| 
 | 
		
		|  | 
			
			| Detecting entanglement of quantum channels
 | 
		
		| Chaojian Li,Bang-Hai Wang,Bujiao Wu,Xiao Yuan | 
	
		|  | 
	
		|  | 
	
		| Table 2. Quantum game with ${W}_{\mathrm{CNOT},2}$ for the noisy CNOT gate. 
 | 
	
		|  | 
	
		| | α | ${\rho }_{A}^{{\rm{T}}}$ | ${\rho }_{B}^{{\rm{T}}}$ | ${O}_{A^{\prime} }$ | ${O}_{B^{\prime} }$ | α | ${\rho }_{A}^{{\rm{T}}}$ | ${\rho }_{B}^{{\rm{T}}}$ | ${O}_{A^{\prime} }$ | ${O}_{B^{\prime} }$ | 
|---|
 | 14 | ${\mathbb{I}}$ | ${\mathbb{I}}$ | ${\mathbb{I}}$ | ${\mathbb{I}}$ | −2 | ${\mathbb{I}}$ | ${\sigma }_{x}$ | ${\mathbb{I}}$ | ${\sigma }_{x}$ |  | 2 | ${\mathbb{I}}$ | ${\sigma }_{y}$ | ${\sigma }_{z}$ | ${\sigma }_{y}$ | −2 | ${\mathbb{I}}$ | ${\sigma }_{z}$ | ${\sigma }_{z}$ | ${\sigma }_{z}$ |  | −2 | ${\sigma }_{x}$ | ${\sigma }_{x}$ | ${\sigma }_{x}$ | ${\mathbb{I}}$ | −2 | ${\sigma }_{x}$ | ${\mathbb{I}}$ | ${\sigma }_{x}$ | ${\sigma }_{x}$ |  | 2 | ${\sigma }_{x}$ | ${\sigma }_{z}$ | ${\sigma }_{y}$ | ${\sigma }_{y}$ | 2 | ${\sigma }_{x}$ | ${\sigma }_{y}$ | ${\sigma }_{y}$ | ${\sigma }_{z}$ |  | 2 | ${\sigma }_{y}$ | ${\sigma }_{z}$ | ${\sigma }_{x}$ | ${\sigma }_{y}$ | 2 | ${\sigma }_{y}$ | ${\sigma }_{y}$ | ${\sigma }_{x}$ | ${\sigma }_{z}$ |  | 2 | ${\sigma }_{y}$ | ${\sigma }_{x}$ | ${\sigma }_{y}$ | ${\mathbb{I}}$ | 2 | ${\sigma }_{y}$ | ${\mathbb{I}}$ | ${\sigma }_{y}$ | ${\sigma }_{x}$ |  | 2 | ${\sigma }_{z}$ | ${\sigma }_{y}$ | ${\mathbb{I}}$ | ${\sigma }_{y}$ | −2 | ${\sigma }_{z}$ | ${\sigma }_{z}$ | ${\mathbb{I}}$ | ${\sigma }_{z}$ |  | −2 | ${\sigma }_{z}$ | ${\mathbb{I}}$ | ${\sigma }_{z}$ | ${\mathbb{I}}$ | −2 | ${\sigma }_{z}$ | ${\sigma }_{x}$ | ${\sigma }_{z}$ | ${\sigma }_{x}$ | 
 | 
	
		|  | 
	
		|  |