Novel approach for modified forms of Camassa-Holm and Degasperis-Procesi equations using fractional operator
P Veeresha,D G Prakasha
Table 1. Comparison study of obtained results for mCH equation and results achieved by HPM [19] at $\hslash =-1$ and $n=1.$
$t$$x$${v}_{\left|\mathrm{HPM} \mbox{-} \mathrm{Exact}\right|}$${v}_{\left|q \mbox{-} \mathrm{HATM} \mbox{-} \mathrm{Exact}\right|}$
$0.05$$8$$2.80771\times {10}^{-4}$$2.78618\times {10}^{-4}$
$9$$1.03633\times {10}^{-4}$$5.86830\times {10}^{-4}$
$10$$3.8170\times {10}^{-5}$$9.27737\times {10}^{-4}$
$0.1$$8$$5.91138\times {10}^{-4}$$1.30477\times {10}^{-3}$
$9$$2.18174\times {10}^{-4}$$1.03341\times {10}^{-4}$
$10$$8.03570\times {10}^{-5}$$2.17590\times {10}^{-4}$
$0.15$$8$$9.34203\times {10}^{-4}$$3.43893\times {10}^{-4}$
$9$$3.44769\times {10}^{-4}$$4.83516\times {10}^{-4}$
$10$$1.26982\times {10}^{-4}$$3.81314\times {10}^{-5}$
$0.2$$8$$1.31339\times {10}^{-3}$$8.02785\times {10}^{-5}$
$9$$4.84685\times {10}^{-4}$$1.26863\times {10}^{-4}$
$10$$1.78511\times {10}^{-4}$$1.78353\times {10}^{-4}$