A survey of heavy–heavy hadronic molecules
Xiang-Kun Dong,Feng-Kun Guo,Bing-Song Zou
Table 9. The group theory factor F, defined in equation (13), for the interaction of bottom–antibottom/bottom–bottom hadron pairs with only the light vector-meson exchanges. Here both bottom hadrons are the S-wave ground states. I is the isospin and S is the strangeness. Positive F means that the interaction is attractive.
SystemISThresholds [MeV]Exchanged particlesF
${B}^{(* )}{\bar{B}}^{(* )}/{B}^{(* )}{B}^{(* )}$10/0(10559, 10604, 10649)ρ, ω$-\tfrac{1}{2},\tfrac{1}{2}/-\tfrac{1}{2},-\tfrac{1}{2}$
0$\tfrac{3}{2},\tfrac{1}{2}$/$\tfrac{3}{2},-\tfrac{1}{2}$
${B}_{s}^{(* )}{\bar{B}}^{(* )}$/${B}_{s}^{(* )}{B}^{(* )}$$\tfrac{1}{2}$1/1(10646, 10695, 10692, 10740)K*0/ − 1
${B}_{s}^{(* )}{\bar{B}}_{s}^{(* )}$/${B}_{s}^{(* )}{B}_{s}^{(* )}$00/2(10734, 10782, 10831)φ1/−1

${\bar{B}}^{(* )}{{\rm{\Lambda }}}_{b}$/B(*)Λb$\tfrac{1}{2}$0/0(10899, 10944)ω−1/1
${\bar{B}}_{s}^{(* )}{{\rm{\Lambda }}}_{b}$/${B}_{s}^{(* )}{{\rm{\Lambda }}}_{b}$0 − 1/1(10986, 11035)0/0
${\bar{B}}^{(* )}{{\rm{\Xi }}}_{b}$/B(*)ξb1 − 1/ − 1(11074, 11119)ρ, ω$-\tfrac{1}{2},-\tfrac{1}{2}$/$-\tfrac{1}{2},\tfrac{1}{2}$
0$\tfrac{3}{2},-\tfrac{1}{2}/\tfrac{3}{2},\tfrac{1}{2}$
${\bar{B}}_{s}^{(* )}{{\rm{\Xi }}}_{b}$/${B}_{s}^{(* )}{{\rm{\Xi }}}_{b}$$\tfrac{1}{2}$ − 2/0(11161, 11210)φ−1/1

${\bar{B}}^{(* )}{{\rm{\Sigma }}}_{b}^{(* )}$/${B}^{(* )}{{\rm{\Sigma }}}_{b}^{(* )}$$\tfrac{3}{2}$0/0(11093, 11138, 11112, 11157)ρ, ω − 1, − 1/ − 1, 1
$\tfrac{1}{2}$2, − 1/2,1
${\bar{B}}_{s}^{(* )}{{\rm{\Sigma }}}_{b}^{(* )}$/${B}_{s}^{(* )}{{\rm{\Sigma }}}_{b}^{(* )}$1 − 1/1(11180, 11228, 11199, 11248)0/0
${\bar{B}}^{(* )}{{\rm{\Xi }}}_{b}^{{\prime} (* )}$/${B}^{(* )}{{\rm{\Xi }}}_{b}^{{\prime} (* )}$1 − 1/ − 1(11215, 11260, 11233, 11279)ρ, ω$-\tfrac{1}{2},-\tfrac{1}{2}$/$-\tfrac{1}{2},\tfrac{1}{2}$
0$\tfrac{3}{2},-\tfrac{1}{2}$/$\tfrac{3}{2},\tfrac{1}{2}$
${\bar{B}}_{s}^{(* )}{{\rm{\Xi }}}_{b}^{{\prime} (* )}$/${B}_{s}^{(* )}{{\rm{\Xi }}}_{b}^{{\prime} (* )}$$\tfrac{1}{2}$ − 2/0(11302, 11350, 11321, 11369)φ − 1/1
${\bar{B}}^{(* )}{{\rm{\Omega }}}_{b}^{(* )}$/${B}^{(* )}{{\rm{\Omega }}}_{b}^{(* )}$$\tfrac{1}{2}$ − 2/0(11326, 11371, 11349, 11395)0/0
${\bar{B}}_{s}^{(* )}{{\rm{\Omega }}}_{b}^{(* )}$/${B}_{s}^{(* )}{{\rm{\Omega }}}_{b}^{(* )}$0 − 3/ − 1(11413, 11462, 11437, 11485)φ − 2/2

${{\rm{\Lambda }}}_{b}{\bar{{\rm{\Lambda }}}}_{b}$/ΛbΛb00/0(11239)ω2/−2
${{\rm{\Lambda }}}_{b}{\bar{{\rm{\Xi }}}}_{b}$/Λbξb$\tfrac{1}{2}$1/ − 1(11414)ω,K*1, 0/ − 1, − 1
${{\rm{\Xi }}}_{b}{\bar{{\rm{\Xi }}}}_{b}$/ξbξb10/ − 2(11589)ρ, ω, φ$-\tfrac{1}{2},\tfrac{1}{2},1$/$-\tfrac{1}{2},-\tfrac{1}{2},-1$
0$\tfrac{3}{2},\tfrac{1}{2},1$/$\tfrac{3}{2},-\tfrac{1}{2},-1$

