Welcome to visit Communications in Theoretical Physics,
Gravitation Theory, Astrophysics and Cosmology

Retrieval of energy-momentum tensor for self-gravitating and collapsing thin spherical shell

  • Wenbin Lin
Expand
  • School of Mathematics and Physics, University of South China, Hengyang 421001, China
  • School of Physical Science and Technology, Southwest Jiaotong University, Chengdu 610031, China

Received date: 2024-08-16

  Revised date: 2024-11-16

  Accepted date: 2024-11-25

  Online published: 2025-03-28

Copyright

© 2025 Institute of Theoretical Physics CAS, Chinese Physical Society and IOP Publishing. All rights, including for text and data mining, AI training, and similar technologies, are reserved.
This article is available under the terms of the IOP-Standard License.

Cite this article

Wenbin Lin . Retrieval of energy-momentum tensor for self-gravitating and collapsing thin spherical shell[J]. Communications in Theoretical Physics, 2025 , 77(7) : 075406 . DOI: 10.1088/1572-9494/ad9c40

1. Introduction

Recently, based on the theory of the post-Newtonian (PN) approximation [1-3], we calculated the 1PN metric of a self-gravitating and collapsing thin spherical shell in the weak-field and slow-motion limits. We showed that the spherical shell’s metric is time-dependent beyond the Newtonian order, implying that the non-static spherically-symmetric systems may produce time-dependent gravitational fields [4].
In this work, we double check the correctness of the 1PN metric via substituting it into Einstein field equations, and successfully retrieve the leading-order components of the gravitational source’s energy-momentum tensor. This verifies that the time-dependent metric is the solution to Einstein field equations for the self-gravitating and collapsing thin spherical shell under the harmonic-coordinate conditions at the 1PN order.
The rest of this paper is organized as follows. Section 2 gives the leading-order energy-momentum tensor and the 1PN metric of the collapsing thin spherical shell, both of which are time-dependent. Section 3 retrieves the former from the latter. A summary is given in section 4.

