Welcome to visit Communications in Theoretical Physics,
Gravitation Theory, Astrophysics and Cosmology

Shear viscoelasticity in anisotropic holographic axion model

  • Lei Li 1 ,
  • Wei-Jia Li , 1, * ,
  • Xiao-Mei Kuang , 2, *
Expand
  • 1Institute of Theoretical Physics, School of Physics, Dalian University of Technology, Dalian 116024, China
  • 2Center for Gravitation and Cosmology, College of Physical Science and Technology, Yangzhou University, Yangzhou 225009, China

*Authors to whom any correspondence should be addressed.

Received date: 2024-10-07

  Revised date: 2025-01-09

  Accepted date: 2025-01-13

  Online published: 2025-03-27

Copyright

© 2025 Institute of Theoretical Physics CAS, Chinese Physical Society and IOP Publishing. All rights, including for text and data mining, AI training, and similar technologies, are reserved.
This article is available under the terms of the IOP-Standard License.

Cite this article

Lei Li , Wei-Jia Li , Xiao-Mei Kuang . Shear viscoelasticity in anisotropic holographic axion model[J]. Communications in Theoretical Physics, 2025 , 77(7) : 075401 . DOI: 10.1088/1572-9494/ada9d5

1. Introduction

During the past two decades, the AdS/CFT correspondence has become a powerful tool for studying the real-time dynamics of strongly-coupled systems [1-4]. It provides us with a geometric approach to calculate transport coefficients of boundary systems explicitly in the AdS bulk by considering various black hole solutions that can dissipate the surrounding fluctuations outside their horizons. One of the most important discoveries of this method is that for a wide class of interacting systems, there exists a lower bound on the shear viscosity. And especially, for those having a gravity dual that can be described by Einstein gravity, the ratio of shear viscosity to entropy density η/s meets a universal value ħ/4πkB which is called the Kovtun-Son-Starinet (KSS) bound [5-7]. Remarkably, such a finding in theory also explains why the ratio of shear viscosity to entropy density of the quark-gluon-plasma (QGP) is much smaller when compared to the result from the perturbative calculations of quantum field theory [8, 9]. This bound has been tested in various experiments of different realistic systems [10-14].
Nevertheless, it was found that η/s can be corrected when the finite N effect is considered. In this case, the viscosity bound can be slightly pushed down [15, 16].3 In addition, the viscosity bound can be strongly violated when matter fields are included. Numerous specific examples have shown that this can happen when the rotational symmetry or the translational symmetry is broken (Examples of these two classes can be seen in [27-41] and [42-57], respectively.). In most of these cases, the way of breaking the symmetries is explicit. However, a recent holographic study on the p-wave superfluid model shows that the ratio η/s can be enhanced even in an anisotropic system if the rotations are broken in a spontaneous manner [58]. So far, this model appears to be the only known anisotropic case that obeys the KSS bound.
In this work, we investigate the shear elasticity and the shear viscosity of an anisotropic holographic axion model at the perturbative level. This model allows us to realize the broken translations and the broken rotations explicitly and/or spontaneously via different setups. The boundary dual of this model is supposed to be certain viscoelastic strongly-coupled solids that exhibit both elastic responses as normal crystals and viscous damping as fluids. We expect that such a holographic tool will deepen our understanding of the viscoelastic properties of these complex materials in the real world. In particular, we would like to investigate the fate of the KSS bound in the case of spontaneous breaking of the symmetries. Our result shows that in contrast to the p-wave superfluid, the KSS bound is always violated in our model.

2. Anisotropic black hole solutions

We consider a simple holographic axion model [43, 48, 52, 59-62] in 4-dimensional spacetime, of which the action is given by
$\begin{eqnarray}\begin{array}{rcl}S & = & \displaystyle \int {{\rm{d}}}^{4}x\,\sqrt{-g}\left(R+\frac{6}{{L}^{2}}-{\lambda }^{2}\,V(X)\right),\\ X & \equiv & \frac{1}{2}{\partial }_{\mu }{\phi }^{i}{\partial }^{\mu }{\phi }^{i},\,\,i=x,y\end{array}\end{eqnarray}$
where we have adopted the convention that 16πG ≡ 1, R is the Ricci scalar, λ2 is the effective coupling constant with the dimension of mass square,4V is a general function of X, and L is the AdS radius. To break the translations of the boundary system, the profiles of the scalars in the bulk should be chosen as
$\begin{eqnarray}{\phi }^{i}={{ \mathcal M }}_{j}^{i}\,{x}^{j},\quad {{ \mathcal M }}_{j}^{i}=\left(\begin{array}{cc}{k}_{x} & 0\\ 0 & {k}_{y}\end{array}\right).\end{eqnarray}$
Then, the general AdS black hole ansatz should be taken as
$\begin{eqnarray}\begin{array}{rcl}{\rm{d}}{s}^{2} & = & {g}_{tt}{\rm{d}}{t}^{2}+{g}_{rr}{\rm{d}}{r}^{2}+{g}_{xx}{\rm{d}}{x}^{2}+{g}_{yy}{\rm{d}}{y}^{2}\\ & = & -A(r){\rm{d}}{t}^{2}+\frac{{\rm{d}}{r}^{2}}{A(r)}+B(r){\rm{d}}{x}^{2}+C(r){\rm{d}}{y}^{2}\end{array}\end{eqnarray}$
of which the metric components, at the AdS boundary r, should satisfy
$\begin{eqnarray}A(r\to \infty )=B(r\to \infty )=C(r\to \infty )=\frac{{r}^{2}}{{L}^{2}}.\end{eqnarray}$
The location of the horizon rh is then defined by A(r = rh) = 0. For simplicity, we will set L to be one,5 and consider a class of specific models with
$\begin{eqnarray}V(X)={X}^{n}.\end{eqnarray}$
By considering ${\phi }^{i}=\bar{{\phi }^{i}}+\delta {\phi }^{i}$ and expanding the action to the second order in δΦi, we obtain
$\begin{eqnarray}\frac{1}{2}V^{\prime} (\bar{X}){\partial }_{\mu }\delta {\phi }^{i}{\partial }^{\mu }\delta {\phi }^{i}+\bar{X}V^{\prime\prime} (\bar{X}){({\partial }_{i}\delta {\phi }^{i})}^{2}+\cdots \,.\end{eqnarray}$
The absence of ghost requires monotonic potentials
$\begin{eqnarray}V^{\prime} (\bar{X})\gt 0,\end{eqnarray}$
which gives us n > 0 [59]. For general n > 0, the axions behave like
$\begin{eqnarray}{\phi }^{i}(r,{x}^{\mu })={\phi }_{(0)}^{i}({x}^{\mu })+{\phi }_{(1)}^{i}({x}^{\mu })\,{r}^{2n-5}+\cdots \end{eqnarray}$
near the AdS boundary, where the r-independent term corresponds to the profiles of the axions (2). Following the standard quantization, the leading mode of the axion fields sets the external source for the dual scalar operators on the boundary. The expectation values of the scalar operators correspond to the subleading mode of the axion fields. For n < 5/2, the r-independent term in (8) dominates over the expansion and plays the role of the external source. Then, the profile (2) with kxky implies that the translations and the rotations are both broken explicitly. While, for n > 5/2, the r-independent term becomes subleading and the breaking of symmetries is spontaneous [63]. In the next section, we will investigate how the broken translations and the broken rotations affect the shear viscosity-entropy density ratio in these two scenarios.
In the following, we solve the background solutions perturbatively in two cases:

