The conservative Noether current corresponding to the invariance of the action of a gravitymatter system under the local Lorentz transformation can be interpreted as the angular momentum tensor of the system. The existence of superpotentials which are expressed in terms of the vierbein only makes the totd current iden ticdy conserved and the total angular momentum gauge-covariant. Two examples are given. It is shown that this conservation law of angular momentum in general relativity is reasonable.
Abstract
The conservative Noether current corresponding to the invariance of the action of a gravitymatter system under the local Lorentz transformation can be interpreted as the angular momentum tensor of the system. The existence of superpotentials which are expressed in terms of the vierbein only makes the totd current iden ticdy conserved and the total angular momentum gauge-covariant. Two examples are given. It is shown that this conservation law of angular momentum in general relativity is reasonable.
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] R. Penrose, Seminar on Differential Geometry, Princeton University Press (1982); S. T. Yau and R. Schoen, Differential Geometry, Science Press (1991), in Chinese.
[2] Y. S. DUAN et al. , Gen. Rel. Grav. 20 (1988) 5; Y. S. DUAN and J. Y. ZHANG, Acta Physica Sinica 19 (1963) 589; Y. S. DUAN and Y. T. WANG, Scientia Sinica A4 (1983); Y. S. DUAN et al. , Acta Physica Sinica 36 (1987) 760.
[3] H. Bauer, Physik Z 19 (1918) 163; E. Shrodinger, Spacetime Structure, Addison Wesley, Cambridge,Massachusetts (1956).
[4] B. A. Fock, Theory of Spacetime and Gravitation, Pergamon Press (1959).
[5] M. Blagjevic et al. , Class. Quan. Grav. 5 (1988) 1241.
[6] L. B. Szabados, Class. Quan. Grav. 9 (1992) 2521.
[7] A. Komar, Phys. Rev. 113 (1959) 934.
[8] A. Ashtekar and J. Winicour, J. Math. Phys. 23 (1982) 12; A. Ashtekar and R. O. Henssen, J. Math. Phys. 19 (1978) 7; R. Geroch and J. Winicour, J. Math. Phys. 22 (1981) 4.
[9] J. Chevalier, Helv. Phys. Acta. 63 (1990) 553.
[10] I. D. Landau and E. M. Lifshitz, The Classical Theory of Field, Pergamon (1975).
[11] Y. S. DUAN et al. , Acta Physica Sinica 18 (1962) 211.
[12] R. P. Kerr, Phys. Rev. Lett. 11 (1963) 237.
[13] A. Ashtekar, Phys. Rev. Lett. 57 (1986) 2244; Phy. Rev. D36 (1987) 2587.
[14] A. Einstein, Berl. Ber. (1915) 178; Berl. Ber. (1918) 448; R. Tolman, Phys. Rev. 35 (1930) 875.
[15] J. W. Maluf, J. Math. Phys. 33 (1992) 2849.
[16] Yi-Shi DUAN and Sze-Shiang FENG (preprint).
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}