2. The energy-momentum tensor and the metric of the collapsing thin spherical shell

Let $\bar{M}$, $\bar{v}$, and $\bar{r}$ represent the typical values of mass, velocity, and distance in a non-relativistic system. In the theory of the PN approximation, the 1PN metric of any non-extremely relativistic systems can be formulated as [2]
$\begin{eqnarray}\begin{array}{rcl}{{\rm{d}}{s}}^{2} & = & \left(-1+\mathop{{g}_{00}}\limits^{2}+\mathop{{g}_{00}}\limits^{4}\right){{\rm{d}}{t}}^{2}\\ & & +2\mathop{{g}_{0i}}\limits^{3}{{\rm{d}}{x}}^{i}{\rm{d}}{t}+\left({\delta }_{{ij}}+\mathop{{g}_{{ij}}}\limits^{2}\right){{\rm{d}}{x}}^{i}{{\rm{d}}{x}}^{j}\,,\end{array}\end{eqnarray}$
where ${\mathop{g}\limits^{N}}_{\mu \nu }$ denotes the terms in gμν of order ${\bar{v}}^{N}$. δij is the Kronecker sign. Throughout this paper, the natural units in which G = c = 1 are adopted.
We assume that the infinitely-thin spherical shell has rest mass M and radius R, and radial velocity ui = uni with ni being the radial unit vector. The energy-momentum tensor of the self-gravitating and collapsing thin spherical shell at the Newtonian order can be formulated as [4]
$\begin{eqnarray}\mathop{{T}^{00}}\limits^{0}=\displaystyle \frac{M}{4\pi {R}^{2}}\delta (r-R)\,,\end{eqnarray}$
$\begin{eqnarray}\mathop{{T}^{0i}}\limits^{1}=\displaystyle \frac{M}{4\pi {R}^{2}}{{un}}_{i}\delta (r-R)\,,\end{eqnarray}$
$\begin{eqnarray}\mathop{{T}^{00}}\limits^{2}=\displaystyle \frac{M}{4\pi {R}^{2}}\left(\displaystyle \frac{1}{2}{u}^{2}+{\rm{\Phi }}\right)\delta (r-R)\,,\end{eqnarray}$
$\begin{eqnarray}\mathop{{T}^{{ij}}}\limits^{2}=\displaystyle \frac{M}{4\pi {R}^{2}}{u}^{2}{n}_{i}{n}_{j}\delta (r-R)\,,\end{eqnarray}$
where $\mathop{{T}^{\mu \nu }}\limits^{N\,\,}$ denotes the terms in Tμν of order $(\bar{M}/{\bar{r}}^{3}){\bar{v}}^{N}$. δ(s) is the Dirac delta function of s. ${n}_{i}=\tfrac{{x}_{i}}{r}$ with $r=| {x}^{i}{x}_{i}{| }^{\tfrac{1}{2}}$. ${\rm{\Phi }}=-\tfrac{M}{R}$ is the Newtonian potential at any point of the shell induced by the other parts. The shell collapsing implies that $u=\tfrac{{\rm{d}}{R}}{{\rm{d}}{t}}\lt 0$. At the Newtonian order, we have $\tfrac{{\rm{d}}{u}}{{\rm{d}}{t}}=\tfrac{{\rm{\Phi }}}{2R}$.
We have obtained the 1PN metric of the collapsing thin spherical shell as follows [4]
$\begin{eqnarray}\mathop{{g}_{00}}\limits^{2}=2\displaystyle \frac{M}{r}\theta (r-R)+2\displaystyle \frac{M}{R}\left[1-\theta (r-R)\right]\,,\end{eqnarray}$
$\begin{eqnarray}\mathop{{g}_{{ij}}}\limits^{2}=2\displaystyle \frac{M}{r}{\delta }_{{ij}}\theta (r-R)+2\displaystyle \frac{M}{R}{\delta }_{{ij}}\left[1-\theta (r-R)\right]\,,\end{eqnarray}$
$\begin{eqnarray}\mathop{{g}_{0i}}\limits^{3}=-\displaystyle \frac{4}{3}\displaystyle \frac{{MR}\,u\,{x}_{i}}{{r}^{3}}\theta (r-R)-\displaystyle \frac{4}{3}\displaystyle \frac{M\,u\,{x}_{i}}{{R}^{2}}\left[1-\theta (r-R)\right]\,,\end{eqnarray}$
$\begin{eqnarray}\begin{array}{rcl}\mathop{{g}_{00}}\limits^{4} & = & 2\displaystyle \frac{M}{r}\left(-\displaystyle \frac{M}{r}+\displaystyle \frac{11}{6}{u}^{2}+\displaystyle \frac{7}{6}{\rm{\Phi }}\right)\theta (r-R)\\ & & +\,2\displaystyle \frac{M}{R}\left[-\displaystyle \frac{M}{R}+\left(\displaystyle \frac{3}{2}+\displaystyle \frac{1}{3}\displaystyle \frac{{r}^{2}}{{R}^{2}}\right){u}^{2}+\left(\displaystyle \frac{5}{4}-\displaystyle \frac{1}{12}\displaystyle \frac{{r}^{2}}{{R}^{2}}\right){\rm{\Phi }}\right]\\ & & \times \,\left[1-\theta (r-R)\right]\,,\end{array}\end{eqnarray}$
where θ(s) is the Heaviside function of s, which equals 1 for s > 0 and 0 otherwise. δij is the Kronecker delta sign which equals 1 for i = j and 0 otherwise. Notice that both R and u are time-dependent.

3. Retrieval of matter energy-momentum tensor

In this section, we substitute the time-dependent metric given by equations (6)-(9) into Einstein field equations, to prove it is the correct solution for the spacetime of the self-gravitating and collapsing thin spherical shell. In the meantime, we retrieve all components of the shell’s energy-momentum tensor.

Einstein field equations can be written as

$\begin{eqnarray}{{ \mathcal R }}_{\mu \nu }=-8\pi \left({T}_{\mu \nu }-\displaystyle \frac{1}{2}{g}_{\mu \nu }{T}_{\lambda }^{\lambda }\right)\,,\end{eqnarray}$
where ${{ \mathcal R }}_{\mu \nu }$ is the Ricci tensor.

