Laguerre | $\sqrt{\displaystyle \frac{n!}{{(\nu +1)}_{n}}}\,{L}_{n}^{\nu }(x)$ | $x\geqslant 0$ | ${n}^{-1/4}{A}_{L}(x)\cos \left[2\sqrt{nx}-\tfrac{\pi }{2}\left(\nu +\tfrac{1}{2}\right)\right]$ | $1/4$ | $1/2$ | $2\sqrt{x}$ | 0 |
Jacobi | $\begin{array}{c}\sqrt{\tfrac{2n+\mu +\nu +1}{\mu +\nu +1}\tfrac{n\,!{(\mu +\nu +1)}_{n}}{{(\mu +1)}_{n}{(\nu +1)}_{n}}}\\ \times {P}_{n}^{(\mu ,\nu )}(\cos \,x)\end{array}$ | $\pi \geqslant x\geqslant 0$ | ${A}_{J}(x)\cos \left[\left(n+\tfrac{\mu +\nu +1}{2}\right)x-\tfrac{\pi }{2}\left(\mu +\tfrac{1}{2}\right)\right]$ | 0 | 1 | x | 0 |
Meixner–Pollaczek | ${P}_{n}^{\mu }(x;\theta )$ | $x\in {\mathbb{R}}$ | ${n}^{-1/2}{A}_{MP}(x)\cos \left[n\theta -x\,\mathrm{log}\,n+{\delta }_{MP}(x)\right]$ | $1/2$ | 1 | θ | −x |
Continuous Hahn | ${{\mathscr{P}}}_{n}^{\mu }(x;\nu ;a,b)$ | $x\in {\mathbb{R}}$ | ${n}^{-1/2}{A}_{H}(x)\cos \left[n\tfrac{\pi }{2}-(2x+a-b)\mathrm{log}\,n+{\delta }_{H}(x)\right]$ | $1/2$ | 1 | $\pi /2$ | $-(2x+a-b)$ |
Continuous dual Hahn | ${S}_{n}^{\mu }({x}^{2};a,b)$ | $x\geqslant 0$ | ${n}^{-1/2}{A}_{dH}(x)\cos \left[x\,\mathrm{log}\,n+{\delta }_{dH}(x)\right]$ | $1/2$ | ** | 0 | x |
Wilson | ${W}_{n}^{\mu }({x}^{2};\nu ;a,b)$ | $x\geqslant 0$ | ${n}^{-1/2}{A}_{W}(x)\cos \left[2x\,\mathrm{log}\,n+{\delta }_{W}(x)\right]$ | $1/2$ | ** | 0 | 2x |