One-axion case

First, let us consider the single-axion case where kx = 0, ky ≠ 0 are imposed without loss of generality. Note that the low anisotropic regime can be achieved by setting λ ≪ 1 and fixing the value of ky. Then, it is found that the background can be expressed perturbatively up to the leading order for ${ \mathcal O }({\lambda }^{2})$,
$\begin{eqnarray}A(r)={r}^{2}\left(1-\frac{{r}_{h}^{3}}{{r}^{3}}\right)+{\lambda }^{2}\,{a}_{1}^{(n)}(r)+{ \mathcal O }({\lambda }^{4}),\end{eqnarray}$
$\begin{eqnarray}B(r)={r}^{2}+{\lambda }^{2}\,{b}_{1}^{(n)}(r)+{ \mathcal O }({\lambda }^{4}),\end{eqnarray}$
$\begin{eqnarray}C(r)={r}^{2}-{\lambda }^{2}\,{b}_{1}^{(n)}(r)+{ \mathcal O }({\lambda }^{4}),\end{eqnarray}$
with
$\begin{eqnarray}{a}_{1}^{(n)}(r)=\frac{{k}_{y}^{2n}}{{2}^{n+1}\,(2n-3)}\frac{{r}^{3-2n}-{r}_{h}^{3-2n}}{r},\end{eqnarray}$
$\begin{eqnarray}\begin{array}{rcl}{b}_{1}^{(n)}(r) & = & \displaystyle \frac{n\,{k}_{y}^{2n}\,{r}^{2}\,{r}_{h}^{-2n}}{3\cdot {2}^{n}\,(2n-3)}\left[\,\rm{log}\,\left(1-\displaystyle \frac{{r}_{h}^{3}}{{r}^{3}}\right)\right.\\ & & +\,\left.\,\rm{Re}\,\,{{ \mathcal B }}_{0}\left(\displaystyle \frac{{r}^{3}}{{r}_{h}^{3}};1-\displaystyle \frac{2n}{3},0\right)\right]+{\gamma }_{1(n)}\,{r}^{2},\end{array}\end{eqnarray}$
where Re${{ \mathcal B }}_{0}\left(x;1-\displaystyle \frac{2n}{3},0\right)$ represents the regular sector of the real part of the incomplete beta function ${ \mathcal B }\left(x;1-\frac{2n}{3},0\right)$ and the constant Υ1(n) is
$\begin{eqnarray}{\gamma }_{1(n)}\equiv \left\{\begin{array}{ll}\displaystyle \frac{n\,\pi \,{k}_{y}^{2n}\,{r}_{h}^{-2n}}{3\,(2n-3)\,{2}^{n}}\,\,\rm{cot}\,\left(\displaystyle \frac{2\pi n}{3}\right),\quad & n\ne \displaystyle \frac{3}{2}{\boldsymbol{z}},\\ 0,\quad & n=\displaystyle \frac{3}{2}({\boldsymbol{z}}+1),\end{array}\right.\end{eqnarray}$
with z denoting positive integers. Here, the special case $n=\frac{3}{2}$ has been excluded. It should be mentioned that the above results (12)-(14) are obtained by choosing the integral constants properly, which ensures the regularity of the background solution in the bulk and does not disrupt the asymptotic AdS geometry. For more details about the derivation, one refers to Appendix A. Then, the Hawking temperature can be read off as
$\begin{eqnarray}T=\frac{A^{\prime} ({r}_{h})}{4\pi }=\frac{3\,{r}_{h}}{4\pi }-{\lambda }^{2}\,\frac{{{k}_{y}}^{2n}{{r}_{h}}^{1-2n}}{{2}^{n+3}\,\,\pi }+{ \mathcal O }({\lambda }^{4}).\end{eqnarray}$
While for $n=\frac{3}{2}$, one should solve it separately and obtain the corrections in the background metric as follows
$\begin{eqnarray}{a}_{1}^{(n)}(r)=\frac{{k}_{y}^{3}}{4\sqrt{2}\,r}\,\rm{log}\,\left(\frac{{r}_{h}}{r}\right),\end{eqnarray}$
$\begin{eqnarray}\begin{array}{rcl}{b}_{1}^{(n)}(r) & = & -\frac{{r}^{2}\,{k}_{y}^{3}}{72\sqrt{2}{r}_{h}^{3}}\left[{\pi }^{2}+27{\left(\,\rm{log}\,\frac{r}{{r}_{h}}\right)}^{2}\right.\\ & & \left.+6\,{\,\rm{Li}\,}_{2}\left(1-\frac{{r}^{3}}{{r}_{h}^{3}}\right)\right],\end{array}\end{eqnarray}$
with the polylogarithm function Li2(x). And the Hawking temperature becomes
$\begin{eqnarray}T=\frac{3\,{r}_{h}}{4\pi }-{\lambda }^{2}\frac{{k}_{y}^{3}}{16\,\sqrt{2}\,\pi \,{r}_{h}^{2}}+{ \mathcal O }({\lambda }^{4}).\end{eqnarray}$

2.1. Two-axion case

Now, we consider that there are two axions along both x and y directions, which means to set kx, ky ≠ 0. For the general cases, one can assume that kxky. In the low anisotropic regime, we still have
$\begin{eqnarray}A(r)={r}^{2}\left(1-\frac{{r}_{h}^{3}}{{r}^{3}}\right)+{\lambda }^{2}\,{a}_{2}^{(n)}(r)+{ \mathcal O }({\lambda }^{4}),\end{eqnarray}$
$\begin{eqnarray}B(r)={r}^{2}+{\lambda }^{2}\,{b}_{2}^{(n)}(r)+{ \mathcal O }({\lambda }^{4}),\end{eqnarray}$
$\begin{eqnarray}C(r)={r}^{2}-{\lambda }^{2}\,{b}_{2}^{(n)}(r)+{ \mathcal O }({\lambda }^{4}),\end{eqnarray}$
where
$\begin{eqnarray}{a}_{2}^{(n)}(r)=\frac{{({k}_{x}^{2}+{k}_{y}^{2})}^{n}}{{2}^{n+1}(2n-3)}\frac{{r}^{3-2n}-{r}_{h}^{3-2n}}{r},\end{eqnarray}$
$\begin{eqnarray}\begin{array}{rcl}{b}_{2}^{(n)}(r) & = & \displaystyle \frac{n\,{({k}_{x}^{2}+{k}_{y}^{2})}^{n-1}\,{r}^{2}\,{r}_{h}^{-2n}}{3\cdot {2}^{n}\,(2n-3)}({k}_{y}^{2}-{k}_{x}^{2})\\ & & \times \,\left[\,\rm{log}\,\left(1-\displaystyle \frac{{r}_{h}^{3}}{{r}^{3}}\right)+\,\rm{Re}\,\,{{ \mathcal B }}_{0}\left(\displaystyle \frac{{r}^{3}}{{r}_{h}^{3}};1-\displaystyle \frac{2n}{3},0\right)\right]\\ & & +\,{\gamma }_{2(n)}\,{r}^{2},\end{array}\end{eqnarray}$
with
$\begin{eqnarray}{\gamma }_{2(n)}\equiv \left\{\begin{array}{ll}\displaystyle \frac{n\,\pi \,({k}_{y}^{2}-{k}_{x}^{2})\,{({k}_{x}^{2}+{k}_{y}^{2})}^{n-1}\,{r}_{h}^{-2n}}{3\,(2n-3)\,{2}^{n}}\,\,\rm{cot}\,\left(\displaystyle \frac{2\pi n}{3}\right),\quad & n\ne \displaystyle \frac{3}{2}{\boldsymbol{z}},\\ 0,\quad & n=\displaystyle \frac{3}{2}({\boldsymbol{z}}+1),\end{array}\right.\end{eqnarray}$
for $n\ne \frac{3}{2}$. The Hawking temperature then is given by
$\begin{eqnarray}T=\frac{A^{\prime} ({r}_{h})}{4\pi }=\frac{3\,{r}_{h}}{4\pi }-{\lambda }^{2}\,\frac{({{k}_{x}^{2}+{k}_{y}^{2})}^{n}{{r}_{h}}^{1-2n}}{{2}^{n+3}\,\,\pi }+{ \mathcal O }({\lambda }^{4}).\end{eqnarray}$
For $n=\frac{3}{2}$, the results turn into
$\begin{eqnarray}{a}_{2}^{(n)}(r)=\frac{{({k}_{x}^{2}+{k}_{y}^{2})}^{3/2}}{4\sqrt{2}\,r}\,\rm{log}\,\left(\frac{{r}_{h}}{r}\right),\end{eqnarray}$
$\begin{eqnarray}\begin{array}{rcl}{b}_{2}^{(n)}(r) & = & -\frac{{r}^{2}\,({k}_{y}^{2}-{k}_{x}^{2})\,\sqrt{{k}_{x}^{2}+{k}_{y}^{2}}}{72\sqrt{2}{r}_{h}^{3}}\\ & & \times \,\left[{\pi }^{2}+27{\left(\,\rm{log}\,\frac{r}{{r}_{h}}\right)}^{2}+6\,{\,\rm{Li}\,}_{2}\left(1-\frac{{r}^{3}}{{r}_{h}^{3}}\right)\right],\end{array}\end{eqnarray}$
and
$\begin{eqnarray}T=\frac{3\,{r}_{h}}{4\pi }-{\lambda }^{2}\,\frac{{\left({k}_{x}^{2}+{k}_{y}^{2}\right)}^{3/2}}{16\,\sqrt{2}\,\pi \,{r}_{h}^{2}}+{ \mathcal O }({\lambda }^{4}).\end{eqnarray}$
In addition, one can easily check that, for the isotropic case (i.e., kx = ky), ${b}_{2}^{(n)}(r)$ is vanishing, which is consistent with the known results from previous studies on holographic solids [48, 52, 60, 62, 64].