${{\rm{\Lambda }}}_{b}{\bar{{\rm{\Sigma }}}}_{b}^{(* )}$/${{\rm{\Lambda }}}_{b}{{\rm{\Sigma }}}_{b}^{(* )}$10/0(11433, 11452)ω2/−2
${{\rm{\Lambda }}}_{b}{\bar{{\rm{\Xi }}}}_{b}^{{\prime} (* )}$/${{\rm{\Lambda }}}_{b}{{\rm{\Xi }}}_{b}^{{\prime} (* )}$$\tfrac{1}{2}$1/ − 1(11555, 11573)ω, K*1, 0/ − 1, − 1
${{\rm{\Lambda }}}_{b}{\bar{{\rm{\Omega }}}}_{b}^{(* )}$/${{\rm{\Lambda }}}_{b}{{\rm{\Omega }}}_{b}^{(* )}$02/ − 2(11666, 11690)0/0
${{\rm{\Xi }}}_{b}{\bar{{\rm{\Sigma }}}}_{b}^{(* )}$/${{\rm{\Xi }}}_{b}{{\rm{\Sigma }}}_{b}^{(* )}$$\tfrac{3}{2}$ − 1/ − 1(11608, 11627)ρ, ω, K* − 1, 1, 0/ − 1, − 1, − 2
$\tfrac{1}{2}$2, 1, 0/2, − 1, − 2
${{\rm{\Xi }}}_{b}{\bar{{\rm{\Xi }}}}_{b}^{{\prime} (* )}$/${{\rm{\Xi }}}_{b}{{\rm{\Xi }}}_{b}^{{\prime} (* )}$10/ − 2(11729, 11748)ρ, ω, φ$-\tfrac{1}{2},\tfrac{1}{2},1$/$-\tfrac{1}{2},-\tfrac{1}{2},-1$
0$\tfrac{3}{2},\tfrac{1}{2},1$/$\tfrac{3}{2},-\tfrac{1}{2},-1$
${{\rm{\Xi }}}_{b}{\bar{{\rm{\Omega }}}}_{b}^{(* )}$/${{\rm{\Xi }}}_{b}{{\rm{\Omega }}}_{b}^{(* )}$$\tfrac{1}{2}$1/ − 3(11841, 11864)φ, K*2, 0/ − 2, − 2

${{\rm{\Sigma }}}_{b}^{(* )}{\bar{{\rm{\Sigma }}}}_{b}^{(* )}$/${{\rm{\Sigma }}}_{b}^{(* )}{{\rm{\Sigma }}}_{b}^{(* )}$20/0(11626, 11646, 11665)ρ, ω − 2, 2/ − 2, − 2
12, 2/2, − 2
04, 2/4, − 2
${{\rm{\Sigma }}}_{b}^{(* )}{\bar{{\rm{\Xi }}}}_{b}^{{\prime} (* )}$/${{\rm{\Sigma }}}_{b}^{(* )}{{\rm{\Xi }}}_{b}^{{\prime} (* )}$$\tfrac{3}{2}$1/ − 1(11748, 11768, 11767, 11786)ρ, ω, K* − 1, 1, 0/ − 1, − 1, − 2
$\tfrac{1}{2}$2, 1, 0/2, − 1, − 2
${{\rm{\Sigma }}}_{b}^{(* )}{\bar{{\rm{\Omega }}}}_{b}^{(* )}$/${{\rm{\Sigma }}}_{b}^{(* )}{{\rm{\Omega }}}_{b}^{(* )}$02/ − 2(11859, 11879, 11883, 11903)K*0/−4
${{\rm{\Xi }}}_{b}^{{\prime} (* )}{\bar{{\rm{\Xi }}}}_{b}^{{\prime} (* )}$/${{\rm{\Xi }}}_{b}^{{\prime} (* )}{{\rm{\Xi }}}_{b}^{{\prime} (* )}$10/ − 2(11870, 11889, 11908)ρ, ω, φ$-\tfrac{1}{2},\tfrac{1}{2},1$/$-\tfrac{1}{2},-\tfrac{1}{2},-1$
0$\tfrac{3}{2},\tfrac{1}{2},1$/$\tfrac{3}{2},-\tfrac{1}{2},-1$
${{\rm{\Xi }}}_{b}^{{\prime} (* )}{\bar{{\rm{\Omega }}}}_{b}^{(* )}$/${{\rm{\Xi }}}_{b}^{{\prime} (* )}{{\rm{\Omega }}}_{b}^{(* )}$$\tfrac{1}{2}$1/ − 3(11981, 12000, 12005, 12024)φ, K*2, 0/ − 2, − 2
${{\rm{\Omega }}}_{b}^{(* )}{\bar{{\rm{\Omega }}}}_{b}^{(* )}$/${{\rm{\Omega }}}_{b}^{(* )}{{\rm{\Omega }}}_{b}^{(* )}$00/ − 4(12092, 12116, 12140)φ4/−4