|
|
Detecting entanglement of quantum channels
|
Chaojian Li,Bang-Hai Wang,Bujiao Wu,Xiao Yuan
|
|
|
Table 3. Quantum game with ${W}_{\mathrm{SWAP},1}$ for the noisy SWAP gate.
|
|
α | ${\rho }_{A}^{{\rm{T}}}$ | ${\rho }_{B}^{{\rm{T}}}$ | ${O}_{A^{\prime} }$ | ${O}_{B^{\prime} }$ | α | ${\rho }_{A}^{{\rm{T}}}$ | ${\rho }_{B}^{{\rm{T}}}$ | ${O}_{A^{\prime} }$ | ${O}_{B^{\prime} }$ |
---|
1 | ${\mathbb{I}}$ | ${\mathbb{I}}$ | ${\mathbb{I}}$ | ${\mathbb{I}}$ | 1 | ${\mathbb{I}}$ | ${\sigma }_{z}$ | ${\mathbb{I}}$ | ${\mathbb{I}}$ | 1 | ${\mathbb{I}}$ | ${\mathbb{I}}$ | ${\sigma }_{z}$ | ${\mathbb{I}}$ | 1 | ${\mathbb{I}}$ | ${\sigma }_{z}$ | ${\sigma }_{z}$ | ${\mathbb{I}}$ | −1 | ${\sigma }_{x}$ | ${\mathbb{I}}$ | ${\mathbb{I}}$ | ${\sigma }_{x}$ | −1 | ${\sigma }_{x}$ | ${\sigma }_{z}$ | ${\mathbb{I}}$ | ${\sigma }_{x}$ | −1 | ${\sigma }_{x}$ | ${\mathbb{I}}$ | ${\sigma }_{z}$ | ${\sigma }_{x}$ | −1 | ${\sigma }_{x}$ | ${\sigma }_{z}$ | ${\sigma }_{z}$ | ${\sigma }_{x}$ | 1 | ${\sigma }_{y}$ | ${\mathbb{I}}$ | ${\mathbb{I}}$ | ${\sigma }_{y}$ | 1 | ${\sigma }_{y}$ | ${\sigma }_{z}$ | ${\mathbb{I}}$ | ${\sigma }_{y}$ | 1 | ${\sigma }_{y}$ | ${\mathbb{I}}$ | ${\sigma }_{z}$ | ${\sigma }_{y}$ | 1 | ${\sigma }_{y}$ | ${\sigma }_{z}$ | ${\sigma }_{z}$ | ${\sigma }_{y}$ | −1 | ${\sigma }_{z}$ | ${\mathbb{I}}$ | ${\mathbb{I}}$ | ${\sigma }_{z}$ | −1 | ${\sigma }_{z}$ | ${\sigma }_{z}$ | ${\mathbb{I}}$ | ${\sigma }_{z}$ | −1 | ${\sigma }_{z}$ | ${\mathbb{I}}$ | ${\sigma }_{z}$ | ${\sigma }_{z}$ | −1 | ${\sigma }_{z}$ | ${\sigma }_{z}$ | ${\sigma }_{z}$ | ${\sigma }_{z}$ |
|
|
|