Under the harmonic-coordinate condition, Einstein field equations to the 1PN order reduce to [2]

$\begin{eqnarray}{\mathop{{ \mathcal R }}\limits^{2}}_{00}=\displaystyle \frac{1}{2}{{\rm{\nabla }}}^{2}\mathop{{g}_{00}}\limits^{2}=-4\pi \mathop{{T}^{00}}\limits^{0}\,,\end{eqnarray}$
$\begin{eqnarray}{\mathop{{ \mathcal R }}\limits^{2}}_{{ij}}=\displaystyle \frac{1}{2}{{\rm{\nabla }}}^{2}\mathop{{g}_{{ij}}}\limits^{2}=-4\pi {\delta }_{{ij}}\mathop{{T}^{00}}\limits^{0}\,,\end{eqnarray}$
$\begin{eqnarray}{\mathop{{ \mathcal R }}\limits^{3}}_{0i}=\displaystyle \frac{1}{2}{{\rm{\nabla }}}^{2}\mathop{{g}_{0i}}\limits^{3}=8\pi \mathop{{T}^{0i}}\limits^{1}\,,\end{eqnarray}$
$\begin{eqnarray}\begin{array}{rcl}{\mathop{{ \mathcal R }}\limits^{4}}_{00} & = & \displaystyle \frac{1}{2}\left[{{\rm{\nabla }}}^{2}\mathop{{g}_{00}}\limits^{4}-{\partial }_{t}^{2}\mathop{{g}_{00}}\limits^{2}-\mathop{{g}_{{ij}}}\limits^{2}{\partial }_{i}{\partial }_{j}\mathop{{g}_{00}}\limits^{2}+({\partial }_{i}\mathop{{g}_{00}}\limits^{2})({\partial }_{i}\mathop{{g}_{00}}\limits^{2})\right]\\ & = & -4\pi \left(\mathop{{T}^{00}}\limits^{2}-2\mathop{{g}_{00}}\limits^{2}\mathop{{T}^{00}}\limits^{0}+\mathop{{T}^{{ii}}}\limits^{2}\right)\,,\end{array}\end{eqnarray}$
where ${\mathop{{ \mathcal R }}\limits^{N}}_{\mu \nu }$ denotes the term in ${{ \mathcal R }}_{\mu \nu }$ of order ${\bar{v}}^{N}/{\bar{r}}^{2}$. ${\partial }_{t}\equiv \partial /\partial t$ and ${\partial }_{i}\equiv \partial /\partial {x}^{i}$. ∇2 is the Laplace operator.

Firstly, we show the 1PN metric satisfies the harmonic-coordinate conditions at the 1PN order, which can be written as [2]

$\begin{eqnarray}\displaystyle \frac{1}{2}{\partial }_{t}\mathop{{g}_{00}}\limits^{2}-{\partial }_{i}\mathop{{g}_{0i}}\limits^{3}+\displaystyle \frac{1}{2}{\partial }_{t}\mathop{{g}_{{ii}}}\limits^{2}=0\,,\end{eqnarray}$
$\begin{eqnarray}\displaystyle \frac{1}{2}{\partial }_{i}\mathop{{g}_{00}}\limits^{2}+{\partial }_{j}\mathop{{g}_{{ij}}}\limits^{3}-\displaystyle \frac{1}{2}{\partial }_{i}\mathop{{g}_{{jj}}}\limits^{2}=0\,.\end{eqnarray}$

From equations (6)-(8), we have

$\begin{eqnarray}{\partial }_{t}\mathop{{g}_{00}}\limits^{2}=-2\displaystyle \frac{{Mu}}{{R}^{2}}\left[1-\theta (r-R)\right]\,,\end{eqnarray}$
$\begin{eqnarray}{\partial }_{t}\mathop{{g}_{{ii}}}\limits^{2}=-6\displaystyle \frac{{Mu}}{{R}^{2}}\left[1-\theta (r-R)\right]\,,\end{eqnarray}$
$\begin{eqnarray}{\partial }_{i}\mathop{{g}_{0i}}\limits^{3}=-4\displaystyle \frac{{Mu}}{{R}^{2}}\left[1-\theta (r-R)\right]\,,\end{eqnarray}$
$\begin{eqnarray}{\partial }_{i}\mathop{{g}_{00}}\limits^{2}=-2\displaystyle \frac{{{Mx}}_{i}}{{r}^{3}}\theta (r-R)\,,\end{eqnarray}$
$\begin{eqnarray}{\partial }_{j}\mathop{{g}_{{ij}}}\limits^{2}=-2\displaystyle \frac{{{Mx}}_{i}}{{r}^{3}}\theta (r-R)\,,\end{eqnarray}$
$\begin{eqnarray}{\partial }_{i}\mathop{{g}_{{jj}}}\limits^{2}=-6\displaystyle \frac{{{Mx}}_{i}}{{r}^{3}}\theta (r-R)\,,\end{eqnarray}$
where we have replaced $\tfrac{{dR}}{{dt}}$ with u. With these equations, we can easily verify that equations (15) and (16) hold.