3. Viscoelastic response

In the hydrodynamic limit (low frequency and small momentum), the retarded Green function of the stress tensor at zero momentum can be expanded as [65]
$\begin{eqnarray}{G}_{{T}_{xy}{T}_{xy}}^{R}(\omega ,{\boldsymbol{p}}=0)={\mu }_{xy}-{\rm{i}}\,\omega \,{\eta }_{xy}+{ \mathcal O }({\omega }^{2}),\end{eqnarray}$
where the non-dissipative part ${\mu }_{xy}=\mathop{\mathrm{lim}}\limits_{\omega \to 0}\,\rm{Re}\,\,{G}_{{T}_{xy}{T}_{xy}}^{R}(\omega ,{\boldsymbol{p}}=0)$ is interpreted as the shear elastic modulus, and the dissipative coefficient ηxy in the imaginary part is associated to entropy production and should be understood as the shear viscosity.
In the holographic framework, to compute ${G}_{{T}_{xy}{T}_{xy}}^{R}(\omega ,{\boldsymbol{p}}=0)$, we need to introduce time-dependent perturbations δgxy upon the background in the bulk. Note that this metric fluctuation is decoupled from other possible fluctuations for zero p because δgxy is the solo fluctuation with the tensor channel in this sector. For ${g}_{ij}={\bar{g}}_{ij}+\delta {g}_{ij}$ (From now on, we will use the bar to denote the background metric we obtained in the last section.), taking the Fourier transformation $\delta {g}_{j}^{i}(t,r,{x}^{i})\unicode{x0007E}{h}_{j}^{i}(r)\,{{\rm{e}}}^{-{\rm{i}}\omega t}$, we achieve the equations of ${h}_{y}^{x}$ and ${h}_{x}^{y}$ as follows6:
$\begin{eqnarray}\begin{array}{l}\frac{1}{\sqrt{-g}}{\partial }_{r}\left(\sqrt{-g}{Z}_{i}^{j}(r){\bar{g}}^{rr}{\partial }_{r}{h}_{j}^{i}\right)-{\omega }^{2}{\bar{g}}^{tt}{Z}_{i}^{j}(r){h}_{j}^{i}\\ \quad =\,{m}_{g}^{i}{(r)}^{2}{Z}_{i}^{j}(r){h}_{j}^{i},\,(i=x,y\,\,\,\,j=x,y).\end{array}\end{eqnarray}$
where ${Z}_{i}^{j}(r)\equiv {\bar{g}}^{jj}{\bar{g}}_{ii}$ and the square of the graviton masses ${{m}_{g}^{i}}^{2}$ match the formula proposed in [47] which is given by
$\begin{eqnarray}{{m}_{g}^{i}}^{2}\equiv {g}^{ii}{T}_{ii}-\frac{\delta {T}_{ij}}{\delta {g}_{ij}},\end{eqnarray}$
where the bulk stress tensor in our model is given by
$\begin{eqnarray}{T}_{MN}=-{g}_{MN}{\lambda }^{2}\,V+{\lambda }^{2}\,V^{\prime} (X)\,{\partial }_{M}{\phi }^{i}{\partial }_{N}{\phi }^{i},\end{eqnarray}$
with $V^{\prime} \equiv \frac{dV}{dX}$. Obviously, the graviton masses originate from the non-trivial profiles of the scalars in the bulk. For the isotropic case, i.e., kx = ky = k, we get ${Z}_{i}^{j}=1$ and a unique graviton mass mg. Then, the graviton behaves like a massive scalar in the bulk.
In our anisotropic model, there exist two distinct graviton masses which are
$\begin{eqnarray}{{m}_{g}^{i}}^{2}={\lambda }^{2}\,{k}_{i}^{2}\,V^{\prime} (\bar{X})\,{\bar{g}}^{ii}.\end{eqnarray}$
Therefore, the linearized perturbative equations of δgxy can be expressed more explicitly as
$\begin{eqnarray}\begin{array}{r}{\partial }_{r}\left(\sqrt{-g}{Z}_{i}^{j}{\bar{g}}^{rr}{\partial }_{r}{h}_{j}^{i}\right)-{\omega }^{2}\sqrt{-g}{\bar{g}}^{tt}{Z}_{i}^{j}{h}_{j}^{i}\\ \quad ={\lambda }^{2}\,{k}_{i}^{2}\sqrt{-g}{\bar{g}}^{jj}{V}^{{\prime} }{h}_{j}^{i}.\end{array}\end{eqnarray}$
Next, we calculate the shear viscoelasticity both in the single-axion case and the two-axion case.

3.1. One-axion case

For kx = 0, ky ≠ 0, the metric perturbation ${h}_{y}^{x}$ satisfies the following equation
$\begin{eqnarray}{\partial }_{r}\left(\sqrt{-g}{Z}_{x}^{y}{\bar{g}}^{rr}{\partial }_{r}{h}_{y}^{x}\right)-{\omega }^{2}\sqrt{-g}{Z}_{x}^{y}{\bar{g}}^{tt}{h}_{y}^{x}=0.\end{eqnarray}$
Since the field is massless, one can apply the membrane paradigm which allows us to express the shear viscosity in terms of the horizon data [6, 17]7. For the boundary system with two spatial dimensions, there can only be one shear viscosity ηxy and one shear modulus μxy. We will from now on omit the spatial indexes for simplicity. As a result, the shear viscosity to entropy density ratio can be expressed as
$\begin{eqnarray}\frac{\eta }{s}=\frac{{Z}_{x}^{y}({r}_{h})}{4\pi }=\frac{1}{4\pi }\frac{{\bar{g}}_{xx}({r}_{h})}{{\bar{g}}_{yy}({r}_{h})}=\frac{1}{4\pi }\frac{B({r}_{h})}{C({r}_{h})}.\end{eqnarray}$
For the small λ, we obtain that
$\begin{eqnarray}\frac{\eta }{s}=\frac{1}{4\pi }+{\lambda }^{2}\,\frac{{b}_{1}({r}_{h})}{2\,\pi \,{{r}_{h}}^{2}}+{ \mathcal O }({\lambda }^{4}).\end{eqnarray}$
In Appendix A, we have shown that b1(rh) < 0, which implies that, whether spontaneous or explicit, the rotational symmetry breaking always results in a violation of the KSS bound. In addition, the shear modulus in this case is zero due to the vanishing graviton mass.

Two-axion case

For kx, ky ≠ 0, the rotational symmetry is entirely broken. In this case, ${h}_{y}^{x}$ becomes massive which satisfies the following equation
$\begin{eqnarray}\begin{array}{r}{\partial }_{r}\left(\sqrt{-g}{Z}_{x}^{y}{\bar{g}}^{rr}{\partial }_{r}{h}_{y}^{x}\right)-{\omega }^{2}\sqrt{-g}{Z}_{x}^{y}{\bar{g}}^{tt}{h}_{y}^{x}\\ \quad ={\lambda }^{2}\,{k}_{x}^{2}\sqrt{-g}{\bar{g}}^{yy}{V}^{{\prime} }{h}_{y}^{x}.\end{array}\end{eqnarray}$
One can show that the graviton mass introduces a non-zero real part of ${G}_{{T}_{xy}{T}_{xy}}^{R}(\omega ,{\boldsymbol{p}}=0)$. Unlike the previous case, both μ and η now depend on the full geometry. The membrane paradigm is no longer applicable. However, for small λ, one can analytically calculate them order by order. The details are shown in Appendix B. As the result, μ and η/s are
$\begin{eqnarray}\mu ={\lambda }^{2}\frac{n\,{k}_{x}^{2}\,{\left({k}_{x}^{2}+{k}_{y}^{2}\right)}^{n-1}}{{2}^{n-1}\,(2n-3)}{r}_{h}^{3-2n}+{ \mathcal O }({\lambda }^{4}),\quad n\gt \frac{3}{2}\end{eqnarray}$
and
$\begin{eqnarray}\frac{\eta }{s}=\frac{1}{4\pi }\frac{B({r}_{h})}{C({r}_{h})}-\left\{\begin{array}{ll}{\lambda }^{2}\frac{n\,{k}_{x}^{2}\,{\left({k}_{x}^{2}+{k}_{y}^{2}\right)}^{n-1}}{3\cdot {2}^{n}\,(2n-3)\,\pi \,{r}_{h}^{2n}}{ \mathcal H }(\frac{2n-3}{3})+{ \mathcal O }({\lambda }^{4}),\quad & n\ne \frac{3}{2},\\ {\lambda }^{2}\frac{\pi \,{k}_{x}^{2}\sqrt{{k}_{x}^{2}+{k}_{y}^{2}}}{72\,\sqrt{2}\,{r}_{h}^{3}}+{ \mathcal O }({\lambda }^{4}),\quad & n=\frac{3}{2},\\ \quad \end{array}\right.\end{eqnarray}$
where ${ \mathcal H }(x)$ is harmonic number.
In order to separate the effects of broken translations and anisotropy in a manifest way, one can rotate the basis spatial coordinates as in [66],
$\begin{eqnarray}{\phi }^{i}=k\left(\begin{array}{cc}\sqrt{\frac{{\epsilon }^{2}}{4}+1} & \frac{\epsilon }{2}\\ \frac{\epsilon }{2} & \sqrt{\frac{{\epsilon }^{2}}{4}+1}\\ \end{array}\right)\left(\begin{array}{c}\tilde{x}\\ \tilde{y}\\ \end{array}\right),\end{eqnarray}$
where k and ε are two dimensionless parameters characterizing the strengths of translational symmetry breaking and anisotropy, respectively. If we assume that kx > ky, then they are related to k and ε as follows,
$\begin{eqnarray}{k}_{x}=k\,\left(\sqrt{\frac{{\epsilon }^{2}}{4}+1}+\frac{\epsilon }{2}\right),\end{eqnarray}$
$\begin{eqnarray}{k}_{y}=k\,\left(\sqrt{\frac{{\epsilon }^{2}}{4}+1}-\frac{\epsilon }{2}\right).\end{eqnarray}$
Finally, (39) and (40) can be re-expressed as
$\begin{eqnarray}\begin{array}{rcl}\mu & = & {\lambda }^{2}\displaystyle \frac{n\,{k}^{2n}\,{\left(2+{\epsilon }^{2}\right)}^{n-1}\,{\left(\sqrt{4+{\epsilon }^{2}}+\epsilon \right)}^{2}}{{2}^{n+1}\,(2n-3)\,{r}_{h}^{2n-3}}\\ & & +{ \mathcal O }({\lambda }^{4}),\,\,n\gt \displaystyle \frac{3}{2},\end{array}\end{eqnarray}$
and
$\begin{eqnarray}\frac{\eta }{s}=\frac{1}{4\pi }-\left\{\begin{array}{ll}{\lambda }^{2}\,\frac{n\,{k}^{2n}{\left({\epsilon }^{2}+2\right)}^{n}\,{ \mathcal H }(\frac{2n-3}{3})}{3\cdot {2}^{n+1}\,(2n-3)\,\pi \,{r}_{h}^{2n}}+{ \mathcal O }({\lambda }^{4}),\quad & n\ne \frac{3}{2},\\ {\lambda }^{2}\,\frac{\pi \,{\left[{k}^{2}\left({\epsilon }^{2}+2\right)\right]}^{3/2}}{144\,\sqrt{2}\,{r}_{h}^{3}}+{ \mathcal O }({\lambda }^{4}),\quad & n=\frac{3}{2}.\\ \quad \end{array}\right.\end{eqnarray}$
From the above results, it is obvious to see that μ just increases monotonically with k and ε, and its value is enhanced faster for larger values of n. In Appendix A, we show that ${ \mathcal H }(\frac{2n-3}{3})\lt 0$ for $0\lt n\lt \frac{3}{2}$ and ${ \mathcal H }(\frac{2n-3}{3})\gt 0$ for $n\gt \frac{3}{2}$. Therefore, η/s decreases monotonically with k and ε for all the cases. Furthermore, its value is suppressed more significantly for larger values of n, which implies that the KSS bound is always violated in the axion model, regardless of whether the symmetries are broken explicitly or spontaneously. In Figures 1-3, we plot μ and η/s as functions of k and ε for different cases.
Figure 1. The shear modulus μ is the function of the k and ε, depicted by (44). Here, we have fixed λ2 L2 = 10-5 and rh/L = 2. Left: n = 3. Right: n = 5. In both cases, the symmetries are spontaneously broken.
Figure 2. The ratio η/s as the function of the k and ε, depicted by (45). Here, we have fixed λ2 L2 = 10-5 and rh/L = 2. Left: n = 1. Right: n = 2. In both cases, the symmetries are explicitly broken.
Figure 3. The ratio η/s as the function of the k and ε, depicted by (45). Here, we have fixed λ2 L2 = 10-5 and rh/L = 2. Left: n = 3. Right: n = 5. In both cases, the symmetries are spontaneously broken.

