Lie symmetry analysis, optimal system and conservation laws of a new (2+1)-dimensional KdV system
Mengmeng Wang,Shoufeng Shen,Lizhen Wang
Table 2. Reductions of the (2+1)-dimensional KdV system.
CaseSimilarity variablesinvariant solutions
$\xi =\tfrac{x}{{t}^{\tfrac{1}{2}}},\eta =y$
${{\rm{\Omega }}}_{9}{V}_{4}+{V}_{5}$$u=\tfrac{f(\xi ,\eta )}{x}$${\xi }^{3}{g}_{\xi }+4f+2\xi {g}_{\xi }f-2\xi {f}_{\xi }=0$
$v={ln}(x)+g(\xi ,\eta )$${\xi }^{3}{f}_{\xi \eta }-2\xi {f}_{\eta }{f}_{\xi }+4{f}_{\eta }f-2\xi {{ff}}_{\xi \eta }-4-2{\xi }^{3}{g}_{\xi \xi \xi }=0$
$\xi =x,\eta =y-t$
${{\rm{\Omega }}}_{12}{V}_{2}+{V}_{6}$$u=f(\xi ,\eta )$$-{g}_{\eta }-{g}_{\xi }f+{f}_{\xi }=0$
$v=g(\xi ,\eta )$$-{f}_{\eta \eta }+{f}_{\eta }{f}_{\xi }+{f}_{\xi \eta }f+{g}_{\xi \xi \xi }=0$
$\xi =x,\eta =y$
${{\rm{\Omega }}}_{13}{V}_{4}+{V}_{6}$$u=f(\xi ,\eta )$$1-{g}_{\xi }f+{f}_{\xi }=0$
$v=t+g(\xi ,\eta )$${f}_{\eta }{f}_{\xi }+{f}_{\xi \eta }f+{g}_{\xi \xi \xi }=0$
$\xi =x-y,\eta =t$
${{\rm{\Omega }}}_{15}{V}_{1}+{V}_{2}$$u=f(\xi ,\eta )$${g}_{\eta }-{g}_{\xi }f+{f}_{\xi }=0$
$v=g(\xi ,\eta )$$-{f}_{\xi \eta }-{f}_{\xi }^{2}-{{ff}}_{\xi \eta }+{g}_{\xi \xi \xi }=0$
$\xi =y,\eta =x-t$
${{\rm{\Omega }}}_{17}{V}_{1}+{V}_{6}$$u=f(\xi ,\eta )$$-{g}_{\eta }-{g}_{\eta }f+{f}_{\eta }=0$
$v=g(\xi ,\eta )$$-{f}_{\xi \eta }+{f}_{\xi }{f}_{\eta }+{{ff}}_{\xi \eta }+{g}_{\eta \eta \eta }=0$
$\xi =\tfrac{x}{{y}^{\tfrac{1}{2}}},\eta =\tfrac{t}{{y}^{\tfrac{1}{2}}}$
${{\rm{\Omega }}}_{18}{V}_{3}+{V}_{4}+{V}_{5}$$u=f(\xi ,\eta )$$\tfrac{1}{2}+\eta {g}_{\eta }-\eta {g}_{\xi }f+\eta {f}_{\xi }=0$
$v=\tfrac{1}{2}{ln}(t)+g(\xi ,\eta )$$\xi {f}_{\xi \eta }+\eta {f}_{\eta \eta }+{f}_{\eta }+\xi {f}_{\xi }^{2}+\eta {f}_{\xi }{f}_{\eta }+\xi {{ff}}_{\xi \xi }+\eta {{ff}}_{\xi \eta }+{{ff}}_{\xi }-2{g}_{\eta \eta \eta }=0$
$\xi =x,\eta =y-t$
${{\rm{\Omega }}}_{21}{V}_{2}+{V}_{4}+{V}_{6}$$u=f(\xi ,\eta )$$1-{g}_{\eta }-{g}_{\xi }f+{f}_{\xi }=0$
$v=t+g(\xi ,\eta )$$-{f}_{\eta \eta }+{f}_{\xi }{f}_{\eta }+{{ff}}_{\xi \eta }+{g}_{\xi \xi \xi }=0$
$\xi =x-y,\eta =t$
${{\rm{\Omega }}}_{22}{V}_{1}+{V}_{2}+{V}_{4}$$u=f(\xi ,\eta )$${g}_{\eta }-f-{g}_{\xi }f+{f}_{\xi }=0$
$v=x+g(\xi ,\eta )$$-{f}_{\xi \eta }-{f}_{\xi }^{2}-{{ff}}_{\xi \xi }+{g}_{\xi \xi \xi }=0$
$\xi =x-y,\eta =y-t$
${{\rm{\Omega }}}_{23}{V}_{1}+{V}_{2}+{V}_{6}$$u=f(\xi ,\eta )$$-{g}_{\eta }-{{fg}}_{\xi }+{f}_{\xi }=0$
$v=g(\xi ,\eta )$${f}_{\xi \eta }-{f}_{\eta \eta }-{f}_{\xi }^{2}+{f}_{\xi }{f}_{\eta }-{{ff}}_{\xi \xi }+{{ff}}_{\xi \eta }+{g}_{\xi \xi \xi }=0$
$\xi =y,\eta =x-t$
${{\rm{\Omega }}}_{24}{V}_{1}+{V}_{4}+{V}_{6}$$u=f(\xi ,\eta )$$-{g}_{\eta }-{{fg}}_{\eta }+{f}_{\eta }=0$
$v=x+g(\xi ,\eta )$$-{f}_{\xi \eta }+{f}_{\xi }{f}_{\eta }+{{ff}}_{\xi \eta }+{g}_{\eta \eta \eta }=0$
$\xi =x-y,\eta =y-t$
${{\rm{\Omega }}}_{25}{V}_{1}+{V}_{2}+{V}_{4}+{V}_{6}$$u=f(\xi ,\eta )$$-{g}_{\eta }-f-{{fg}}_{\xi }+{f}_{\xi }=0$
$v=x+g(\xi ,\eta )$${f}_{\xi \eta }-{f}_{\eta \eta }-{f}_{\xi }^{2}+{f}_{\xi }{f}_{\eta }-{{ff}}_{\xi \xi }+{{ff}}_{\xi \eta }+{g}_{\xi \xi \xi }=0$