Strong cosmic censorship for a scalar field in a logarithmic-de Sitter black hole
Yiqian Chen,Qingyu Gan,Guangzhou Guo
Table 1. The lowest-lying QNMs $\omega /{\kappa }_{-}$ of different angular numbers l for various values of ${\rm{\Lambda }},b,Q/{Q}_{\mathrm{ext}}$ and q for massless scalar perturbation. In the large b limit (b = 10 000), the numerical results go back to that of the RN-dS black holes [30, 34].
ΛbQ/Qextql = 0l = 1l = 10
0.020.50.99100$-0.472\,594{\rm{i}}$$\pm 14.968\,405-0.467\,179{\rm{i}}$
0.1$0.059\,183+0.003\,005{\rm{i}}$$0.033\,367-0.471\,978{\rm{i}}$$15.286\,357-0.467\,124{\rm{i}}$
0.99600$\pm 3.605\,333-0.789\,770{\rm{i}}$$\pm 25.275\,405-0.770\,342{\rm{i}}$
0.1$0.099\,702+0.005\,331{\rm{i}}$$4.165\,818-0.779\,759{\rm{i}}$$25.818\,396-0.769\,624{\rm{i}}$
100000.99100−0.475 688i$\pm 14.365\,381-0.491\,756{\rm{i}}$
0.10.057 773 + 0.002 229i$0.032\,203-0.475\,118{\rm{i}}$$-14.080\,016-0.491\,441{\rm{i}}$
0.99600$-0.789\,379{\rm{i}}$$\pm 23.969\,407-0.808\,962{\rm{i}}$
0.1$0.096\,356+0.003\,870{\rm{i}}$$0.053\,708-0.788\,423{\rm{i}}$$-23.488\,922-0.808\,825{\rm{i}}$
0.060.50.99100$\pm 2.021\,008-0.458\,730{\rm{i}}$$\pm 14.396\,115-0.441\,376{\rm{i}}$
0.1$0.128\,077+0.003\,969{\rm{i}}$$2.384\,318-0.452\,275{\rm{i}}$$14.744\,827-0.441\,085{\rm{i}}$
0.99600$\pm 3.431\,580-0.759\,489{\rm{i}}$$\pm 24.467\,637-0.730\,447{\rm{i}}$
0.1$0.216\,661+0.007\,511{\rm{i}}$$4.054\,003-0.743\,932{\rm{i}}$$25.066\,143-0.729\,315{\rm{i}}$
10 0000.99100$\pm 1.930\,716-0.481\,345{\rm{i}}$$\pm 13.798\,347-0.462\,716{\rm{i}}$
0.1$0.127\,461+0.001\,895{\rm{i}}$$2.265\,562-0.474\,726{\rm{i}}$$14.119\,498-0.462\,581{\rm{i}}$
0.99600$\pm 3.242\,616-0.795\,833{\rm{i}}$$\pm 23.189\,760-0.764\,924{\rm{i}}$
0.1$0.213\,619+0.003\,591{\rm{i}}$$3.808\,829-0.781\,460{\rm{i}}$$23.733\,891-0.764\,259{\rm{i}}$