4. Discussion and outlook

In this paper, the shear elasticity and the shear viscosity of an anisotropic holographic axion model with broken translations have been investigated. We find that a positive shear modulus emerges when the translational symmetry is broken spontaneously. In particular, the shear modulus is doubly enhanced in the presence of broken translations and anisotropy. Furthermore, the η/s ratio is always suppressed no matter whether the translations as well as the rotations are broken explicitly or spontaneously which is in contrast to the holographic p-wave superfluid case. In the p-wave superfluid, the spontaneous breaking of rotational symmetry caused by a vector condensate enhances the value of η/s, competing against the effects of explicit symmetry breaking. The KSS bound is hence never violated [58]. From this perspective, we can conclude that the fate of the KSS bound in holographic systems cannot be solely attributed to whether rotational symmetry is broken, or to the specific manner of that breaking (whether spontaneous or explicit). The η/s ratio also depends very much on the details of the operator that gives rise to the symmetry breaking.
In the case of the spontaneous symmetry breaking with n > 5/2, the holographic model is dual to a solid on the boundary. Then, one may naively expect that the violation of the viscosity bound cannot happen and that the shear viscosity should be divergent in a perfect crystal without topological defects, say, the dislocation flow. However, this does not contradict our results. We consider the frequency-dependent viscosity of the crystal given by the Kubo formula [67], ${\eta }^{\,\rm{crystal}\,}(\omega )\equiv \,\rm{Im}\,[{G}_{{T}_{xy}{T}_{xy}}^{R}(\omega ,{\boldsymbol{p}}=0)/\omega ]\approx \mu \,\delta (\omega )+\eta $, where the delta function is from the 1/ω divergence of the real part according to the Kramers-Kronig relation and η is the dissipative coefficient addressed in this work. In the DC limit, we have ηcrystal due to the delta function. Therefore, although the KSS bound is violated, the crystal viscosity receives a divergent contribution from the rigidity of the translational order.
Nevertheless, our study in this work is limited to the perturbative region, i.e., the symmetry breaking is very weak. Therefore, it is not clear whether our conclusion holds or not when the breaking of the symmetries is finite. In a more general case, the anisotropic background solutions cannot be obtained in an analytic way. However, to achieve a complete answer, it is necessary to extend our study by, for instance, following the numeric methods used in [29, 30] to obtain the background solutions for finite values of λ and analyze how the viscoelastic property is affected in the strongly anisotropic region. We leave this for future work.

Appendix A Corrections to the background solutions due to the axion fields

By the perturbative calculation, we can obtain the general solution of ${a}_{1}^{(n)}(r)$ as follows

$\begin{eqnarray}{a}_{1}^{(n)}(r)=\frac{{k}_{y}^{2n}\,{r}^{2-2n}}{(2n-3)\,{2}^{n+1}}-\frac{{c}_{1}}{r}+{c}_{2},\end{eqnarray}$
where c1 and c2 are integral constants which can be fixed as ${c}_{1}=\frac{{k}_{y}^{2n}\,{r}_{h}^{3-2n}}{(2n-3)\,{2}^{n+1}}$ and c2 = 0 so that ${a}_{1}^{(n)}(r)$ is regular at the horizon and does not destroy the asymptotic AdS.

The general solution of ${b}_{1}^{(n)}(r)$ is

$\begin{eqnarray}\begin{array}{rcl}{b}_{1}^{(n)}(r) & = & \displaystyle \frac{1}{3}{r}^{2}\left[\displaystyle \frac{n\,{k}_{y}^{2n}\,{ \mathcal B }\left(\displaystyle \frac{{r}^{3}}{{r}_{h}^{3}};1-\displaystyle \frac{2n}{3},0\right)}{(2n-3)\,{2}^{n}\,{r}_{h}^{2n}}\right.\\ & & \left.+\displaystyle \frac{{c}_{3}\,\,\rm{log}\,\left(1-\displaystyle \frac{{r}_{h}^{3}}{{r}^{3}}\right)}{{r}_{h}^{3}}+3\,{c}_{4}\right],\end{array}\end{eqnarray}$
with integral constants c3 and c4, the incomplete beta function ${ \mathcal B }\left(\frac{{r}^{3}}{{r}_{h}^{3}},1-\frac{2n}{3},0\right)$ which is logarithmically divergent at the horizon. Then, we have to choose ${c}_{3}=\frac{n\,{k}_{y}^{2n}{r}_{h}^{3-2n}}{(2n-3)\,{2}^{n}}$ so that the logarithmic divergence ${ \mathcal B }$ can be canceled. In addition, ${ \mathcal B }$ is complex, but when $n\ne \frac{3}{2}{\boldsymbol{z}}$ and r > rh, its imaginary part is independent of r. Then, we can choose c4 properly to remove the imaginary part of ${ \mathcal B }$. On the other hand, since $\,\rm{Re}\,\,{ \mathcal B }\left(\infty ;1-\frac{2n}{3},0\right)=-\pi \,\,\rm{cot}\,\left(\frac{2\pi n}{3}\right)$, we have to fix
$\begin{eqnarray}\begin{array}{rcl}{c}_{4} & = & \frac{n\,\pi \,{k}_{y}^{2n}\,{r}_{h}^{-2n}}{3\,(2n-3)\,{2}^{n}}\,\,\rm{cot}\,\left(\frac{2\pi n}{3}\right)-\frac{n\,{k}_{y}^{2n}\,}{3\,(2n-3)\,{2}^{n}\,{r}_{h}^{2n}}\\ & & \times \,\rm{Im}\,\,{ \mathcal B }\left(\frac{{r}^{3}}{{r}_{h}^{3}};1-\frac{2n}{3},0\right),\end{array}\end{eqnarray}$
so that the boundary is still AdS. However, when $n=\frac{3}{2}\left({\bf{z}}+1\right)$ and r > rh, the real part of ${ \mathcal B }$ becomes divergent. Then, we have to choose c4 properly so that $\,\rm{Im}\,\,{ \mathcal B }$ and the divergence of $\,\rm{Re}\,\,{ \mathcal B }$ are both removed. In this case, only the regular part of ${ \mathcal B }$ (which we denoted as ${{ \mathcal B }}_{0}$ in the main text) is left. One can further check that $\,\rm{Re}\,\,{{ \mathcal B }}_{0}\left(\infty ;1-\frac{2n}{3},0\right)=0$. Then, in all the cases (except for $n=\frac{3}{2}$), we obtain the result (13) in the main text.

