|
|
Brownian motion and thermophoresis effects on unsteady stagnation point flow of Eyring-Powell nanofluid: a Galerkin approach
|
Z H Khan,M Usman,T Zubair,M Hamid,R U Haq
|
|
|
Table 2. Comparison of the results achieved from the Galerkin method for $f^{\prime\prime} \left(0\right)$ and $\theta ^{\prime} \left(0\right)$ in the case of opposing flow when ${\rm{\Lambda }}=Nt=Nb=M=A={\lambda }_{f}=R={\lambda }_{\theta }=0$ and for various values of the Prandtl number.
|
|
| [16] | [17] | Galerkin approach |
---|
Pr | $f^{\prime\prime} \left(0\right)$ $\theta ^{\prime} \left(0\right)$ | $f^{\prime\prime} \left(0\right)$ $\theta ^{\prime} \left(0\right)$ | $f^{\prime\prime} \left(0\right)$ $\theta ^{\prime} \left(0\right)$ |
---|
0.72 | −0.3852 | 1.0293 | −0.385 19 | 1.029 25 | −0.385 19 | 1.029 25 | 6.8 | −0.1832 | 3.2466 | −0.183 23 | 3.246 09 | −0.183 23 | 3.246 09 | 20 | −0.1183 | 5.5923 | −0.118 31 | 5.589 60 | −0.118 31 | 5.589 62 | 40 | −0.0876 | 7.9227 | −0.087 58 | 7.914 91 | −0.087 58 | 7.914 90 | 60 | −0.0731 | 9.7126 | −0.073 04 | 9.698 18 | −0.073 04 | 9.698 17 | 80 | −0.0642 | 11.2235 | −0.064 08 | 11.201 18 | −0.064 08 | 11.201 18 | 100 | −0.0579 | 12.5564 | −0.057 83 | 12.525 19 | −0.057 83 | 12.525 17 |
|
|
|