Welcome to visit Communications in Theoretical Physics,
Mathematical Physics

Ren-integrable and ren-symmetric integrable systems

  • S Y Lou
Expand
  • School of Physical Science and Technology, Ningbo University, Ningbo, 315211, China

Received date: 2023-12-07

  Revised date: 2024-01-26

  Accepted date: 2024-01-30

  Online published: 2024-03-01

Copyright

© 2024 Institute of Theoretical Physics CAS, Chinese Physical Society and IOP Publishing

Abstract

A new type of symmetry, ren-symmetry, describing anyon physics and corresponding topological physics, is proposed. Ren-symmetry is a generalization of super-symmetry which is widely applied in super-symmetric physics such as super-symmetric quantum mechanics, super-symmetric gravity, super-symmetric string theory, super-symmetric integrable systems and so on. Super-symmetry and Grassmann numbers are, in some sense, dual conceptions, and it turns out that these conceptions coincide for the ren situation, that is, a similar conception of ren-number (R-number) is devised for ren-symmetry. In particular, some basic results of the R-number and ren-symmetry are exposed which allow one to derive, in principle, some new types of integrable systems including ren-integrable models and ren-symmetric integrable systems. Training examples of ren-integrable KdV-type systems and ren-symmetric KdV equations are explicitly given.

Cite this article

S Y Lou . Ren-integrable and ren-symmetric integrable systems[J]. Communications in Theoretical Physics, 2024 , 76(3) : 035006 . DOI: 10.1088/1572-9494/ad23de

1. Introduction

The idea of symmetry originates in natural scientific fields, and its importance there is well known [19]. Symmetry considerations belong to the most universal and astonishing methods by which scientists have successfully solved problems in building new solutions from known ones [1012], performing dimensional reductions of nonlinear partial differential equations [1318], getting new integrable systems [1923] and even constructing all solutions for certain nonlinear systems [24, 25].
By using the SU(3) × SU(2) × U(1) symmetry, three fundamental interactions, the strong, weak and electromagnetic interactions, have been unified into the so-called standard model. However, in order to unify the gravitational interaction to the standard model, one has to introduce a new type of symmetry, say the super-symmetry between bosons and fermions. New areas of physical fields, including super-symmetric gravity [26, 27], super-symmetric quantum mechanics [28], super-symmetric string theory [29] and super-symmetric integrable systems [3035], have been developed which are highly motivated by super-symmetries, in the belief that they possess a high potential for future development.
In super-symmetry theory, it is essential to introduce the Grassmann variable θ [36, 37] and the super-symmetric derivative ${ \mathcal D }$ with the properties
$\begin{eqnarray}{\theta }^{2}=0,{\theta }_{1}{\theta }_{2}=-{\theta }_{2}{\theta }_{1},\end{eqnarray}$
$\begin{eqnarray}{ \mathcal D }={\partial }_{\theta }+\theta {\partial }_{x},{{ \mathcal D }}^{2}={\partial }_{x}.\end{eqnarray}$
The super-symmetric derivative ${ \mathcal D }$ is invariant under the super-symmetric transformation
$\begin{eqnarray}\theta \to \theta +\eta ,x\to x-\theta \eta .\end{eqnarray}$
Recently, unlike bosons and fermions, anyons with fractional charges, spin and statistics in two dimensions have attracted the attention of many scientists [3841]. Anyons can be used to describe some kinds of quasi-particles (the low-energy excitations in Hamiltonian systems) including the fractional quantum Hall states [42], vortices in topological superconductors [43] and Majorana zero modes in semiconductors proximitized by superconductors [44]. By analogy with the fermion case in which fermions can be described by Grassmann fields, some new fields are endowed to describe anyons, which we call anyon-fields and/or ren-fields. We shall use the adjective 'ren' to stress the arbitrary nature of α and to avoid confusion with 'arbitrary symmetry' or 'any symmetry'. 'Ren' means 'arbitrary' in Chinese.
A comparison of the Grassmann number (G-number) $\theta =\sqrt{0}$ and the super-symmetric derivative ${ \mathcal D }=\sqrt{{\partial }_{x}}$, corresponding to the ren point of view, suggests that one should use, as the ren-number (R-number) and the ren-symmetric derivative, respectively, the following radical generalization of the formulae
$\begin{eqnarray*}{\theta }_{\alpha }\equiv \theta =\sqrt[\alpha ]{0},\,\,{ \mathcal R }=\sqrt[\alpha ]{{\partial }_{x}},\end{eqnarray*}$
with α being arbitrary.
The introduction of the G-number and the super-symmetric derivative yields some significant novel mathematical and physical fields such as Grassmann algebra [36], super-symmetric quantum mechanics [28], super-symmetric string theory [29], super-symmetric gravity [26], super-/Kuper-integrable systems [4551] and super-symmetric integrable theories [3035]. Therefore, we hope that the introduction of the R-number and the ren-symmetric derivative may successfully create some different mathematical and physical fields such as ren-algebra, ren-calculus, ren-integrable models and ren-symmetric integrable systems. The usual G-number, G-algebra, super-symmetric theory, super-integrable systems and super-symmetric integrable systems just correspond to the ren-case for α = 2.
In Section 2 of this paper, the concept of the R-number θ for an arbitrary positive integer α is defined with the aim of deriving ren-algebra, ren-derivative and ren-symmetric derivative. Then, we deal in Section 3 with the problem of finding some types of ren-integrable systems by coupling the usual boson fields and the anyon-fields. When α is fixed to α = 2, the ren-integrable system is just the known super- or Kuper-integrable systems [45]. By means of the ren-symmetric derivative, we study the ren-symmetric integrable systems in Section 4, and the ren-symmetric KdV systems for α = 3, 4 are explicitly given. The well-known super-symmetric integrable systems are just the special cases of the ren-symmetric integrable systems with α = 2. The last section includes a short summary and some discussions.