Secondly, we verify that the 1PN metric satisfies Einstein field equations about ${\mathop{{ \mathcal R }}\limits^{2}}_{00}$, ${\mathop{{ \mathcal R }}\limits^{2}}_{{ij}}$ and ${\mathop{{ \mathcal R }}\limits^{3}}_{0i}$, which are given by equations (11)-(13). Plugging equations (6)-(8) into equations (11)-(13) respectively, we have

$\begin{eqnarray}\begin{array}{rcl}{\mathop{{ \mathcal R }}\limits^{2}}_{00} & = & \displaystyle \frac{1}{2}{\partial }_{i}{\partial }_{i}\mathop{{g}_{00}}\limits^{2}=\displaystyle \frac{1}{2}{\partial }_{i}\left[-2\displaystyle \frac{{{Mx}}_{i}}{{r}^{3}}\theta (r-R)\right]\\ & = & -\displaystyle \frac{M}{{r}^{2}}\delta (r-R)=-4\pi \mathop{{T}^{00}}\limits^{0}\,,\end{array}\end{eqnarray}$
$\begin{eqnarray}\begin{array}{rcl}{\mathop{{ \mathcal R }}\limits^{2}}_{{ij}} & = & \displaystyle \frac{1}{2}{\partial }_{k}{\partial }_{k}\mathop{{g}_{{ij}}}\limits^{2}=\displaystyle \frac{1}{2}{\partial }_{k}\left[-2\displaystyle \frac{{{Mx}}_{k}}{{r}^{3}}\theta (r-R){\delta }_{{ij}}\right]\\ & = & -\displaystyle \frac{M}{{r}^{2}}\delta (r-R){\delta }_{{ij}}=-4\pi {\delta }_{{ij}}\mathop{{T}^{00}}\limits^{0}\,,\end{array}\end{eqnarray}$
$\begin{eqnarray}\begin{array}{rcl}{\mathop{{ \mathcal R }}\limits^{3}}_{0i} & = & \displaystyle \frac{1}{2}{\partial }_{j}{\partial }_{j}\mathop{{g}_{0i}}\limits^{3}=\displaystyle \frac{1}{2}{\partial }_{j}\\ & & \times \,\left[4{MuR}\left(\displaystyle \frac{{\delta }_{{ij}}}{3{R}^{3}}-\displaystyle \frac{{\delta }_{{ij}}}{3{r}^{3}}+\displaystyle \frac{{x}_{i}{x}_{j}}{{r}^{5}}\right)\theta (r-R)-\displaystyle \frac{4{Mu}\,{\delta }_{{ij}}}{3{R}^{2}}\right]\\ & = & 2{MuR}\left[\left(\displaystyle \frac{{n}_{i}}{{r}^{4}}+3\displaystyle \frac{{x}_{i}}{{r}^{5}}+\displaystyle \frac{{\delta }_{{ij}}{x}_{j}}{{r}^{5}}-5\displaystyle \frac{{x}_{i}}{{r}^{5}}\right)\theta (r-R)\right.\\ & & +\left.\left(\displaystyle \frac{{\delta }_{{ij}}}{3{R}^{3}}-\displaystyle \frac{{\delta }_{{ij}}}{3{r}^{3}}+\displaystyle \frac{{x}_{i}{x}_{j}}{{r}^{5}}\right){n}_{j}\delta (r-R)\right]\\ & = & \displaystyle \frac{2{Mu}\,{n}_{i}}{{R}^{2}}\delta (r-R)=8\pi \mathop{{T}^{0i}}\limits^{1}\,,\end{array}\end{eqnarray}$
where we have made use of ${x}_{j}={{rn}}_{j}$, ${\partial }_{j}{x}_{j}=3$, ${\partial }_{j}{x}_{i}={\delta }_{{ij}}$, ${\partial }_{j}r={n}_{j}$ and $\tfrac{d}{{ds}}\theta (s)=\delta (s)$. Notice that R and u are the functions of time t only.

