Novel approach for modified forms of Camassa-Holm and Degasperis-Procesi equations using fractional operator
P Veeresha,D G Prakasha
Table 2. Comparison study of obtained results with different fractional operators for mDP equation and results achieved by HPM [19] at $\hslash =-1$ and $n=1.$
$t$$x$${v}_{\left|\mathrm{HPM} \mbox{-} \mathrm{Exact}\right|}$${v}_{\left|q \mbox{-} \mathrm{HATM} \mbox{-} \mathrm{Exact}\right|}$
$0.05$$8$$3.33255\times {10}^{-4}$$3.30732\times {10}^{-4}$
$9$$1.23003\times {10}^{-4}$$7.05929\times {10}^{-4}$
$10$$4.53050\times {10}^{-5}$$1.13149\times {10}^{-3}$
$0.1$$8$$7.10978\times {10}^{-4}$$1.61409\times {10}^{-3}$
$9$$2.62396\times {10}^{-4}$$1.22660\times {10}^{-4}$
$10$$9.66440\times {10}^{-5}$$2.61711\times {10}^{-4}$
$0.15$$8$$1.13907\times {10}^{-3}$$4.19332\times {10}^{-4}$
$9$$4.20359\times {10}^{-4}$$5.97992\times {10}^{-4}$
$10$$1.54820\times {10}^{-4}$$4.52587\times {10}^{-5}$
$0.2$$8$$1.62421\times {10}^{-3}$$9.65514\times {10}^{-5}$
$9$$5.99362\times {10}^{-4}$$1.54681\times {10}^{-4}$
$10$$2.20743\times {10}^{-4}$$2.20558\times {10}^{-4}$