2. Ren-algebra, ren-derivative and ren-symmetric derivative

An R-number $\theta \equiv {\theta }_{\alpha }$ is defined as a number possessing the properties

$\begin{eqnarray}{\theta }^{\alpha }=0,{\theta }^{i}\ne 0,i=1,2,\ldots ,\alpha -1,\end{eqnarray}$
where α is an arbitrary positive integer.

That is, an R-number can be spelled out as a non-zero α root of zero
$\begin{eqnarray}\theta =\sqrt[\alpha ]{0}\ne 0.\end{eqnarray}$
It is clear that there are α − 1 solutions of (5), {θ, θ2,…, θα−1}. Such a definition exists in one important special case, α = 2, and the usual G-number θ = θ2.
For α = 2, we know that if a and b are G-numbers then the combination is still a G-number when the anti-communication relation
$\begin{eqnarray}{ab}=-{ba},\end{eqnarray}$
holds.
Similarly, for α ≥ 2, if a and b are R-numbers with the q-commutation relation (${\rm{i}}\equiv \sqrt{-1}$),
$\begin{eqnarray}\begin{array}{rcl} & & {ab}={q}_{j}{ba},\quad {q}_{j}^{\alpha }=1,{q}_{j}={q}^{j},q=\exp \left(\displaystyle \frac{2\pi {\rm{i}}}{\alpha }\right),\\ & & \qquad j\in {{ \mathcal J }}_{\alpha }=\{1,2,\ldots ,\alpha -1\}/\{{n}_{m}{p}_{m}\lt \alpha \},\end{array}\end{eqnarray}$
then so is the combination a + b of a and b, where {nmpm < α} is a set with pm, m = 1,…, M being the prime factors of α and nm = 1,…, Nm being integers with Nmpm < α. For α = 3, 4,…, 10, we have
$\begin{eqnarray}\begin{array}{l}{{ \mathcal J }}_{3}=\{1,2\},{{ \mathcal J }}_{4}=\{1,3\},{{ \mathcal J }}_{5}=\{1,2,3,4\},\\ {{ \mathcal J }}_{6}=\{1,5\},{{ \mathcal J }}_{7}=\{1,2,\ldots ,6\},\\ {{ \mathcal J }}_{8}=\{1,3,5,7\},{{ \mathcal J }}_{9}=\{1,2,4,5,7,8\},\\ {{ \mathcal J }}_{10}=\{1,3,7,9\}.\end{array}\end{eqnarray}$
From the expression of q given in (7), we know that the usual number (boson number) is related to α = ∞ and the G-number (fermion number) corresponds to α = 2.

