Breather molecules and localized interaction solutions in the (2+1)-dimensional BLMP equation
Jiaxin Qi,Hongli An,Peng Jin
Table 2. Breather molecule and interaction solutions.
N = 4 + PName of the solutionRestriction conditions
P = 0{BBM}${k}_{1}={k}_{2}^{* }={k}_{1r}+{\rm{i}}{k}_{1i},\quad {p}_{1}={p}_{2}^{* }\,=\,{p}_{1r}+{\rm{i}}{p}_{1i}$,
${k}_{3}={k}_{4}^{* }={k}_{3r}+{\rm{i}}{k}_{3i},\quad {p}_{3}={p}_{4}^{* }={p}_{3r}+{\rm{i}}{p}_{3i}$,
$\tfrac{{k}_{1r}}{{k}_{3r}}=\tfrac{{k}_{1r}\ {p}_{1r}-{k}_{1i}\ {p}_{1i}}{{k}_{3r}\ {p}_{3r}-{k}_{3i}\ {p}_{3i}}=\tfrac{{k}_{1r}^{3}-3{k}_{1r}\ {k}_{1i}^{2}}{{k}_{3r}^{3}-3{k}_{3r}\ {k}_{3i}^{2}}$
P = 1{BBM, S}the same as above
P = 2{BBM, B}${k}_{1}={k}_{2}^{* }={k}_{1r}+{\rm{i}}{k}_{1i},\quad {p}_{1}={p}_{2}^{* }\,=\,{p}_{1r}+{\rm{i}}{p}_{1i}$,
${k}_{3}={k}_{4}^{* }={k}_{3r}+{\rm{i}}{k}_{3i},\quad {p}_{3}={p}_{4}^{* }={p}_{3r}+{\rm{i}}{p}_{3i}$,
$\tfrac{{k}_{1r}}{{k}_{3r}}=\tfrac{{k}_{1r}\ {p}_{1r}-{k}_{1i}\ {p}_{1i}}{{k}_{3r}\ {p}_{3r}-{k}_{3i}\ {p}_{3i}}=\tfrac{{k}_{1r}^{3}-3{k}_{1r}\ {k}_{1i}^{2}}{{k}_{3r}^{3}-3{k}_{3r}\ {k}_{3i}^{2}}$,
${k}_{5}={k}_{6}^{* }={k}_{5r}+{\rm{i}}{k}_{5i},\quad {p}_{5}={p}_{6}^{* }={p}_{5r}+{\rm{i}}{p}_{5i}$
P = 2{BBM, L}${k}_{1}={k}_{2}^{* }={k}_{1r}+{\rm{i}}{k}_{1i},\quad {p}_{1}={p}_{2}^{* }\,=\,{p}_{1r}+{\rm{i}}{p}_{1i}$,
${k}_{3}={k}_{4}^{* }={k}_{3r}+{\rm{i}}{k}_{3i},\quad {p}_{3}={p}_{4}^{* }={p}_{3r}+{\rm{i}}{p}_{3i}$,
${k}_{5}={k}_{6}^{* }={k}_{5r}+{\rm{i}}{k}_{5i},\quad {p}_{5}={p}_{6}^{* }={p}_{5r}+{\rm{i}}{p}_{5i},$
$\tfrac{{k}_{1r}}{{k}_{3r}}=\tfrac{{k}_{1r}\ {p}_{1r}-{k}_{1i}\ {p}_{1i}}{{k}_{3r}\ {p}_{3r}-{k}_{3i}\ {p}_{3i}}=\tfrac{{k}_{1r}^{3}-3{k}_{1r}\ {k}_{1i}^{2}}{{k}_{3r}^{3}-3{k}_{3r}\ {k}_{3i}^{2}}$,
${k}_{5r}^{2}+{k}_{5i}^{2}\to 0$
P = 2{BBBM}${k}_{1}={k}_{2}^{* }={k}_{1r}+{\rm{i}}{k}_{1i},\quad {p}_{1}={p}_{2}^{* }\,=\,{p}_{1r}+{\rm{i}}{p}_{1i}$,
${k}_{3}={k}_{4}^{* }={k}_{3r}+{\rm{i}}{k}_{3i},\quad {p}_{3}={p}_{4}^{* }={p}_{3r}+{\rm{i}}{p}_{3i}$,
${k}_{5}={k}_{6}^{* }={k}_{5r}+{\rm{i}}{k}_{5i},\quad {p}_{5}={p}_{6}^{* }={p}_{5r}+{\rm{i}}{p}_{5i}$,
$\tfrac{{k}_{1r}}{{k}_{3r}}=\tfrac{{k}_{1r}\ {p}_{1r}-{k}_{1i}\ {p}_{1i}}{{k}_{3r}\ {p}_{3r}-{k}_{3i}\ {p}_{3i}}=\tfrac{{k}_{1r}^{3}-3{k}_{1r}\ {k}_{1i}^{2}}{{k}_{3r}^{3}-3{k}_{3r}\ {k}_{3i}^{2}}$,
$\tfrac{{k}_{1r}}{{k}_{5r}}=\tfrac{{k}_{1r}\ {p}_{1r}-{k}_{1i}\ {p}_{1i}}{{k}_{5r}\ {p}_{5r}-{k}_{5i}\ {p}_{5i}}=\tfrac{{k}_{1r}^{3}-3{k}_{1r}\ {k}_{1i}^{2}}{{k}_{5r}^{3}-3{k}_{5r}\ {k}_{5i}^{2}}$