At the horizon, we obtain that

$\begin{eqnarray}{b}_{1}^{(n)}({r}_{h})=\left\{\begin{array}{ll}\displaystyle \frac{n\,{k}_{y}^{2n}\,{r}_{h}^{2-2n}}{3\cdot {2}^{n}\,(3-2n)}{ \mathcal H }(\displaystyle \frac{2n-3}{3}),\quad & n\ne \displaystyle \frac{3}{2},\,\\ -\displaystyle \frac{{\pi }^{2}{k}_{y}^{3}}{72\,\sqrt{2}{r}_{h}},\quad & n=\displaystyle \frac{3}{2}.\\ \quad \end{array}\right.\end{eqnarray}$

In Figure 4, we plot ${ \mathcal H }(\frac{2n-3}{3})$ as the function of n. When $0\lt n\lt \frac{3}{2}$, we have ${ \mathcal H }(\frac{2n-3}{3})\lt 0$. In contrast, when $n\gt \frac{3}{2}$, we find that ${ \mathcal H }(\frac{2n-3}{3})\gt 0$. Then, we conclude that ${b}_{1}^{(n)}({r}_{h})$ is always negative in the one-axion case.

Figure 4. ${ \mathcal H }(\frac{2n-3}{3})$ as the function of n.

Repeating the calculation, in the two-axion case, we have that

$\begin{eqnarray}{b}_{2}^{(n)}({r}_{h})=\left\{\begin{array}{ll}\displaystyle \frac{n\,{r}_{h}^{2-2n}\left({k}_{y}^{2}-{k}_{x}^{2}\right)\,{\left({k}_{x}^{2}+{k}_{y}^{2}\right)}^{n-1}}{3\cdot {2}^{n}\,(3-2n)}{ \mathcal H }(\displaystyle \frac{2n-3}{3}),\quad & n\ne \displaystyle \frac{3}{2},\\ -\displaystyle \frac{{\pi }^{2}\left({k}_{y}^{2}-{k}_{x}^{2}\right)\sqrt{{k}_{x}^{2}+{k}_{y}^{2}}}{72\sqrt{2}\,{r}_{h}},\quad & n=\displaystyle \frac{3}{2}.\\ \quad \end{array}\right.\end{eqnarray}$
Inserting the result above into (40) in the main text, we immediately obtain the result (45).

Appendix B Derivation of the shear viscoelasticity for the two-axion case

We consider the two-axion case and take the fluctuating metric ${h}_{y}^{x}$ for example and denote it as h for simplicity. Recall that it satisfies

$\begin{eqnarray}\begin{array}{l}h^{\prime\prime} +\left(\displaystyle \frac{A^{\prime} }{A}+\displaystyle \frac{3B^{\prime} }{2B}-\displaystyle \frac{C^{\prime} }{2C}\right)h^{\prime} +\left(\displaystyle \frac{{\omega }^{2}}{{A}^{2}}-\displaystyle \frac{{m}_{g}^{2}}{A}\right)h=0,\\ \quad {m}_{g}^{2}=\displaystyle \frac{{\lambda }^{2}{k}_{x}^{2}V^{\prime} }{B},\end{array}\end{eqnarray}$
where $h^{\prime} $ denotes the derivative of h with respect to r.

To compute the Green function of the stress tensor, we look for a special solution to the equation that is normalized to be a unit at the AdS boundary. Suppose that the solution near the boundary behaves like

$\begin{eqnarray}h=(1+\cdots \,)+{h}_{3}(\omega )\,{r}^{-3}(1+\cdots \,).\end{eqnarray}$
The Green function of the stress tensor can be read off as
$\begin{eqnarray}{G}_{{T}_{xy}{T}_{xy}}^{R}(\omega ,{\boldsymbol{p}}=0)=-3\,{h}_{3}(\omega ).\end{eqnarray}$
To extract η and μ, we need to solve (B1) up to ${ \mathcal O }(\omega )$ by taking the low-frequency expansion. In addition, we require the solution to satisfy the infalling boundary condition at the horizon. We hence take the following ansatz that
$\begin{eqnarray}\begin{array}{rcl}h(r) & = & {f(r)}^{-{\rm{i}}\omega /4\pi T}\left[{H}_{0}^{(0)}(r)+{\lambda }^{2}\,{H}_{0}^{(2)}(r)+\frac{{\rm{i}}\omega }{4\pi T}\right.\\ & & \left.\times \left(\right.{H}_{1}^{(0)}(r)+{\lambda }^{2}\,{H}_{1}^{(2)}(r)\left)\right.\,+{ \mathcal O }({\omega }^{2})\Space{0ex}{2ex}{0ex}\right].\end{array}\end{eqnarray}$
where f(r) ≡ A(r)/r2. ${H}_{0}^{(0)}(r)$, ${H}_{0}^{(2)}(r)$, ${H}_{1}^{(0)}(r)$ , and ${H}_{1}^{(2)}(r)$ should be regular functions in the bulk including the horizon. The upper index of H(r) denotes the order of λ and the lower index of H(r) denotes the order of ω.

Firstly, let us calculate the zeroth order (i.e., ${m}_{g}^{2}=0$). Plugging (B4) into (B1), we obtain the following two equations

$\begin{eqnarray}0={H}_{0}^{(0)\prime\prime} +\left(\frac{f^{\prime} }{f}+\frac{2}{r}+\frac{3B^{\prime} }{2B}-\frac{C^{\prime} }{2C}\right){H}_{0}^{(0)\prime} ,\end{eqnarray}$
$\begin{eqnarray}\begin{array}{rcl}0 & = & {H}_{1}^{(0)\prime} \left(\frac{f^{\prime} }{f}+\frac{2}{r}+\frac{3B^{\prime} }{2B}-\frac{C^{\prime} }{2C}\right)+{H}_{1}^{(0)\prime\prime} -{H}_{0}^{(0)\prime} \frac{2f^{\prime} }{f}\\ & & -{H}_{0}^{(0)}\left[\left(\frac{2}{r}+\frac{3B^{\prime} }{2B}-\frac{C^{\prime} }{2C}\right)\frac{f^{\prime} }{f}+\frac{f^{\prime\prime} }{f}\right].\end{array}\end{eqnarray}$
The regular solution to (B5) that meets the asymptotic behavior (B2) is given by
$\begin{eqnarray}{H}_{0}^{(0)}=1.\end{eqnarray}$
With this, ${H}_{1}^{(0)}(r)$ can be further determined by (B6) and (B2), which is
$\begin{eqnarray}{H}_{1}^{(0)}(r)={c}_{6}+{\int }_{{r}_{h}}^{r}{\rm{d}}y\frac{{f}^{{\prime} }(y)}{f(y)}+{c}_{5}{\int }_{{r}_{h}}^{r}{\rm{d}}y\frac{C{(y)}^{1/2}}{A(y)B{(y)}^{3/2}}.\end{eqnarray}$
Combining the regularity of ${H}_{1}^{(0)}$ at the horizon and analyzing its asymptotic behavior, one can obtain that ${c}_{5}=-\frac{A^{\prime} ({r}_{h})B{({r}_{h})}^{3/2}}{C{({r}_{h})}^{1/2}}$ and c6 = 0. Then, near the boundary(r), we find that
$\begin{eqnarray}{H}_{1}^{(0)}(r)=\frac{1}{3{r}^{3}}\frac{{A}^{{\prime} }({r}_{h})B{({r}_{h})}^{3/2}}{C{({r}_{h})}^{1/2}}+\cdots \,{,}\end{eqnarray}$
$\begin{eqnarray}h(r)=1+\frac{{\rm{i}}\omega B{({r}_{h})}^{3/2}C{({r}_{h})}^{-1/2}}{3{r}^{3}}+\cdots \,.\end{eqnarray}$
Using the holographic dictionary, the retarded Green function can be read off as
$\begin{eqnarray}{G}_{{T}_{xy}{T}_{xy}}^{R}(\omega ,{\boldsymbol{p}}=0)=-{\rm{i}}\omega \,B{({r}_{h})}^{3/2}C{({r}_{h})}^{-1/2}\equiv -{\rm{i}}\omega \eta ,\end{eqnarray}$
which is purely imaginary. Since the entropy density $s=4\,\pi \sqrt{BC}{| }_{r={r}_{h}}$, the viscosity to entropy density ratio should be
$\begin{eqnarray}\frac{\eta }{s}=\frac{1}{4\pi }\frac{B({r}_{h})}{C({r}_{h})}.\end{eqnarray}$
If the system has an SO(2) symmetry on the x - y plane, i.e, B(r) = C(r), it reduces to the celebrated KSS bound.