The degree, $\beta \ (\mathrm{mod}(\alpha ))$, of an R-number γ is defined as

$\begin{eqnarray}\gamma \theta ={q}^{\beta }\theta \gamma ,\end{eqnarray}$
where the degree of θ is always fixed as one in this paper. γ in (9) is also said to be a β order R-number.

If the R-numbers γ1 and γ2 possess the degrees β1 and β2, respectively, then we have the commutation relation
$\begin{eqnarray}{\gamma }_{1}{\gamma }_{2}={q}^{{\beta }_{1}{\beta }_{2}}{\gamma }_{2}{\gamma }_{1},\end{eqnarray}$
which is consistent with (9) when β2 = 1 and β1β2 = 0.

Ren-derivative, $\tfrac{{\rm{d}}}{{\rm{d}}\theta }$, is a derivative with respect to the ren-variable θ,

$\begin{eqnarray}\displaystyle \frac{{\rm{d}}f(\theta )}{{\rm{d}}\theta }={\left.\displaystyle \frac{f({\theta }_{1})-f(\theta )}{{\theta }_{1}-\theta }\right|}_{{\theta }_{1}\to \theta }=\displaystyle \frac{f(\theta )-f(q\theta )}{(1-q)\theta }.\end{eqnarray}$

Similar to the Grassmann case, because the definition of the R-number (4), an arbitrary function of the ren-variable, f(θ), can be written as
$\begin{eqnarray}f(\theta )=\displaystyle \sum _{i=0}^{\alpha -1}{\theta }^{i}{g}_{i}=\displaystyle \sum _{i=0}^{\alpha -1}{f}_{i}{\theta }^{i}.\end{eqnarray}$
If f(θ) is a β order R-number, then fi and gi in (12) are βi order R-numbers with ${f}_{i}={q}^{i\beta -{i}^{2}}{g}_{i}$.
According to the property (12), it is enough to find all the possible ren-derivatives for an arbitrary ren-function f(θ) by calculating
$\begin{eqnarray*}\displaystyle \frac{{\rm{d}}{\theta }^{i}}{{\rm{d}}\theta },i=1,2,\ldots ,\alpha -1.\end{eqnarray*}$
Based on the commutation relation (7) and the definition of the ren-derivative (11), it is readily proven that
$\begin{eqnarray}\displaystyle \frac{{\rm{d}}{\theta }^{i}}{{\rm{d}}\theta }=\displaystyle \sum _{k=0}^{i-1}{q}^{k}{\theta }^{i-1}=\displaystyle \frac{1-{q}^{i}}{1-q}{\theta }^{i-1}\equiv {i}_{q}{\theta }^{i-1},\end{eqnarray}$
where iq is defined as iq = 1 + q + ⋯ + qi−1, say, 2q = 1 + q, 3q = 1 + q + q2 and so on.
Thus, for the ren-function f(θ) with degree β, we have
$\begin{eqnarray}\begin{array}{l}\displaystyle \frac{{\rm{d}}f(\theta )}{{\rm{d}}\theta }=\displaystyle \sum _{i=0}^{\alpha -1}{i}_{q}{\theta }^{i-1}{g}_{i}\\ =\displaystyle \sum _{i=0}^{\alpha -1}\displaystyle \frac{({q}^{\beta -i}-{q}^{\beta })}{1-q}{f}_{i}{\theta }^{i-1}=\displaystyle \sum _{i=0}^{\alpha -1}{q}^{\beta -i}{i}_{q}{f}_{i}{\theta }^{i-1}.\end{array}\end{eqnarray}$
Ren-integration may be defined as an inverse operator of the ren-derivative for θk, k < α − 1, however, for θα−1 the inverse operator of the ren-derivative is not well defined. A different integration operator can be defined [52]. For α = 2, the Berezin integral has been defined [53, 54]. In this paper, we will not discuss this problem, though the similar Berezin integral may be introduced under the requirement of translation invariance [52].

