|
|
Solving forward and inverse problems of the nonlinear Schrödinger equation with the generalized ${ \mathcal P }{ \mathcal T }$-symmetric Scarf-II potential via PINN deep learning
|
Jiaheng Li,Biao Li
|
|
|
Table 1. Comparison between the ${{\mathbb{L}}}_{2}$-norm errors and optimization steps of the predicted solution $\hat{\psi }(t,x)$.
|
|
Step (N) | 20000 | 30000 | 40000 | 50000 |
---|
${{\mathbb{L}}}_{2}$-norm error | | | | |
---|
u | 8.117321e-03 | 8.733681e-03 | 8.113012e-04 | 2.130153e-04 | v | 7.993082e-03 | 4.103771e-03 | 8.034227e-04 | 6.880915e-04 | ψ | 9.910189e-04 | 9.204713e-04 | 6.001371e-04 | 3.437614e-04 | Loss function | 4.421448e-03 | 5.101375e-03 | 1.121848e-03 | 9.857296e-04 |
|
|
|