Now, we turn to the order ${ \mathcal O }({\lambda }^{2})$ by setting ${m}_{g}^{2}(r)\equiv {\lambda }^{2}\,{M}^{2}(r)$ with ${M}^{2}(r)=\frac{{k}_{x}^{2}V^{\prime} }{B}$. Subsequently, we have two equations

$\begin{eqnarray}0={H}_{0}^{(2)\prime\prime} +\left(\frac{f^{\prime} }{f}+\frac{2}{r}+\frac{3B^{\prime} }{2B}-\frac{C^{\prime} }{2C}\right){H}_{0}^{(2)\prime} -\frac{{M}^{2}}{{r}^{2}f}{H}_{0}^{(0)},\end{eqnarray}$
$\begin{eqnarray}\begin{array}{rcl}0 & = & {H}_{1}^{(2)\prime} \left(\frac{f^{\prime} }{f}+\frac{2}{r}+\frac{3B^{\prime} }{2B}-\frac{C^{\prime} }{2C}\right)\\ & & +{H}_{1}^{(2)\prime\prime} -{H}_{1}^{(0)}\frac{{M}^{2}}{{r}^{2}f}-{H}_{0}^{(2)\prime} \frac{2f^{\prime} }{f}\\ & & -{H}_{0}^{(2)}\left[\left(\frac{2}{r}+\frac{3B^{\prime} }{2B}-\frac{C^{\prime} }{2C}\right)\frac{f^{\prime} }{f}+\frac{f^{\prime\prime} }{f}\right].\end{array}\end{eqnarray}$
We just simply replace the background appearing in order ${ \mathcal O }({\lambda }^{2})$ with the Schwarzschild metric. We find that the third and last terms in (B14) vanish on the Schwarzschild background8. In this way, we obtain that
$\begin{eqnarray}\begin{array}{rcl}{H}_{0}^{(2)}(r) & = & {c}_{8}+{c}_{7}{\displaystyle \int }_{{r}_{h}}^{r}{\rm{d}}x\frac{C{(x)}^{1/2}}{A(x){B(x)}^{3/2}}\\ & & +{\displaystyle \int }_{{r}_{h}}^{r}{\rm{d}}x\left(\frac{C{(x)}^{1/2}}{A(x){B(x)}^{3/2}}{\displaystyle \int }_{{r}_{h}}^{x}{\rm{d}}y\frac{{B(y)}^{3/2}{{H}_{0}}^{(0)}(y)}{C{(y)}^{1/2}}{M}^{2}(y)\right),\end{array}\end{eqnarray}$
$\begin{eqnarray}\begin{array}{rcl}{H}_{1}^{(2)}(r) & = & {c}_{10}+{c}_{9}{\displaystyle \int }_{{r}_{h}}^{r}{\rm{d}}x\displaystyle \frac{C{(x)}^{1/2}}{A(x)B{(x)}^{3/2}}\\ & & +{\displaystyle \int }_{{r}_{h}}^{r}{\rm{d}}x\left(\displaystyle \frac{C{(x)}^{1/2}}{A(x)B{(x)}^{3/2}}{\displaystyle \int }_{{r}_{h}}^{x}{\rm{d}}y\displaystyle \frac{2{y}^{2}B{(y)}^{3/2}{f}^{{\prime} }(y)}{C{(y)}^{1/2}}{H}_{0}^{(2)\prime} (y)\right).\end{array}\end{eqnarray}$

$n\ne \frac{3}{2}$

Using (B7) and ${M}^{2}(y)=\frac{{k}_{x}^{2}\,V^{\prime} }{B(y)}=\frac{n\,{k}_{x}^{2}}{{y}^{2}}{\left(\frac{{k}_{x}^{2}}{2\,{y}^{2}}+\frac{{k}_{y}^{2}}{2\,{y}^{2}}\right)}^{n-1}$, we obtain

$\begin{eqnarray}\begin{array}{rcl}{H}_{0}^{(2)}(r) & = & {\displaystyle \int }_{{r}_{h}}^{r}{\rm{d}}x\left[\displaystyle \frac{C{(x)}^{1/2}}{A(x){B(x)}^{3/2}}{\displaystyle \int }_{{r}_{h}}^{x}{\rm{d}}y\displaystyle \frac{n\,{y}^{2-2n}\,{k}_{x}^{2}{\left({k}_{x}^{2}+{k}_{y}^{2}\right)}^{n-1}}{\,{2}^{n-1}}\right]\\ & = & N{\displaystyle \int }_{{r}_{h}}^{r}{\rm{d}}x\displaystyle \frac{{x}^{3-2n}}{{x}^{4}(1-\displaystyle \frac{{r}_{h}^{3}}{{x}^{3}})}\\ & & -N\,{r}_{h}^{3-2n}{\displaystyle \int }_{{r}_{h}}^{r}{\rm{d}}x\displaystyle \frac{1}{{x}^{4}(1-\displaystyle \frac{{r}_{h}^{3}}{{x}^{3}})},\,\,\,n\ne \displaystyle \frac{3}{2},\end{array}\end{eqnarray}$
where $N\equiv \frac{n\,{k}_{x}^{2}{\left({k}_{x}^{2}+{k}_{y}^{2}\right)}^{n-1}}{{2}^{n-1}(3-2n)}$. The two conditions of regular function and asymptotic behavior near the boundary require the integral constants c7 and c8 to be zero. Then,
$\begin{eqnarray}{H}_{0}^{(2)\prime} (r)=N\frac{{r}^{3-2n}}{{r}^{4}(1-\frac{{r}_{h}^{3}}{{r}^{3}})}-N\frac{{r}_{h}^{3-2n}}{{r}^{4}(1-\frac{{r}_{h}^{3}}{{r}^{3}})}.\end{eqnarray}$
Near the boundary (r),
$\begin{eqnarray}{H}_{0}^{(2)}(r)=-\frac{1}{3{r}^{3}}\frac{n{k}_{x}^{2}{\left({k}_{x}^{2}+{k}_{y}^{2}\right)}^{n-1}}{{2}^{n-1}(2n-3)}{r}_{h}^{3-2n}+\cdots \,.\end{eqnarray}$
Combining (B16) and (B18), we have
$\begin{eqnarray}\begin{array}{rcl}{H}_{1}^{(2)}(r) & = & {c}_{10}+{c}_{9}{\displaystyle \int }_{{r}_{h}}^{r}{\rm{d}}x\frac{C{(x)}^{1/2}}{A(x)B{(x)}^{3/2}}\\ & & +6\,N\,{r}_{h}^{3}{\displaystyle \int }_{{r}_{h}}^{r}{\rm{d}}x\left[\frac{C{(x)}^{1/2}}{A(x)B{(x)}^{3/2}}\left(F(x)\right.\right.\\ & & \left.\left.-F({r}_{h})\right)\Space{0ex}{2.50ex}{0ex}\right]-6\,N\,{r}_{h}^{6-2n}{\displaystyle \int }_{{r}_{h}}^{r}{\rm{d}}x\left[\frac{C{(x)}^{1/2}}{A(x)B{(x)}^{3/2}}\right.\\ & & \left.\times \left(G(x)-G({r}_{h})\right)\Space{0ex}{2.50ex}{0ex}\right],\end{array}\end{eqnarray}$
where
$\begin{eqnarray}\begin{array}{rcl}F(x)-F({r}_{h}) & = & -\frac{1}{3}{r}_{h}^{-2n}\left[{ \mathcal B }\left(\frac{{y}^{3}}{{r}_{h}^{3}},1-\frac{2n}{3},0\right)\right]{\left|\right.}_{y={r}_{h}}^{y=x},\\ G(x)-G({r}_{h}) & = & \frac{1}{3\,{r}_{h}^{3}}\left[\,\rm{log}\,(\frac{{y}^{3}-{r}_{h}^{3}}{{y}^{3}})\right]{\left|\right.}_{y={r}_{h}}^{y=x},\end{array}\end{eqnarray}$
with the incomplete beta function ${ \mathcal B }\left(\frac{{y}^{3}}{{r}_{h}^{3}},1-\frac{2n}{3},0\right)$. We need to fix the integral constants c9 = c10 = 0 so that ${H}_{1}^{(2)}(r)$ ensures the regularity of the solution at the horizon and the asymptotic behavior (B2) near the boundary. Then, near the boundary, we take the expansion of A(x), B(x), C(x), F(x), G(x) and insert them into (B20). We immediately get
$\begin{eqnarray}{H}_{1}^{(2)}(r)=-\frac{1}{3{r}^{3}}\frac{n{k}_{x}^{2}{\left({k}_{x}^{2}+{k}_{y}^{2}\right)}^{n-1}}{{2}^{n-2}(2n-3)\,{r}_{h}^{2n-3}}\,{ \mathcal H }\left(\frac{2n-3}{3}\right)+\cdots \,.\end{eqnarray}$
In the end, for V(X) = Xn model, substituting (B7), (B9), (B19) and (B22) into (B4), we derive that
$\begin{eqnarray}\mu ={\lambda }^{2}\frac{n\,{k}_{x}^{2}\,{\left({k}_{x}^{2}+{k}_{y}^{2}\right)}^{n-1}}{{2}^{n-1}\,(2n-3)}{r}_{h}^{3-2n}+{ \mathcal O }({\lambda }^{4}),\quad n\gt \frac{3}{2},\end{eqnarray}$
$\begin{eqnarray}\begin{array}{rcl}\displaystyle \frac{\eta }{s} & = & \displaystyle \frac{1}{4\pi }\displaystyle \frac{B({r}_{h})}{C({r}_{h})}-{\lambda }^{2}\displaystyle \frac{n\,{k}_{x}^{2}\,{\left({k}_{x}^{2}+{k}_{y}^{2}\right)}^{n-1}}{3\cdot {2}^{n}\,(2n-3)\,\pi \,{r}_{h}^{2n}}\\ & & \times { \mathcal H }(\displaystyle \frac{2n-3}{3})+{ \mathcal O }({\lambda }^{4}).\end{array}\end{eqnarray}$