A ren-symmetric derivative ${ \mathcal R }\equiv {{ \mathcal R }}_{\alpha }$ is defined as an α root of the usual space derivative ${\partial }_{x}$, i.e.,

$\begin{eqnarray}{{ \mathcal R }}^{\alpha }={\partial }_{x},{ \mathcal R }=\sqrt[\alpha ]{{\partial }_{x}}.\end{eqnarray}$
It is interesting that in terms of the R-number θ, the ren-symmetric derivative ${ \mathcal R }$ can be explicitly written as
$\begin{eqnarray}{ \mathcal R }={\partial }_{\theta }+\displaystyle \frac{1}{{[(\alpha -1)!]}_{q}}{\theta }^{\alpha -1}{\partial }_{x},\end{eqnarray}$
where ${[n!]}_{q}$ is defined as
$\begin{eqnarray}\begin{array}{rcl}{[n!]}_{q} & \equiv & \displaystyle \prod _{i=1}^{n}\displaystyle \frac{1-{q}^{i}}{1-q}\equiv \displaystyle \prod _{i=1}^{n}{i}_{q}\equiv {1}_{q}\cdot {2}_{q}\cdots {\left(n-1\right)}_{q}\cdot {n}_{q},\end{array}\end{eqnarray}$
whose particular case q = 1 is the usual $n!$.

It is reasonable that the ren-symmetric derivative (16) will reduce back to the known super-symmetric derivative ${{ \mathcal R }}_{2}\equiv { \mathcal D }={\partial }_{\theta }+\theta {\partial }_{x}$ when α = 2. The ren-symmetric derivatives for α = 3, 4, 5, 6 and 7 are given by the formulae as a straightforward computation,
$\begin{eqnarray}\begin{array}{l}{{ \mathcal R }}_{3}={\partial }_{\theta }+\displaystyle \frac{1}{{[2!]}_{q}}{\theta }^{2}{\partial }_{x}={\partial }_{\theta }-q{\theta }^{2}{\partial }_{x},q={{\rm{e}}}^{\left(2\pi {\rm{i}}/3\right)}\\ =\displaystyle \frac{1}{2}(\sqrt{3}{\rm{i}}-1),\\ {{ \mathcal R }}_{4}={\partial }_{\theta }+\displaystyle \frac{1}{{[3!]}_{q}}{\theta }^{3}{\partial }_{x}={\partial }_{\theta }-\displaystyle \frac{1}{2}(1+q){\theta }^{3}{\partial }_{x},\\ q={{\rm{e}}}^{\left(2\pi {\rm{i}}/4\right)}={\rm{i}},\\ {{ \mathcal R }}_{5}={\partial }_{\theta }+\displaystyle \frac{1}{{[4!]