N = 4 + P | Name of the solution | Restriction conditions |
---|
P = 0 | {BBM} | k1=k∗2=k1r+ik1i,p1=p∗2=p1r+ip1i, | | | k3=k∗4=k3r+ik3i,p3=p∗4=p3r+ip3i, | | | k1rk3r=k1r p1r−k1i p1ik3r p3r−k3i p3i=k31r−3k1r k21ik33r−3k3r k23i | P = 1 | {BBM, S} | the same as above | P = 2 | {BBM, B} | k1=k∗2=k1r+ik1i,p1=p∗2=p1r+ip1i, | | | k3=k∗4=k3r+ik3i,p3=p∗4=p3r+ip3i, | | | k1rk3r=k1r p1r−k1i p1ik3r p3r−k3i p3i=k31r−3k1r k21ik33r−3k3r k23i, | | | k5=k∗6=k5r+ik5i,p5=p∗6=p5r+ip5i | P = 2 | {BBM, L} | k1=k∗2=k1r+ik1i,p1=p∗2=p1r+ip1i, | | | k3=k∗4=k3r+ik3i,p3=p∗4=p3r+ip3i, | | | k5=k∗6=k5r+ik5i,p5=p∗6=p5r+ip5i, | | | k1rk3r=k1r p1r−k1i p1ik3r p3r−k3i p3i=k31r−3k1r k21ik33r−3k3r k23i, | | | k25r+k25i→0 | P = 2 | {BBBM} | k1=k∗2=k1r+ik1i,p1=p∗2=p1r+ip1i, | | | k3=k∗4=k3r+ik3i,p3=p∗4=p3r+ip3i, | | | k5=k∗6=k5r+ik5i,p5=p∗6=p5r+ip5i, | | | k1rk3r=k1r p1r−k1i p1ik3r p3r−k3i p3i=k31r−3k1r k21ik33r−3k3r k23i, | | | k1rk5r=k1r p1r−k1i p1ik5r p5r−k5i p5i=k31r−3k1r k21ik35r−3k5r k25i |
|