${V}_{0}+\displaystyle \frac{{V}_{+}-{V}_{-}\,\sin (\pi x/L)}{{\cos }^{2}(\pi x/L)}+{V}_{1}\,\sin \left(\pi x/L\right)$ | $-\tfrac{1}{2}L\leqslant x\leqslant +\tfrac{1}{2}L$ | $\sin \left(\pi x/L\right)$ |
$\displaystyle \frac{1}{1-{(x/L)}^{2}}\left\{{V}_{0}+\displaystyle \frac{{V}_{+}}{{(x/L)}^{2}}+\displaystyle \frac{{V}_{-}}{1-{(x/L)}^{2}}+{V}_{1}\left[2{(x/L)}^{2}-1\right]\right\}$ | $0\leqslant x\leqslant L$ | $2{\left(x/L\right)}^{2}-1$ |
$\displaystyle \frac{1}{{{\rm{e}}}^{\lambda x}-1}\left[{V}_{0}+{V}_{-}{{\rm{e}}}^{\lambda x}+\displaystyle \frac{{V}_{+}}{1-{{\rm{e}}}^{-\lambda x}}+{V}_{1}\left(1-2{{\rm{e}}}^{-\lambda x}\right)\right]$ | $x\geqslant 0$ | $1-2{{\rm{e}}}^{-\lambda x}$ |
${V}_{-}+\displaystyle \frac{{V}_{+}}{{\sinh }^{2}(\lambda x)}+\displaystyle \frac{{V}_{0}+{V}_{1}[2{\tanh }^{2}(\lambda x)-1]}{{\cosh }^{2}(\lambda x)}$ | $x\geqslant 0$ | $2{\tanh }^{2}(\lambda x)-1$ |
${V}_{+}-{V}_{-}\,\tanh (\lambda x)+\displaystyle \frac{{V}_{0}+{V}_{1}\,\tanh (\lambda x)}{{\cosh }^{2}(\lambda x)}$ | $-\infty \lt x\lt +\infty $ | $\tanh (\lambda x)$ |
${V}_{0}+\displaystyle \frac{{V}_{+}}{{\sin }^{2}(\pi x/L)}+\displaystyle \frac{{V}_{-}}{{\cos }^{2}(\pi x/L)}-{V}_{1}\,\cos (2\pi x/L)$ | $0\leqslant x\leqslant \tfrac{1}{2}L$ | $2{\sin }^{2}(\pi x/L)-1$ |
${V}_{0}+\displaystyle \frac{{V}_{+}-{V}_{-}\,\cosh (\lambda x)}{{\sinh }^{2}(\lambda x)}+{V}_{1}\,\cosh \left(\lambda x\right)$ | $x\geqslant 0$ | $\cosh \left(\lambda x\right)$ |