Vector NLS solitons interacting with a boundary |
Cheng Zhang,Da-jun Zhang |
Figure 1. Two vector solitons vanish at the boundary subject to the Dirichlet BCs: fα(λj)∣α→∞ = 1. The soliton data are: $\{{\lambda }_{j}=\tfrac{1}{2}({\mu }_{j}+{\rm{i}}{\nu }_{j}),{{\boldsymbol{b}}}_{j}\}$ and $\{{\widetilde{\lambda }}_{j}=-{\lambda }_{j},{\widetilde{{\boldsymbol{b}}}}_{j}={{\boldsymbol{b}}}_{j}\}$, j=1,2, with μ1 = 0.5 ν1 = 2, ${{\boldsymbol{b}}}_{1}^{{\rm{T}}}=(2,1)$, μ2 = 4, ν2 = 1.5, ${{\boldsymbol{b}}}_{2}^{{\rm{T}}}=(4\times {10}^{8},1\times {10}^{8})$. |
![]() |