1. Introduction
2. Theoretical methods
3. Results and discussion
3.1. Structural stabilities
Figure 1. Crystal structure of Mo5Si3 with different vacancies. |
Table 1. Calculated lattice parameters, a, b and c (Å), vacancy formation energies, Eƒ (eV) and formation enthalpies ΔH (kJ mol−1) of Mo5Si3 with four different vacancies. |
Method | a | b | c | Eƒ | ΔH | |
---|---|---|---|---|---|---|
Mo5Si3 | GGA | 9.690 | 9.690 | 4.942 | −35.48 | |
Expa | 9.660 | 9.660 | 4.940 | |||
Theob | 9.670 | 9.670 | 4.938 | −36.98 | ||
Mo−Va1 | GGA | 9.637 | 9.681 | 4.935 | −0.826 | −35.12 |
Mo−Va2 | GGA | 9.679 | 9.638 | 4.935 | −0.838 | −35.86 |
Si–Va1 | GGA | 9.642 | 9.642 | 4.942 | −0.785 | −35.23 |
Si–Va2 | GGA | 9.640 | 9.640 | 4.930 | −0.721 | −35.87 |
Table 2. Calculated lattice parameters, a, b and c (Å), vacancy formation energies, Eƒ (eV) and formation enthalpies ΔH (kJ mol−1) of four different oxygen occupancy models. |
Method | a | b | c | ΔH | |
---|---|---|---|---|---|
O–Mo1 | GGA | 9.703 | 9.623 | 4.949 | −35.62 |
O–Mo2 | GGA | 9.626 | 9.706 | 4.945 | −35.93 |
O–Si1 | GGA | 9.605 | 9.609 | 4.999 | −35.69 |
O–Si2 | GGA | 9.653 | 9.653 | 4.910 | −36.07 |
Figure 2. The phonon dispersion curves along the high-symmetry direction in the Brillouin zone for (a) perfect Mo5Si3, (b) Mo–Va1, (c) Mo–Va2, (d) Si–Va1, (e) Si–Va2, (f) O–Mo1, (g) O–Mo2, (h) O–Si1, (i) O–Si2, respectively. |
3.2. Mechanical properties
Table 3. Calculated elastic constants Cij (GPa), bulk modulus B (GPa), shear modulus G (GPa), Young’s modulus E (GPa), B/G ratio and Vickers hardness Hv (GPa) of Mo5Si3 with four different vacancies and four oxygen occupancy models. |
Phase | C11 | C12 | C13 | C33 | C44 | C66 | B | G | E | B/G | Hv |
---|---|---|---|---|---|---|---|---|---|---|---|
Mo5Si3 | 412.0 | 159.6 | 137.4 | 376.3 | 103.1 | 134.1 | 229.4 | 118.3 | 302.8 | 1.94 | 12.0 |
Theoa | 416 | 166 | 138 | 385 | 109 | 140 | 240 | 126 | 312 | 1.90 | 12.9 |
Mo–Va1 | 371.1 | 135.1 | 150.6 | 354.3 | 93.5 | 92.7 | 212.7 | 103.6 | 267.4 | 2.05 | 10.0 |
Mo–Va2 | 353.9 | 126.3 | 152.0 | 370.2 | 92.4 | 93.4 | 212.1 | 103.1 | 266.2 | 2.06 | 9.9 |
Si–Va1 | 331.0 | 150.3 | 128.9 | 373.5 | 107.0 | 86.1 | 215.8 | 99.5 | 258.7 | 2.17 | 8.9 |
Si–Va2 | 380.0 | 145.8 | 141.8 | 343.2 | 96.0 | 102.4 | 217.7 | 103.5 | 268.0 | 2.10 | 9.6 |
O–Mo1 | 382.4 | 145.3 | 129.8 | 344.2 | 93.1 | 117.9 | 215.1 | 107.6 | 276.7 | 2.00 | 10.7 |
O–Mo2 | 385.6 | 131.6 | 145.5 | 398.3 | 92.9 | 93.9 | 215.7 | 108.0 | 277.7 | 2.00 | 10.8 |
O–Si1 | 345.8 | 139.3 | 137.5 | 365.3 | 125.4 | 90.0 | 222.1 | 107.1 | 276.8 | 2.07 | 10.1 |
O–Si2 | 382.4 | 159.0 | 158.2 | 335.8 | 80.4 | 113.5 | 227.5 | 95.4 | 251.1 | 2.38 | 7.4 |
Reference [16]. |
Figure 3. Calculated B/G ratio of Mo5Si3 with different vacancies and O-occupied Mo5Si3. |
3.3. Electronic structure
Figure 4. The total and partial density of states (DOS) of Mo5Si3 with different vacancies and four different oxygen occupancy models, (a) Mo5Si3, (b) Mo–Va1, (c) Mo–Va2, (d) Si–Va1, (e) Si–Va2, (f) O–Mo1, (g) O–Mo2, (h) O–Si1, (i) O–Si2, respectively. |
Figure 5. The difference charge density contour plots of Mo5Si3 with four different vacancies and four different oxygen occupancy models along the (110) plane. (a) Mo–Va1, (b) Mo–Va2, (c) Si–Va1 and (d) Si–Va2, (f) O–Mo1, (g) O–Mo2, (h) O–Si1, (i) O–Si2, respectively. |
4. Conclusion
(1)Mo5Si3 with vacancy defects or oxygen occupation is stable according to the obtain thermodynamics data and phonon frequencies. In particular, defective Mo5Si3 prefers to form Mo–Va2 vacancies. | |
(2)The existence of vacancy leads to lattice contraction, while the O-occupation Mo–Va sites make the lattice expand due to the larger atomic radius of oxygen. | |
(3)Although the existence of vacancies and oxygen weakens the deformation resistance and hardness of Mo5Si3, the O-occupied Si–Va2 site makes the Mo5Si3 have excellent ductile behavior, which stems from weaker O–Mo bonds. |