General Covariant Conservation Law of Angular Momentum in General Relativity

Yi-Shi DUAN, Sze-Shiang FENG

理论物理通讯 ›› 1996, Vol. 25 ›› Issue (1) : 99-104.

PDF(350 KB)
会计学季刊
Quarterly Journal of Accounting
主办单位:
香港中文大学会计学院
上海财经大学会计学院
南京大学商学院会计学系
ISSN: 3006-1415
PDF(350 KB)
理论物理通讯 ›› 1996, Vol. 25 ›› Issue (1) : 99-104.

General Covariant Conservation Law of Angular Momentum in General Relativity

  • Yi-Shi DUAN, Sze-Shiang FENG
作者信息 +

General Covariant Conservation Law of Angular Momentum in General Relativity

  • Yi-Shi DUAN, Sze-Shiang FENG
Author information +
文章历史 +

摘要

The conservative Noether current corresponding to the invariance of the action of a gravitymatter system under the local Lorentz transformation can be interpreted as the angular momentum tensor of the system. The existence of superpotentials which are expressed in terms of the vierbein only makes the totd current iden ticdy conserved and the total angular momentum gauge-covariant. Two examples are given. It is shown that this conservation law of angular momentum in general relativity is reasonable.

Abstract

The conservative Noether current corresponding to the invariance of the action of a gravitymatter system under the local Lorentz transformation can be interpreted as the angular momentum tensor of the system. The existence of superpotentials which are expressed in terms of the vierbein only makes the totd current iden ticdy conserved and the total angular momentum gauge-covariant. Two examples are given. It is shown that this conservation law of angular momentum in general relativity is reasonable.

引用本文

导出引用
Yi-Shi DUAN, Sze-Shiang FENG. General Covariant Conservation Law of Angular Momentum in General Relativity[J]. 理论物理通讯, 1996, 25(1): 99-104
Yi-Shi DUAN, Sze-Shiang FENG. General Covariant Conservation Law of Angular Momentum in General Relativity[J]. Communications in Theoretical Physics, 1996, 25(1): 99-104

参考文献

[1] R. Penrose, Seminar on Differential Geometry, Princeton University Press (1982); S. T. Yau and R. Schoen, Differential Geometry, Science Press (1991), in Chinese.

[2] Y. S. DUAN et al. , Gen. Rel. Grav. 20 (1988) 5; Y. S. DUAN and J. Y. ZHANG, Acta Physica Sinica 19 (1963) 589; Y. S. DUAN and Y. T. WANG, Scientia Sinica A4 (1983); Y. S. DUAN et al. , Acta Physica Sinica 36 (1987) 760.

[3] H. Bauer, Physik Z 19 (1918) 163; E. Shrodinger, Spacetime Structure, Addison Wesley, Cambridge,Massachusetts (1956).

[4] B. A. Fock, Theory of Spacetime and Gravitation, Pergamon Press (1959).

[5] M. Blagjevic et al. , Class. Quan. Grav. 5 (1988) 1241.

[6] L. B. Szabados, Class. Quan. Grav. 9 (1992) 2521.

[7] A. Komar, Phys. Rev. 113 (1959) 934.

[8] A. Ashtekar and J. Winicour, J. Math. Phys. 23 (1982) 12; A. Ashtekar and R. O. Henssen, J. Math. Phys. 19 (1978) 7; R. Geroch and J. Winicour, J. Math. Phys. 22 (1981) 4.

[9] J. Chevalier, Helv. Phys. Acta. 63 (1990) 553.

[10] I. D. Landau and E. M. Lifshitz, The Classical Theory of Field, Pergamon (1975).

[11] Y. S. DUAN et al. , Acta Physica Sinica 18 (1962) 211.

[12] R. P. Kerr, Phys. Rev. Lett. 11 (1963) 237.

[13] A. Ashtekar, Phys. Rev. Lett. 57 (1986) 2244; Phy. Rev. D36 (1987) 2587.

[14] A. Einstein, Berl. Ber. (1915) 178; Berl. Ber. (1918) 448; R. Tolman, Phys. Rev. 35 (1930) 875.

[15] J. W. Maluf, J. Math. Phys. 33 (1992) 2849.

[16] Yi-Shi DUAN and Sze-Shiang FENG (preprint).

PDF(350 KB)

1149

Accesses

0

Citation

Detail

段落导航
相关文章

/