}_{q}}{\theta }^{4}{\partial }_{x}={\partial }_{\theta }+\displaystyle \frac{{q}^{3}}{{\left(1+q\right)}^{2}}{\theta }^{4}{\partial }_{x},\\ q={{\rm{e}}}^{\left(2\pi {\rm{i}}/5\right)},\\ {{ \mathcal R }}_{6}={\partial }_{\theta }+\displaystyle \frac{1}{{[5!]}_{q}}{\theta }^{5}{\partial }_{x}={\partial }_{\theta }+\displaystyle \frac{q}{6}{\theta }^{5}{\partial }_{x},\\ q={{\rm{e}}}^{\left(2\pi {\rm{i}}/6\right)}=\displaystyle \frac{1}{2}(1+\sqrt{3}{\rm{i}}),\\ {{ \mathcal R }}_{7}={\partial }_{\theta }+\displaystyle \frac{1}{{[6!]}_{q}}{\theta }^{6}{\partial }_{x}={\partial }_{\theta }-\displaystyle \frac{{q}^{6}}{[3!{]}_{q}^{2}}{\theta }^{6}{\partial }_{x},\\ q={{\rm{e}}}^{\left(2\pi {\rm{i}}/7\right)}.\end{array}\end{eqnarray}$
It is not difficult to prove that the ren-symmetric derivative ${ \mathcal R }$ possesses the following ren-symmetric transformation
$\begin{eqnarray}\theta \to \theta +\eta ,x\to x-f(\theta ,\eta ),\end{eqnarray}$
with
$\begin{eqnarray}f=f(\theta ,\eta )=\displaystyle \sum _{k=1}^{\alpha -1}\displaystyle \frac{1}{{[k!]}_{q}{[(\alpha -k)!]}_{q}}{\theta }^{k}{\eta }^{\alpha -k}.\end{eqnarray}$
With the stress on the first few f, say, α = 2, 3, 4, 5 and 6, we have
$\begin{eqnarray}\begin{array}{l}f=\theta \eta ,\alpha =2,\\ f=\displaystyle \frac{1}{{[2!]}_{q}}(\theta {\eta }^{2}+{\theta }^{2}\eta ),\alpha =3,\\ f=\displaystyle \frac{1}{{[3!]}_{q}}\left(\theta {\eta }^{3}+\displaystyle \frac{{3}_{q}}{{2}_{q}}{\theta }^{2}{\eta }^{2}+{\theta }^{3}\eta \right),\alpha =4,\\ f=\displaystyle \frac{1}{{[4!]}_{q}}\left(\theta {\eta }^{4}+\displaystyle \frac{{4}_{q}}{{2}_{q}}{\theta }^{2}{\eta }^{3}+\displaystyle \frac{{4}_{q}}{{2}_{q}}{\theta }^{3}{\eta }^{2}+{\theta }^{4}\eta \right),\alpha =5,\\ f=\displaystyle \frac{1}{{[5!]}_{q}}\left(\theta {\eta }^{5}+\displaystyle \frac{{5}_{q}}{{2}_{q}}{\theta }^{2}{\eta }^{4}+\displaystyle \frac{{5}_{q}{4}_{q}}{{3}_{q}{2}_{q}}{\theta }^{3}{\eta }^{3}+\displaystyle \frac{{5}_{q}}{{2}_{q}}{\theta }^{4}{\eta }^{2}+{\theta }^{5}\eta \right),\alpha =6.\end{array}\end{eqnarray}$