$n=\frac{3}{2}$

In this case, ${M}^{2}(y)=\frac{{k}_{x}^{2}\,V^{\prime} }{B(y)}=\frac{3\,{k}_{x}^{2}}{2\,{y}^{2}}{\left(\frac{{k}_{x}^{2}}{2\,{y}^{2}}+\frac{{k}_{y}^{2}}{2\,{y}^{2}}\right)}^{1/2}$, we have

$\begin{eqnarray}{H}_{0}^{(2)}(r)=\displaystyle \frac{3\,{k}_{x}^{2}\sqrt{{k}_{x}^{2}+{k}_{y}^{2}}}{2\sqrt{2}}{\int }_{{r}_{h}}^{r}{\rm{d}}x\displaystyle \frac{\,\rm{log}\,(\displaystyle \frac{x}{{r}_{h}})}{{x}^{4}(1-\displaystyle \frac{{r}_{h}^{3}}{{x}^{3}})},\end{eqnarray}$
where c7 and c8 are also zero. Then,
$\begin{eqnarray}{H}_{0}^{(2)\prime} (r)=\frac{3\,{k}_{x}^{2}\sqrt{{k}_{x}^{2}+{k}_{y}^{2}}}{2\sqrt{2}}\frac{\,\rm{log}\,(\frac{r}{{r}_{h}})}{{r}^{4}(1-\frac{{r}_{h}^{3}}{{r}^{3}})}.\end{eqnarray}$
Near the boundary (r),
$\begin{eqnarray}\begin{array}{rcl}{H}_{0}^{(2)}(r) & = & -\displaystyle \frac{1}{{r}^{3}}\displaystyle \frac{{k}_{x}^{2}\sqrt{{k}_{x}^{2}+{k}_{y}^{2}}}{6\sqrt{2}}\\ & & +\displaystyle \frac{1}{{r}^{3}}\,\,\rm{log}\,(\displaystyle \frac{{r}_{h}}{r})\displaystyle \frac{{k}_{x}^{2}\sqrt{{k}_{x}^{2}+{k}_{y}^{2}}}{2\sqrt{2}}+\cdots \,{,}\end{array}\end{eqnarray}$
where $\,\rm{log}\,(\frac{{r}_{h}}{r})$ is divergent at the boundary.

Combining (B16) and (B26), near the boundary, the regular function ${H}_{1}^{(2)}(r)$ is obtained by repeating the calculation

$\begin{eqnarray}{H}_{1}^{(2)}(r)=-\frac{1}{{r}^{3}}\frac{{\pi }^{2}\,{k}_{x}^{2}\sqrt{{k}_{x}^{2}+{k}_{y}^{2}}}{18\sqrt{2}}+\cdots \,{,}\end{eqnarray}$
where we have chosen c9 = c10 = 0 so that ${H}_{1}^{(2)}(r)$ ensures the regularity at the horizon and the asymptotic behavior (B2) near the boundary. Finally, for $V(X)={X}^{\frac{3}{2}}$ model, we find that
$\begin{eqnarray}\frac{\eta }{s}=\frac{1}{4\pi }\frac{B({r}_{h})}{C({r}_{h})}-{\lambda }^{2}\frac{\pi \,{k}_{x}^{2}\sqrt{{k}_{x}^{2}+{k}_{y}^{2}}}{72\,\sqrt{2}\,{r}_{h}^{3}}+{ \mathcal O }({\lambda }^{4}).\end{eqnarray}$

Appendix C Shear viscosity calculated by the eom of ${h}_{x}^{y}$

In the section on the one-axion case in the main text, we mentioned that the result of the shear viscosity does not depend on whether solving the eom of ${h}_{y}^{x}$ or the one of ${h}_{x}^{y}$. Here, we will show that solving the equation of the massive ${h}_{x}^{y}$ also gives the result (37). Analogous to the calculations in Appendix B, we have the following formula for the massive field

$\begin{eqnarray}\frac{\eta }{s}=\frac{1}{4\pi }\frac{C({r}_{h})}{B({r}_{h})}-\left\{\begin{array}{ll}{\lambda }^{2}\frac{n\,{k}^{2n}\,{ \mathcal H }(\frac{2n-3}{3})}{3\cdot {2}^{n}\,(2n-3)\,\pi \,{r}_{h}^{2n}}+{ \mathcal O }({\lambda }^{4}),\quad & n\ne \frac{3}{2},\\ {\lambda }^{2}\frac{\pi \,{k}^{3}}{72\,\sqrt{2}\,{r}_{h}^{3}}+{ \mathcal O }({\lambda }^{4}),\quad & n=\frac{3}{2},\\ \quad \end{array}\right.\end{eqnarray}$
which is obtained by setting kx = 0 and ky = k ≠ 0. This seems very different from the result we achieved in the main text, but expanding
$\begin{eqnarray}\frac{C({r}_{h})}{B({r}_{h})}=1-{\lambda }^{2}\frac{2\,{b}_{1}^{(n)}({r}_{h})}{{r}_{h}^{2}}+{ \mathcal O }({\lambda }^{4})\end{eqnarray}$
and combining it with (A4) directly gives us
$\begin{eqnarray}\frac{\eta }{s}=\frac{1}{4\pi }+{\lambda }^{2}\,\frac{{b}_{1}^{(n)}({r}_{h})}{2\,\pi \,{{r}_{h}}^{2}}+{ \mathcal O }({\lambda }^{4}),\end{eqnarray}$
which is exactly the result (37).

We would like to thank Matteo Baggioli, Kang Liu, Yan Liu, Ya-Wen Sun, and Ling-Zheng Xia for numerous helpful discussions. This work is supported by the National Natural Science Foundation of China (NSFC) under Grants Nos. 12275038 and 12375054.

1
Ammon M, Erdmenger J 2015 Gauge/Gravity Duality: Foundations and Applications Cambridge Cambridge University Press

2
Zaanen J, Liu Y, Sun Y-W, Schalm K 2015 Holographic Duality in Condensed Matter Physics Cambridge Cambridge University Press

3
Hartnoll S A, Lucas A, Sachdev S 2018 Holographic Quantum Matter Cambridge, MA MIT Press

4
Baggioli M 2019 Applied Holography: A Practical Mini-Course Springer Briefs in Physics Berlin Springer

5
Policastro G, Son D T, Starinets A O 2001 The shear viscosity of strongly coupled N=4 supersymmetric Yang-Mills plasma Phys. Rev. Lett. 87 081601

DOI

6
Kovtun P, Son D T, Starinets A O 2003 Holography and hydrodynamics: diffusion on stretched horizons J. High Energy Phys. JHEP10(2003)064

DOI

7
Kovtun P, Son D T, Starinets A O 2005 Viscosity in strongly interacting quantum field theories from black hole physics Phys. Rev. Lett. 94 111601

DOI

8
Arnold P B, Moore G D, Yaffe L G 2003 Transport coefficients in high temperature gauge theories. 2. Beyond leading log J. High Energy Phys. JHEP05(2003)051

DOI

9
Huot S C, Jeon S, Moore G D 2007 Shear viscosity in weakly coupled N = 4 super Yang-Mills theory compared to QCD Phys. Rev. Lett. 98 172303

DOI

10
Luzum M, Romatschke P 2008 Conformal relativistic viscous hydrodynamics: applications to RHIC results at sNN = 200 GeV Phys. Rev. C 78 034915

DOI

Erratum: 2009 Phys. Rev. C 79 039903

11
Schäfer T, Teaney D 2009 Nearly perfect fluidity: from cold atomic gases to hot quark gluon plasmas Rept. Prog. Phys. 72 126001

DOI

12
Cremonini S 2011 The shear viscosity to entropy ratio: a status report Mod. Phys. Lett. B 25 1867 1888

DOI

13
Nagle J L, Bearden I G, Zajc W A 2011 Quark-gluon plasma at RHIC and the LHC: perfect fluid too perfect? New J. Phys. 13 075004

DOI

14
Shen C, Heinz U, Huovinen P, Song H 2011 Radial and elliptic flow in Pb+Pb collisions at the CERN Large Hadron Collider from viscous hydrodynamic Phys. Rev. C 84 044903

DOI

15
Brigante M, Liu H, Myers R C, Shenker S, Yaida S 2008 The viscosity bound and causality violation Phys. Rev. Lett. 100 191601