Therefore, equations (23)-(25) show that from the 1PN metric, we can recover $\mathop{{T}^{00}}\limits^{0}$ and $\mathop{{T}^{0i}}\limits^{1}$ for the collapsing thin spherical shell, as given in equations (2) and (3). In other words, the 1PN metric satisfies equations (11)-(13).

Thirdly, we verify the 1PN metric satisfies the Einstein field equations about ${\mathop{{ \mathcal R }}\limits^{4}}_{00}$, which is given by equation (14). For convenience, we introduce

$\begin{eqnarray}\phi =-\displaystyle \frac{1}{2}\mathop{{g}_{00}}\limits^{2}\,,\end{eqnarray}$
$\begin{eqnarray}\psi =-\displaystyle \frac{1}{2}\mathop{{g}_{00}}\limits^{4}-{\phi }^{2}\,,\end{eqnarray}$
then equation (14) is equivalent to [2]
$\begin{eqnarray}{{\rm{\nabla }}}^{2}\psi ={\partial }_{t}^{2}\phi +4\pi \left(\mathop{{T}^{00}}\limits^{2}+\mathop{{T}^{{ii}}}\limits^{2}\right)\,.\end{eqnarray}$

Plugging equations (6) and (9) into equations (26) and (27), we have

$\begin{eqnarray}\phi =-\displaystyle \frac{M}{r}\theta (r-R)-\displaystyle \frac{M}{R}\left[1-\theta (r-R)\right]\,,\end{eqnarray}$
$\begin{eqnarray}\begin{array}{rcl}\psi & = & -\displaystyle \frac{M}{r}\left(\displaystyle \frac{11}{6}{u}^{2}+\displaystyle \frac{7}{6}{\rm{\Phi }}\right)\theta (r-R)-\displaystyle \frac{M}{R}\left[\left(\displaystyle \frac{3}{2}+\displaystyle \frac{1}{3}\displaystyle \frac{{r}^{2}}{{R}^{2}}\right){u}^{2}\right.\\ & & +\,\left.\left(\displaystyle \frac{5}{4}-\displaystyle \frac{1}{12}\displaystyle \frac{{r}^{2}}{{R}^{2}}\right){\rm{\Phi }}\right]\left[1-\theta (r-R)\right].\end{array}\end{eqnarray}$

Taking the second time derivative of Φ, from equation (29), we get [4]

$\begin{eqnarray}{\partial }_{t}^{2}\phi =-\displaystyle \frac{M}{{R}^{3}}\left(2{u}^{2}-\displaystyle \frac{1}{2}{\rm{\Phi }}\right)\left[1-\theta (r-R)\right]+\displaystyle \frac{M}{{R}^{2}}{u}^{2}\delta (r-R)\,,\end{eqnarray}$
where we have replaced $\tfrac{{\rm{d}}{R}}{{\rm{d}}{t}}$ with u and made use of $\tfrac{{\rm{d}}{u}}{{\rm{d}}{t}}=\tfrac{{\rm{\Phi }}}{2R}$.

Applying the Laplace operator on ψ given by equation (30), we can verify equation (28) as follows

