|
|
|
Detecting entanglement of quantum channels
|
|
Chaojian Li,Bang-Hai Wang,Bujiao Wu,Xiao Yuan
|
|
| |
Table 4. Quantum game with ${W}_{\mathrm{SWAP},2}$ for the noisy SWAP gate.
|
|
| α | ${\rho }_{A}^{{\rm{T}}}$ | ${\rho }_{B}^{{\rm{T}}}$ | ${O}_{A^{\prime} }$ | ${O}_{B^{\prime} }$ | α | ${\rho }_{A}^{{\rm{T}}}$ | ${\rho }_{B}^{{\rm{T}}}$ | ${O}_{A^{\prime} }$ | ${O}_{B^{\prime} }$ |
|---|
| 12 | ${\mathbb{I}}$ | ${\mathbb{I}}$ | ${\mathbb{I}}$ | ${\mathbb{I}}$ | −4 | ${\mathbb{I}}$ | ${\sigma }_{x}$ | ${\sigma }_{x}$ | ${\mathbb{I}}$ | | 4 | ${\mathbb{I}}$ | ${\sigma }_{y}$ | ${\sigma }_{y}$ | ${\mathbb{I}}$ | −4 | ${\mathbb{I}}$ | ${\sigma }_{z}$ | ${\sigma }_{z}$ | ${\mathbb{I}}$ | | −4 | ${\sigma }_{x}$ | ${\mathbb{I}}$ | ${\mathbb{I}}$ | ${\sigma }_{x}$ | −4 | ${\sigma }_{x}$ | ${\sigma }_{x}$ | ${\sigma }_{x}$ | ${\sigma }_{x}$ | | 4 | ${\sigma }_{x}$ | ${\sigma }_{y}$ | ${\sigma }_{y}$ | ${\sigma }_{x}$ | −4 | ${\sigma }_{x}$ | ${\sigma }_{z}$ | ${\sigma }_{z}$ | ${\sigma }_{x}$ | | 4 | ${\sigma }_{y}$ | ${\mathbb{I}}$ | ${\mathbb{I}}$ | ${\sigma }_{y}$ | 4 | ${\sigma }_{y}$ | ${\sigma }_{x}$ | ${\sigma }_{x}$ | ${\sigma }_{y}$ | | −4 | ${\sigma }_{y}$ | ${\sigma }_{y}$ | ${\sigma }_{y}$ | ${\sigma }_{y}$ | 4 | ${\sigma }_{y}$ | ${\sigma }_{z}$ | ${\sigma }_{z}$ | ${\sigma }_{y}$ | | −4 | ${\sigma }_{z}$ | ${\mathbb{I}}$ | ${\mathbb{I}}$ | ${\sigma }_{z}$ | −4 | ${\sigma }_{z}$ | ${\sigma }_{x}$ | ${\sigma }_{x}$ | ${\sigma }_{z}$ | | 4 | ${\sigma }_{z}$ | ${\sigma }_{y}$ | ${\sigma }_{y}$ | ${\sigma }_{z}$ | −4 | ${\sigma }_{z}$ | ${\sigma }_{z}$ | ${\sigma }_{z}$ | ${\sigma }_{z}$ |
|
|
|