A survey of heavy–heavy hadronic molecules
Xiang-Kun Dong,Feng-Kun Guo,Bing-Song Zou
Table 7. The group theory factor F, defined in equation (13), for the interaction of charm–anticharm/charm–charm hadron pairs with only the light vector-meson exchanges. Here both charm hadrons are the S-wave ground states. I is the isospin and S is the strangeness. Note that we have collect the pairs with the heavy hadrons in the same spin multiples (such as DD, DD*, etc) in one row, and the several numbers in the column of 'Thresholds' represent the thresholds of these different pairs in an increasing order. Positive F means that the interaction attractive. The values in the column of 'F' correspond to those for the exchanged particles in the column of 'Exchanged particles' in order.
SystemISThresholds [MeV]Exchanged particlesF
${D}^{(* )}{\bar{D}}^{(* )}/{D}^{(* )}{D}^{(* )}$10/0(3734, 3876, 4017)ρ, ω$-\tfrac{1}{2},\tfrac{1}{2}/-\tfrac{1}{2},-\tfrac{1}{2}$
0$\tfrac{3}{2},\tfrac{1}{2}$/$\tfrac{3}{2},-\tfrac{1}{2}$
${D}_{s}^{(* )}{\bar{D}}^{(* )}$/${D}_{s}^{(* )}{D}^{(* )}$$\tfrac{1}{2}$1/1(3836, 3977, 3979, 4121)K*0/−1
${D}_{s}^{(* )}{\bar{D}}_{s}^{(* )}$/${D}_{s}^{(* )}{D}_{s}^{(* )}$00/2(3937, 4081, 4224)φ1/−1

${\bar{D}}^{(* )}{{\rm{\Lambda }}}_{c}$/D(*)Λc$\tfrac{1}{2}$0/0(4154, 4295)ω−1/1
${\bar{D}}_{s}^{(* )}{{\rm{\Lambda }}}_{c}$/${D}_{s}^{(* )}{{\rm{\Lambda }}}_{c}$0 − 1/1(4255, 4399)0/0
${\bar{D}}^{(* )}{{\rm{\Xi }}}_{c}$/D(*)ξc1 − 1/ − 1(4337, 4478)ρ, ω$-\tfrac{1}{2},-\tfrac{1}{2}$/$-\tfrac{1}{2},\tfrac{1}{2}$
0$\tfrac{3}{2},-\tfrac{1}{2}/\tfrac{3}{2},\tfrac{1}{2}$
${\bar{D}}_{s}^{(* )}{{\rm{\Xi }}}_{c}$/${D}_{s}^{(* )}{{\rm{\Xi }}}_{c}$$\tfrac{1}{2}$ − 2/0(4438, 4582)φ−1/1

${\bar{D}}^{(* )}{{\rm{\Sigma }}}_{c}^{(* )}$/${D}^{(* )}{{\rm{\Sigma }}}_{c}^{(* )}$$\tfrac{3}{2}$0/0(4321, 4385, 4462, 4527)ρ, ω − 1, − 1/ − 1, 1
$\tfrac{1}{2}$2, − 1/2,1
${\bar{D}}_{s}^{(* )}{{\rm{\Sigma }}}_{c}^{(* )}$/${D}_{s}^{(* )}{{\rm{\Sigma }}}_{c}^{(* )}$1 − 1/1(4422, 4486, 4566, 4630)0/0
${\bar{D}}^{(* )}{{\rm{\Xi }}}_{c}^{{\prime} (* )}$/${D}^{(* )}{{\rm{\Xi }}}_{c}^{{\prime} (* )}$1 − 1/ − 1(4446, 4513, 4587, 4655)ρ, ω$-\tfrac{1}{2},-\tfrac{1}{2}$/$-\tfrac{1}{2},\tfrac{1}{2}$
0$\tfrac{3}{2},-\tfrac{1}{2}$/$\tfrac{3}{2},\tfrac{1}{2}$
${\bar{D}}_{s}^{(* )}{{\rm{\Xi }}}_{c}^{{\prime} (* )}$/${D}_{s}^{(* )}{{\rm{\Xi }}}_{c}^{{\prime} (* )}$$\tfrac{1}{2}$ − 2/0(4547, 4614, 4691, 4758)φ − 1/1
${\bar{D}}^{(* )}{{\rm{\Omega }}}_{c}^{(* )}$/${D}^{(* )}{{\rm{\Omega }}}_{c}^{(* )}$$\tfrac{1}{2}$ − 2/0(4562, 4633, 4704, 4774)0/0
${\bar{D}}_{s}^{(* )}{{\rm{\Omega }}}_{c}^{(* )}$/${D}_{s}^{(* )}{{\rm{\Omega }}}_{c}^{(* )}$0 − 3/ − 1(4664, 4734, 4807, 4878)φ − 2/2

${{\rm{\Lambda }}}_{c}{\bar{{\rm{\Lambda }}}}_{c}$/ΛcΛc00/0(4573)ω2/−2
${{\rm{\Lambda }}}_{c}{\bar{{\rm{\Xi }}}}_{c}$/Λcξc$\tfrac{1}{2}$1/ − 1(4756)ω/K*1, 0/ − 1, − 1
${{\rm{\Xi }}}_{c}{\bar{{\rm{\Xi }}}}_{c}$/ξcξc10/ − 2(4939)ρ, ω, φ$-\tfrac{1}{2},\tfrac{1}{2},1$/$-\tfrac{1}{2},-\tfrac{1}{2},-1$
0$\tfrac{3}{2},\tfrac{1}{2},1$/$\tfrac{3}{2},-\tfrac{1}{2},-1$

