| 
 | 
		
		|  | 
			
			| Detecting entanglement of quantum channels
 | 
		
		| Chaojian Li,Bang-Hai Wang,Bujiao Wu,Xiao Yuan | 
	
		|  | 
	
		|  | 
	
		| Table 4. Quantum game with ${W}_{\mathrm{SWAP},2}$ for the noisy SWAP gate. 
 | 
	
		|  | 
	
		| | α | ${\rho }_{A}^{{\rm{T}}}$ | ${\rho }_{B}^{{\rm{T}}}$ | ${O}_{A^{\prime} }$ | ${O}_{B^{\prime} }$ | α | ${\rho }_{A}^{{\rm{T}}}$ | ${\rho }_{B}^{{\rm{T}}}$ | ${O}_{A^{\prime} }$ | ${O}_{B^{\prime} }$ | 
|---|
 | 12 | ${\mathbb{I}}$ | ${\mathbb{I}}$ | ${\mathbb{I}}$ | ${\mathbb{I}}$ | −4 | ${\mathbb{I}}$ | ${\sigma }_{x}$ | ${\sigma }_{x}$ | ${\mathbb{I}}$ |  | 4 | ${\mathbb{I}}$ | ${\sigma }_{y}$ | ${\sigma }_{y}$ | ${\mathbb{I}}$ | −4 | ${\mathbb{I}}$ | ${\sigma }_{z}$ | ${\sigma }_{z}$ | ${\mathbb{I}}$ |  | −4 | ${\sigma }_{x}$ | ${\mathbb{I}}$ | ${\mathbb{I}}$ | ${\sigma }_{x}$ | −4 | ${\sigma }_{x}$ | ${\sigma }_{x}$ | ${\sigma }_{x}$ | ${\sigma }_{x}$ |  | 4 | ${\sigma }_{x}$ | ${\sigma }_{y}$ | ${\sigma }_{y}$ | ${\sigma }_{x}$ | −4 | ${\sigma }_{x}$ | ${\sigma }_{z}$ | ${\sigma }_{z}$ | ${\sigma }_{x}$ |  | 4 | ${\sigma }_{y}$ | ${\mathbb{I}}$ | ${\mathbb{I}}$ | ${\sigma }_{y}$ | 4 | ${\sigma }_{y}$ | ${\sigma }_{x}$ | ${\sigma }_{x}$ | ${\sigma }_{y}$ |  | −4 | ${\sigma }_{y}$ | ${\sigma }_{y}$ | ${\sigma }_{y}$ | ${\sigma }_{y}$ | 4 | ${\sigma }_{y}$ | ${\sigma }_{z}$ | ${\sigma }_{z}$ | ${\sigma }_{y}$ |  | −4 | ${\sigma }_{z}$ | ${\mathbb{I}}$ | ${\mathbb{I}}$ | ${\sigma }_{z}$ | −4 | ${\sigma }_{z}$ | ${\sigma }_{x}$ | ${\sigma }_{x}$ | ${\sigma }_{z}$ |  | 4 | ${\sigma }_{z}$ | ${\sigma }_{y}$ | ${\sigma }_{y}$ | ${\sigma }_{z}$ | −4 | ${\sigma }_{z}$ | ${\sigma }_{z}$ | ${\sigma }_{z}$ | ${\sigma }_{z}$ | 
 | 
	
		|  | 
	
		|  |