fractional diffusion-type equation Int. J. Geom. Meth. Mod. Phys.

DOI

48
Yu J C, Feng Y Q 2024 Lie symmetries, exact solutions and conservation laws of time fractional Boussinesq–Burgers system in ocean waves Commun. Theor. Phys. 76 125002

DOI

49
Ibragimov N H 2007 A new conservation theorem J. Math. Anal. Appl. 333 311 328

DOI

50
Ibragimov N H 2011 Nonlinear self-adjointness and conservation laws J. Phys. A: Math. Theor. 44 432002

DOI

Outlines

/