${{\rm{\Lambda }}}_{c}{\bar{{\rm{\Sigma }}}}_{c}^{(* )}$/${{\rm{\Lambda }}}_{c}{{\rm{\Sigma }}}_{c}^{(* )}$10/0(4740, 4805)ω/K*1, 0/ − 1, − 1
${{\rm{\Lambda }}}_{c}{\bar{{\rm{\Xi }}}}_{c}^{{\prime} (* )}$/${{\rm{\Lambda }}}_{c}{{\rm{\Xi }}}_{c}^{{\prime} (* )}$$\tfrac{1}{2}$1/ − 1(4865, 4932)ω1/−1
${{\rm{\Lambda }}}_{c}{\bar{{\rm{\Omega }}}}_{c}^{(* )}$/${{\rm{\Lambda }}}_{c}{{\rm{\Omega }}}_{c}^{(* )}$02/ − 2(4982, 5052)0/0
${{\rm{\Sigma }}}_{c}^{(* )}{\bar{{\rm{\Xi }}}}_{c}$/${{\rm{\Sigma }}}_{c}^{(* )}{{\rm{\Xi }}}_{c}$$\tfrac{3}{2}$1/ − 1(4923, 4988)ρ, ω, K* − 1, 1, 0/ − 1, − 1, − 2
$\tfrac{1}{2}$2, 1, 0/2, − 1, − 2
${{\rm{\Xi }}}_{c}{\bar{{\rm{\Xi }}}}_{c}^{{\prime} (* )}$/${{\rm{\Xi }}}_{c}{{\rm{\Xi }}}_{c}^{{\prime} (* )}$10/ − 2(5048, 5115)ρ, ω, φ$-\tfrac{1}{2},\tfrac{1}{2},1$/$-\tfrac{1}{2},-\tfrac{1}{2},-1$
0$\tfrac{3}{2},\tfrac{1}{2},1$/$\tfrac{3}{2},-\tfrac{1}{2},-1$
${{\rm{\Xi }}}_{c}{\bar{{\rm{\Omega }}}}_{c}^{(* )}$/${{\rm{\Xi }}}_{c}{{\rm{\Omega }}}_{c}^{(* )}$$\tfrac{1}{2}$1/ − 3(5165, 5235)φ, K*2, 0/ − 2, − 2

${{\rm{\Sigma }}}_{c}^{(* )}{\bar{{\rm{\Sigma }}}}_{c}^{(* )}$/${{\rm{\Sigma }}}_{c}^{(* )}{{\rm{\Sigma }}}_{c}^{(* )}$20/0(4907, 4972, 5036)ρ, ω − 2, 2/ − 2, − 2
12, 2/2, − 2
04, 2/4, − 2
${{\rm{\Sigma }}}_{c}^{(* )}{\bar{{\rm{\Xi }}}}_{c}^{{\prime} (* )}$/${{\rm{\Sigma }}}_{c}^{(* )}{{\rm{\Xi }}}_{c}^{{\prime} (* )}$$\tfrac{3}{2}$1/ − 1(5032, 5097, 5100, 5164)ρ, ω, K* − 1, 1, 0/ − 1, − 1 − 2
$\tfrac{1}{2}$2, 1, 0/2, − 1, − 2
${{\rm{\Sigma }}}_{c}^{(* )}{\bar{{\rm{\Omega }}}}_{c}^{(* )}$/${{\rm{\Sigma }}}_{c}^{(* )}{{\rm{\Omega }}}_{c}^{(* )}$02/ − 2(5149, 5213, 5219, 5284)0/0
${{\rm{\Xi }}}_{c}^{{\prime} (* )}{\bar{{\rm{\Xi }}}}_{c}^{{\prime} (* )}$/${{\rm{\Xi }}}_{c}^{{\prime} (* )}{{\rm{\Xi }}}_{c}^{{\prime} (* )}$10/ − 2(5158, 5225, 5292)ρ, ω, φ$-\tfrac{1}{2},\tfrac{1}{2},1$/$-\tfrac{1}{2},-\tfrac{1}{2},-1$
0$\tfrac{3}{2},\tfrac{1}{2},1$/$\tfrac{3}{2},-\tfrac{1}{2},-1$
${{\rm{\Xi }}}_{c}^{{\prime} (* )}{\bar{{\rm{\Omega }}}}_{c}^{(* )}$/${{\rm{\Xi }}}_{c}^{{\prime} (* )}{{\rm{\Omega }}}_{c}^{(* )}$$\tfrac{1}{2}$1/ − 3(5272, 5341, 5345, 5412)φ, K*2, 0/ − 2, − 2
${{\rm{\Omega }}}_{c}^{(* )}{\bar{{\rm{\Omega }}}}_{c}^{(* )}$/${{\rm{\Omega }}}_{c}^{(* )}{{\rm{\Omega }}}_{c}^{(* )}$00/ − 4(5390, 5461, 5532)φ4/−4