Detecting entanglement of quantum channels
Chaojian Li,Bang-Hai Wang,Bujiao Wu,Xiao Yuan
Table 3. Quantum game with ${W}_{\mathrm{SWAP},1}$ for the noisy SWAP gate.
α${\rho }_{A}^{{\rm{T}}}$${\rho }_{B}^{{\rm{T}}}$${O}_{A^{\prime} }$${O}_{B^{\prime} }$α${\rho }_{A}^{{\rm{T}}}$${\rho }_{B}^{{\rm{T}}}$${O}_{A^{\prime} }$${O}_{B^{\prime} }$
1${\mathbb{I}}$${\mathbb{I}}$${\mathbb{I}}$${\mathbb{I}}$1${\mathbb{I}}$${\sigma }_{z}$${\mathbb{I}}$${\mathbb{I}}$
1${\mathbb{I}}$${\mathbb{I}}$${\sigma }_{z}$${\mathbb{I}}$1${\mathbb{I}}$${\sigma }_{z}$${\sigma }_{z}$${\mathbb{I}}$
−1${\sigma }_{x}$${\mathbb{I}}$${\mathbb{I}}$${\sigma }_{x}$−1${\sigma }_{x}$${\sigma }_{z}$${\mathbb{I}}$${\sigma }_{x}$
−1${\sigma }_{x}$${\mathbb{I}}$${\sigma }_{z}$${\sigma }_{x}$−1${\sigma }_{x}$${\sigma }_{z}$${\sigma }_{z}$${\sigma }_{x}$
1${\sigma }_{y}$${\mathbb{I}}$${\mathbb{I}}$${\sigma }_{y}$1${\sigma }_{y}$${\sigma }_{z}$${\mathbb{I}}$${\sigma }_{y}$
1${\sigma }_{y}$${\mathbb{I}}$${\sigma }_{z}$${\sigma }_{y}$1${\sigma }_{y}$${\sigma }_{z}$${\sigma }_{z}$${\sigma }_{y}$
−1${\sigma }_{z}$${\mathbb{I}}$${\mathbb{I}}$${\sigma }_{z}$−1${\sigma }_{z}$${\sigma }_{z}$${\mathbb{I}}$${\sigma }_{z}$
−1${\sigma }_{z}$${\mathbb{I}}$${\sigma }_{z}$${\sigma }_{z}$−1${\sigma }_{z}$${\sigma }_{z}$${\sigma }_{z}$${\sigma }_{z}$