We extend the newly proposed coherent-state method of normally ordering boson operators to a q-deformed boson case. With the help of q-derivative, some new q-boson operator iden tities are obtained.
Abstract
We extend the newly proposed coherent-state method of normally ordering boson operators to a q-deformed boson case. With the help of q-derivative, some new q-boson operator iden tities are obtained.
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] M. Arik and D. D. Coon, J. Math. Phys. 17 (1976) 4.
[2] L. C. Biedenharn, J. Phys. A: Math. Gen. 22 (1989) L873.
[3] A. J. Macfarlane, J. Phys. A: Math. Gen. 22 (1989) 4581.
[4] C. P. SUN and M. L. GE, J. Math. Phys. 32 (1991) 595.
[5] R. W. Gray and C. A. Nelson, J. Phys. A: Math. Gen. 23 (1990) L945.
[6] A. J. Bracken, D. S. McAnally, R. B. ZHANG and M. D. Gould, J. Phys. A: Math. Gen. 24 (1991)1379.
[7] B. JurEo, Lett. Math. Phys. 21 (1991) 51.
[8] Hong-Yi FAN and Si-Cong JING, Commun. Theor. Phys. (Beijing, China) 20 (1993) 347.
[9] Hong-Yi FAN and Si-Cong JING, Commun. Theor. Phys. (Beijing, China) 20 (1993) 381.
[10] Lei MA, Zhong TANG and Yong-De ZHANG, Commun. Theor. Phys. (Beijing, China) 21 (1994)47.
[11] Ren-Shan GONG, Commun. Theor. Phys. (Beijing, China) 17 (1992) 373.
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}