$\begin{eqnarray}\begin{array}{rcl}{{\rm{\nabla }}}^{2}\psi & = & {\partial }_{i}\left({\partial }_{i}\psi \right)\\ & = & {\partial }_{i}\left\{\left(\displaystyle \frac{11}{6}{u}^{2}+\displaystyle \frac{7}{6}{\rm{\Phi }}\right)\displaystyle \frac{{{Mx}}_{i}}{{r}^{3}}\theta (r-R)\right.\\ & & -\,\left.\displaystyle \frac{M}{{R}^{3}}\left(\displaystyle \frac{1}{3}{u}^{2}-\displaystyle \frac{1}{12}{\rm{\Phi }}\right)2{x}_{i}\left[1-\theta (r-R)\right]\right\}\\ & = & \left(\displaystyle \frac{11}{6}{u}^{2}+\displaystyle \frac{7}{6}{\rm{\Phi }}\right)\displaystyle \frac{M}{{R}^{2}}\delta (r-R)-\displaystyle \frac{M}{{R}^{3}}\left(2{u}^{2}-\displaystyle \frac{1}{2}{\rm{\Phi }}\right)\\ & & \times \,\left[1-\theta (r-R)\right]+\displaystyle \frac{M}{{R}^{2}}\left(\displaystyle \frac{2}{3}{u}^{2}-\displaystyle \frac{1}{6}{\rm{\Phi }}\right)\delta (r-R)\\ & = & \mathop{\underbrace{-\displaystyle \frac{M}{{R}^{3}}\left(2{u}^{2}-\displaystyle \frac{1}{2}{\rm{\Phi }}\right)\left[1-\theta (r-R)\right]+\displaystyle \frac{M}{{R}^{2}}{u}^{2}\delta (r-R)}}\limits_{{\partial }_{t}^{2}\phi }\\ & & +\,\mathop{\underbrace{\displaystyle \frac{M}{{R}^{2}}\left[\left(\displaystyle \frac{1}{2}{u}^{2}+{\rm{\Phi }}\right)+{u}^{2}\right]\delta (r-R)}}\limits_{4\pi \left(\mathop{{T}^{00}}\limits^{2}\,+\,\mathop{{T}^{{ii}}}\limits^{2}\right)}.\end{array}\end{eqnarray}$
Notice that ${\partial }_{t}^{2}\phi $ is given by equation (31), and $\mathop{{T}^{00}}\limits^{2}$ and $\mathop{{T}^{{ij}}}\limits^{2}$ are given by equations (4) and (5) respectively. Therefore, the 1PN metric satisfies equation (14).

Conversely, it can be retrieved from equation (32) that

$\begin{eqnarray}\mathop{{T}^{00}}\limits^{2}+\mathop{{T}^{{ii}}}\limits^{2}=\displaystyle \frac{M}{4\pi {R}^{2}}\left(\displaystyle \frac{3}{2}{u}^{2}+{\rm{\Phi }}\right)\delta (r-R)\,.\end{eqnarray}$

Considering we have obtained $\mathop{{T}^{00}}\limits^{0}=\tfrac{M}{4\pi {R}^{2}}\delta (r-R)$ and $\mathop{{T}^{0i}}\limits^{1}=\tfrac{M}{4\pi {R}^{2}}{{un}}_{i}\delta (r-R)$ from the 1PN metric in the above, we can easily write down $\mathop{{T}^{{ij}}}\limits^{2}=\tfrac{M}{4\pi {R}^{2}}{u}^{2}{n}_{i}{n}_{j}\delta (r-R)$, which is just equation (5). Finally, plugging $\mathop{{T}^{{ii}}}\limits^{2}=\tfrac{M}{4\pi {R}^{2}}{u}^{2}\delta (r-R)$ into equation (33), we can get $\mathop{{T}^{00}}\limits^{2}=\tfrac{M}{4\pi {R}^{2}}\left(\tfrac{1}{2}{u}^{2}+{\rm{\Phi }}\right)\delta (r-R)$, i.e., equation (4) is recovered. $\square $

4. Summary

We have retrieved the leading-order energy-momentum tensor from the 1PN time-dependent metric of the self-gravitating and collapsing thin spherical shell. This verifies that the latter is the correct solution to the Einstein field equations at the 1PN order.

The author would like to thank Yikang Xiao for the useful discussions. This work was supported in part by the National Natural Science Foundation of China under Grant No. 11973025, and the Program for New Century Excellent Talents in University under Grant No. NCET-10-0702.

1
Fock V 1959 The Theory of Space, Time and Gravitation Kemmel N Pergamon

2
Weinberg S 1972 Gravitation and Cosmology: Principles and Applications of the General Theory of Relativity Wiley

3
Poisson E, Will C M 2014 Gravity: Newtonian, Post-Newtonian, Relativistic Cambridge University Press

4
Lin W 2024 Revisit Birkhoff’s theorem: the post-Newtonian metric of a self-gravitating and collapsing thin spherical shell Symmetry 16 998

DOI

Outlines

/