Constructing p, n-forms from p-forms via the Hodge star operator and the exterior derivative
Jun-Jin Peng
Table A2. Definitions for n-forms.
n-formExpression
${{\bf{U}}}^{{ik}}$${\hat{O}}^{i}{\bf{F}}\wedge \star {\tilde{O}}^{k}{\bf{H}}$
${\check{{\bf{U}}}}_{{\rm{\Delta }}}^{i}$${\bf{F}}\wedge \star {{\rm{\Delta }}}^{i}{\bf{H}}$
${\check{{\bf{U}}}}_{{\mathbb{P}}}^{k}$${\bf{F}}\wedge \star {{\mathbb{P}}}^{k}{\bf{H}}$
${{\bf{U}}}_{{\rm{\Delta }}}^{{ik}}$${{\rm{\Delta }}}^{i}{\bf{F}}\wedge \star {{\rm{\Delta }}}^{k}{\bf{H}}$
${{\bf{U}}}_{{\mathbb{P}}}^{{ik}}$${{\mathbb{P}}}^{i}{\bf{F}}\wedge \star {{\mathbb{P}}}^{k}{\bf{H}}$
${{\bf{U}}}_{{\rm{\Delta }},{\mathbb{P}}}^{{ik}}$${{\rm{\Delta }}}^{i}{\bf{F}}\wedge \star {{\mathbb{P}}}^{k}{\bf{H}}$
${{\bf{U}}}_{{\mathbb{P}},{\rm{\Delta }}}^{{ik}}$${{\mathbb{P}}}^{i}{\bf{F}}\wedge \star {{\rm{\Delta }}}^{k}{\bf{H}}$
${{\bf{L}}}_{\hat{m}\tilde{n}}$${\sum }_{k=0}^{\tilde{n}}{\gamma }_{i}{\lambda }_{k}{{\bf{U}}}^{{ik}}$
${\check{{\bf{L}}}}_{\check{m}\check{n}}$${\sum }_{i=0}^{\check{m}}{\rho }_{i}{\check{{\bf{U}}}}_{{\rm{\Delta }}}^{i}+{\sum }_{k=0}^{\check{n}}{\sigma }_{k}{\check{{\bf{U}}}}_{{\mathbb{P}}}^{k}$