DOI

16
Brigante M, Liu H, Myers R C, Shenker S, Yaida S 2008 Viscosity bound violation in higher derivative gravity Phys. Rev. D 77 126006

DOI

17
Iqbal N, Liu H 2009 Universality of the hydrodynamic limit in AdS/CFT and the membrane paradigm Phys. Rev. D 79 025023

DOI

18
Cai R-G, Nie Z-Y, Sun Y-W 2008 Shear viscosity from effective couplings of gravitons Phys. Rev. D 78 126007

DOI

19
Cai R-G, Sun Y-W 2008 Shear viscosity from AdS Born-Infeld black holes J. High Energy Phys. JHEP09(2008)115

DOI

20
Brustein R, Medved A J M 2009 The ratio of shear viscosity to entropy density in generalized theories of gravity Phys. Rev. D 79 021901

DOI

21
Cai R-G, Nie Z-Y, Ohta N, Sun Y-W 2009 Shear viscosity from Gauss-Bonnet gravity with a dilaton coupling Phys. Rev. D 79 066004

DOI

22
Kats Y, Petrov P 2009 Effect of curvature squared corrections in AdS on the viscosity of the dual gauge theory J. High Energy Phys. JHEP01(2009)044

DOI

23
Myers R C, Paulos M F, Sinha A 2010 Holographic studies of quasi-topological gravity J. High Energy Phys. JHEP08(2010)035

DOI

24
Feng X-H, Liu H-S, H, Pope C N 2015 Black hole entropy and viscosity bound in Horndeski gravity J. High Energy Phys. JHEP11(2015)176

DOI

25
Wang Y-L, Ge X-H 2016 Shear viscosity to entropy density ratio in higher derivative gravity with momentum dissipation Phys. Rev. D 94 066007

DOI

26
Buchel A 2024 Holographic Gauss-Bonnet transport Phys. Lett. B 853 138666

DOI

27
Natsuume M, Ohta M 2010 The shear viscosity of holographic superfluids Prog. Theor. Phys. 124 931 951

DOI

28
Erdmenger J, Kerner P, Zeller H 2011 Non-universal shear viscosity from Einstein gravity Phys. Lett. B 699 301 304

DOI

29
Rebhan A, Steineder D 2012 Violation of the holographic viscosity bound in a strongly coupled anisotropic plasma Phys. Rev. Lett. 108 021601

DOI

30
Mamo K A 2012 Holographic RG flow of the shear viscosity to entropy density ratio in strongly coupled anisotropic plasma J. High Energy Phys. JHEP10(2012)070

DOI

31
Giataganas D 2013 Observables in strongly coupled anisotropic theories PoS Corfu. 2012 122

32
Jain S, Kundu N, Sen K, Sinha A, Trivedi S P 2015 A strongly coupled anisotropic fluid from dilaton driven holography J. High Energy Phys. JHEP01(2015)005

DOI

33
Critelli R, Finazzo S I, Zaniboni M, Noronha J 2014 Anisotropic shear viscosity of a strongly coupled non-Abelian plasma from magnetic branes Phys. Rev. D 90 066006

DOI

34
Ge X-H, Ling Y, Niu C, Sin S-J 2015 Thermoelectric conductivities, shear viscosity, and stability in an anisotropic linear axion model Phys. Rev. D 92 106005

DOI

35
Jain S, Samanta R, Trivedi S P 2015 The shear viscosity in anisotropic phases J. High Energy Phys. JHEP10(2015)028

DOI

36
Ge X-H 2016 Notes on shear viscosity bound violation in anisotropic models Sci. China Phys. Mech. Astron. 59 630401

DOI

37
Landsteiner K, Liu Y, Sun Y-W 2016 Odd viscosity in the quantum critical region of a holographic Weyl semimetal Phys. Rev. Lett. 117 081604

DOI

38
Finazzo S I, Critelli R, Rougemont R, Noronha J 2016 Momentum transport in strongly coupled anisotropic plasmas in the presence of strong magnetic fields Phys. Rev. D 94 054020

DOI

39
Samanta R, Sharma R, Trivedi S P 2017 Shear viscosity in an anisotropic unitary Fermi gas Phys. Rev. A 96 053601

DOI

40
Jeong H-S, Ahn Y, Ahn D, Niu C, Li W-J, Kim K-Y 2018 Thermal diffusivity and butterfly velocity in anisotropic Q-lattice models J. High Energy Phys. JHEP01(2018)140

DOI

41
Giataganas D, Gürsoy U, Pedraza J F 2018 Strongly-coupled anisotropic gauge theories and holography Phys. Rev. Lett. 121 121601

DOI

42
Davison R A, Goutéraux B 2015 Momentum dissipation and effective theories of coherent and incoherent transport J. High Energy Phys. JHEP01(2015)039

DOI

43
Baggioli M 2016 Gravity, holography and applications to condensed matter arXiv:1610.02681

44
Burikham P, Poovuttikul N 2016 Shear viscosity in holography and effective theory of transport without translational symmetry Phys. Rev. D 94 106001

DOI

45
Liu H-S, Lu H, Pope C N 2016 Magnetically-charged black branes and viscosity/entropy ratios J. High Energy Phys. JHEP12(2016)097

DOI

46
Ling Y, Xian Z-Y, Zhou Z 2016 Holographic shear viscosity in hyperscaling violating theories without translational invariance J. High Energy Phys. JHEP11(2016)007

DOI

47
Hartnoll S A, Ramirez D M, Santos J E 2016 Entropy production, viscosity bounds and bumpy black holes J. High Energy Phys. JHEP03(2016)170

DOI

48
Alberte L, Baggioli M, Pujolas O 2016 Viscosity bound violation in holographic solids and the viscoelastic response J. High Energy Phys. JHEP07(2016)074

DOI

49
Ling Y, Xian Z, Zhou Z 2017 Power law of shear viscosity in Einstein-Maxwell-dilaton-axion model Chin. Phys. C 41 023104

DOI

50
Cisterna A, Hassaine M, Oliva J, Rinaldi M 2017 Axionic black branes in the k-essence sector of the Horndeski model Phys. Rev. D 96 124033

DOI

51
Baggioli M, Buchel A 2019 Holographic viscoelastic hydrodynamics J. High Energy Phys. JHEP03(2019)146

52
Andrade T, Baggioli M, Pujolàs O 2019 Linear viscoelastic dynamics in holography Phys. Rev. D 100 106014

DOI

53
Zhou Y-T, Kuang X-M, Li Y-Z, Wu J-P 2020 Holographic subregion complexity under a thermal quench in an Einstein-Maxwell-axion theory with momentum relaxation Phys. Rev. D 101 106024

DOI

54
Baggioli M, Li W-J 2020 Universal bounds on transport in holographic systems with broken translations SciPost Phys. 9 007

DOI

55
Wang X-J, Li W-J 2021 Holographic phonons by gauge-axion coupling J. High Energy Phys. JHEP07(2021)131

DOI

56
Baggioli M, Li L, Sun H-T 2022 Shear flows in far-from-equilibrium strongly coupled fluids Phys. Rev. Lett. 129 011602

DOI

57
Xia L-Z, Li W-J 2024 Hydrodynamic modes in holographic multiple-axion model Eur. Phys. J. C 84 1236

DOI

58
Baggioli M, Cremonini S, Early L, Li L, Sun H-T 2023 Breaking rotations without violating the KSS viscosity bound J. High Energy Phys. JHEP07(2023)016

DOI

59
Baggioli M, Pujolas O 2015 Electron-phonon interactions, metal-insulator transitions, and holographic massive gravity Phys. Rev. Lett. 114 251602

DOI

60
Alberte L, Baggioli M, Khmelnitsky A, Pujolas O 2016 Solid holography and massive gravity J. High Energy Phys. JHEP02(2016)114

DOI

61
Baggioli M, Kim K-Y, Li L, Li W-J 2021 Holographic axion model: a simple gravitational tool for quantum matter Sci. China Phys. Mech. Astron. 64 270001

DOI

62
Baggioli M, Li L, Li W-J, Sun H-T 2024 Mechanical stability of homogeneous holographic solids under finite shear strain J. High Energy Phys. JHEP05(2024)198

DOI

63
Alberte L, Ammon M, Jiménez-Alba A, Baggioli M, Pujolàs O 2018 Holographic phonons Phys. Rev. Lett. 120 171602

DOI

64
Baggioli M, Grieninger S 2019 Zoology of solid & fluid holography-Goldstone modes and phase relaxation J. High Energy Phys. 2019 JHEP10(2019)235

DOI

65
Ammon M, Baggioli M, Jiménez-Alba A 2019 A unified description of translational symmetry breaking in holography J. High Energy Phys. JHEP09(2019)124

DOI

66
Alberte L, Baggioli M, Castillo V C, Pujolas O 2019 Elasticity bounds from effective field theory Phys. Rev. D 100 065015

DOI

67
Delacrétaz L V, Goutéraux B, Hartnoll S A, Karlsson A 2017 Theory of hydrodynamic transport in fluctuating electronic charge density wave states Phys. Rev. B 96 195128

DOI

Outlines

/