Constructing p, n-forms from p-forms via the Hodge star operator and the exterior derivative
Jun-Jin Peng
Table A1. Directory of operators.
OperatorDefinition
Hodge star, given by equation (2.2)
${\rm{d}}$Exterior derivative
$\hat{\delta }$Codifferential: ${\left(-1\right)}^{{np}+n+1}\star {\rm{d}}\star $
ΔLaplace–de Rham: $\hat{\delta }{\rm{d}}+{\rm{d}}\hat{\delta }$
$\square $d’Alembertian: ${g}^{\mu \nu }{{\rm{\nabla }}}_{\mu }{{\rm{\nabla }}}_{\nu }$
${\mathbb{P}}$$\hat{\delta }{\rm{d}}$
O1$\star {\rm{d}}\,\star \,{\rm{d}}$
O2${\rm{d}}\,\star \,{\rm{d}}\star $
${{\mathbb{O}}}_{{jk}}$${\alpha }_{1j}{O}_{1}^{j}+{\alpha }_{2k}{O}_{2}^{k}$
$\hat{O}$${\alpha }_{1j}{O}_{1}^{j}+{\alpha }_{2l}{O}_{2}^{l}$
$\tilde{O}$${\beta }_{1s}{O}_{1}^{s}+{\beta }_{2t}{O}_{2}^{t}$