Breather molecules and localized interaction solutions in the (2+1)-dimensional BLMP equation
Jiaxin Qi,Hongli An,Peng Jin
Table 1. Breather-soliton molecule and interaction solutions.
N = 3 + PName of the solutionRestriction conditions
P = 0{BSM}${k}_{1}={k}_{2}^{* }={k}_{1r}+{\rm{i}}{k}_{1i},\quad {p}_{1}={p}_{2}^{* }\,=\,{p}_{1r}+{\rm{i}}{p}_{1i}$,
$\tfrac{{k}_{1r}}{{k}_{3}}=\tfrac{{k}_{1r}\ {p}_{1r}-{k}_{1i}\ {p}_{1i}}{{k}_{3}\ {p}_{3}}=\tfrac{{k}_{1r}^{3}-3{k}_{1r}\ {k}_{1i}^{2}}{{k}_{3}^{3}}$
P = 1{BSM, S}the same as above
P = 2{BSM, B}${k}_{1}={k}_{2}^{* }={k}_{1r}+{\rm{i}}{k}_{1i},\quad {p}_{1}={p}_{2}^{* }\,=\,{p}_{1r}+{\rm{i}}{p}_{1i}$,
${k}_{4}={k}_{5}^{* }={k}_{4r}+{\rm{i}}{k}_{4i},\quad {p}_{4}={p}_{5}^{* }={p}_{4r}+{\rm{i}}{p}_{4i}$
$\tfrac{{k}_{1r}}{{k}_{3}}=\tfrac{{k}_{1r}\ {p}_{1r}-{k}_{1i}\ {p}_{1i}}{{k}_{3}\ {p}_{3}}=\tfrac{{k}_{1r}^{3}-3{k}_{1r}\ {k}_{1i}^{2}}{{k}_{3}^{3}}$,
P = 2{BSM, L}${k}_{1}={k}_{2}^{* }={k}_{1r}+{\rm{i}}{k}_{1i},\quad {p}_{1}={p}_{2}^{* }\,=\,{p}_{1r}+{\rm{i}}{p}_{1i}$,
${k}_{4}={k}_{5}^{* }={k}_{4r}+{\rm{i}}{k}_{4i},\quad {p}_{4}={p}_{5}^{* }={p}_{4r}+{\rm{i}}{p}_{4i}$,
$\tfrac{{k}_{1r}}{{k}_{3}}=\tfrac{{k}_{1r}\ {p}_{1r}-{k}_{1i}\ {p}_{1i}}{{k}_{3}\ {p}_{3}}=\tfrac{{k}_{1r}^{3}-3{k}_{1r}\ {k}_{1i}^{2}}{{k}_{3}^{3}}$,
${k}_{4r}^{2}+{k}_{4i}^{2}\to 0$
P = 3{BSM, B, S}the same as what's used in {BSM, B}
P = 3{BSM, L, S}the same as what's used in {BSM, L}
P = 3{BSM, BSM}${k}_{1}={k}_{2}^{* }={k}_{1r}+{\rm{i}}{k}_{1i},\quad {p}_{1}={p}_{2}^{* }\,=\,{p}_{1r}+{\rm{i}}{p}_{1i}$,
${k}_{4}={k}_{5}^{* }={k}_{4r}+{\rm{i}}{k}_{4i},\quad {p}_{4}={p}_{5}^{* }\,=\,{p}_{4r}+{\rm{i}}{p}_{4i}$,
$\tfrac{{k}_{1r}}{{k}_{3}}=\tfrac{{k}_{1r}\ {p}_{1r}-{k}_{1i}\ {p}_{1i}}{{k}_{3}\ {p}_{3}}=\tfrac{{k}_{1r}^{3}-3{k}_{1r}\ {k}_{1i}^{2}}\ {{k}_{3}^{3}}$,
$\tfrac{{k}_{4r}}{{k}_{6}}=\tfrac{{k}_{4r}\ {p}_{4r}-{k}_{4i}\ {p}_{4i}}{{k}_{6}\ {p}_{6}}=\tfrac{{k}_{4r}^{3}-3{k}_{4r}\ {k}_{4i}^{2}}{{k}_{6}^{3}}$