Brownian motion and thermophoresis effects on unsteady stagnation point flow of Eyring-Powell nanofluid: a Galerkin approach
Z H Khan,M Usman,T Zubair,M Hamid,R U Haq
Table 2. Comparison of the results achieved from the Galerkin method for $f^{\prime\prime} \left(0\right)$ and $\theta ^{\prime} \left(0\right)$ in the case of opposing flow when ${\rm{\Lambda }}=Nt=Nb=M=A={\lambda }_{f}=R={\lambda }_{\theta }=0$ and for various values of the Prandtl number.
[16][17]Galerkin approach
Pr$f^{\prime\prime} \left(0\right)$ $\theta ^{\prime} \left(0\right)$$f^{\prime\prime} \left(0\right)$ $\theta ^{\prime} \left(0\right)$$f^{\prime\prime} \left(0\right)$ $\theta ^{\prime} \left(0\right)$
0.72−0.38521.0293−0.385 191.029 25−0.385 191.029 25
6.8−0.18323.2466−0.183 233.246 09−0.183 233.246 09
20−0.11835.5923−0.118 315.589 60−0.118 315.589 62
40−0.08767.9227−0.087 587.914 91−0.087 587.914 90
60−0.07319.7126−0.073 049.698 18−0.073 049.698 17
80−0.064211.2235−0.064 0811.201 18−0.064 0811.201 18
100−0.057912.5564−0.057 8312.525 19−0.057 8312.525 17