3. Ren-integrable systems

In the limit α = 2, ren-integrable models are just the known super- or Kuper-integrable models which were first proposed by Kupershmidt in [45]. It is known that the usual bosonic KdV equation,
$\begin{eqnarray}{u}_{t}={\left(-{u}_{{xx}}+3{u}^{2}\right)}_{x},\end{eqnarray}$
is determined as a compatibility condition [L, S] = LSSL = 0 of equations from a Lax pair
$\begin{eqnarray}\begin{array}{rcl} & & {\psi }_{{xx}}-(u+\lambda )\psi \equiv L\psi =0,\\ & & {\psi }_{t}-3{u}_{x}\psi -6u{\psi }_{x}+4{\psi }_{{xxx}}\equiv S\psi =0.\end{array}\end{eqnarray}$
Usually, the spectral function ψ is considered as a boson function. In fact, because the Lax pair (23) is linear, the spectral function ψ may be a fermion function and even a ren-function.
It is known that if σ is a symmetry of an integrable evolution equation
$\begin{eqnarray}{u}_{t}=K(u),\end{eqnarray}$
i.e., a solution of
$\begin{eqnarray}{\sigma }_{t}=K^{\prime} \sigma \equiv \mathop{\mathrm{lim}}\limits_{\epsilon =0}{\partial }_{\epsilon }K(u+\epsilon \sigma ),\end{eqnarray}$
then
$\begin{eqnarray}{u}_{t}=K(u)+\sigma ,\end{eqnarray}$
is also an integrable model.
Furthermore, if σ = σ(ψ), where ψ is a spectral function of the Lax pair,
$\begin{eqnarray}\hat{L}\psi =0,\qquad \hat{S}\psi =0,\end{eqnarray}$
of (24), then the first type of source equation
$\begin{eqnarray}\begin{array}{rcl} & & {u}_{t}=K(u)+\sigma (\psi ),\\ & & \hat{L}\psi =0,\end{array}\end{eqnarray}$
and the second type of source equation
$\begin{eqnarray}\begin{array}{rcl} & & {u}_{t}=K(u)+\sigma (\psi ),\\ & & \hat{S}\psi =0,\end{array}\end{eqnarray}$
may all be integrable [5563].
Usually, the spectral functions ψ studied in the integrable models are restricted as bosonic functions. For instance, for the KdV equation (22) the first and second types of integrable bosonic source equations possess the forms
$\begin{eqnarray}\begin{array}{rcl} & & {u}_{t}={\left(-{u}_{{xx}}+3{u}^{2}+\langle \phi | \phi \rangle \right)}_{x},\qquad \langle \phi | \phi \rangle \equiv \displaystyle \sum _{i=1}^{n}{\phi }_{i}^{2},\\ & & ({\partial }_{x}^{2}-u-{\lambda }_{i}){\phi }_{i}=0,\quad i=1,2,\ldots ,n,\end{array}\end{eqnarray}$
and
$\begin{eqnarray}\begin{array}{rcl} & & {u}_{t}={\left(-{u}_{{xx}}+3{u}^{2}+\langle \phi | \phi \rangle \right)}_{x},\\ & & ({\partial }_{t}+4{\partial }_{x}^{3}-6u{\partial }_{x}-3{u}_{x}){\phi }_{i}=0,\quad i=1,2,\ldots ,n,\end{array}\end{eqnarray}$
respectively.
Now, if we extend the spectral function of the Lax pair (23) to a ren-function, ξ, then we have a trivial symmetry, σ = ξα−1ξxx. Applying this symmetry to the second type of source equation, we can find some coupled ren systems
$\begin{eqnarray}\begin{array}{l}{u}_{t}={\left(-{u}_{{xx}}+3{u}^{2}\right)}_{x}+\displaystyle \sum _{i=1}^{k}\langle {\xi }_{i}^{{\alpha }_{i}-1}| {\xi }_{i,{xx}}\rangle ,\\ \langle {\xi }_{i}^{{\alpha }_{i}-1}| {\xi }_{i,{xx}}\rangle \equiv \displaystyle \sum _{j=1}^{{n}_{i}}{\xi }_{{ij}}^{{\alpha }_{i}-1}{\xi }_{{ij},{xx}},\\ ({\partial }_{t}+4{\partial }_{x}^{3}-6u{\partial }_{x}-3{u}_{x}){\xi }_{{ij}}=0,\\ j=1,2,\ldots ,{n}_{i},i=1,2,\ldots ,k,{\xi }_{{ij}}^{{\alpha }_{i}}=0,\end{array}\end{eqnarray}$
with one boson field u and k × ni ren-fields ξij, where k, ni and αi are all arbitrary integers.
The integrability of (32) with αi = 2 for all i = 1, 2,…, k is known because the models reduce back to the so-called super-/Kuper-integrable systems [4548]. Before studying the integrability of (32) with αi ≠ 2 for some 2 < ik, we directly write down a more general nontrivial symmetry of the KdV equation (22),
$\begin{eqnarray}\sigma ={\left({\xi }_{1}{\xi }_{2x}-{\xi }_{1x}{\xi }_{2}\right)}_{x},\end{eqnarray}$
where ξ1 and ξ2 are ren-spectral functions of the usual KdV equation with the same spectral parameter λ = λ1 = λ2 but with different degrees, β and αβ, respectively.
The simplest second type of source equation related to (33) possesses the form
$\begin{eqnarray}\begin{array}{rcl} & & {u}_{t}={[3{u}^{2}-{u}_{{xx}}+12({\xi }_{1}{\xi }_{2x}-{\xi }_{1x}{\xi }_{2})]}_{x},\\ & & ({\partial }_{t}+4{\partial }_{x}^{3}-6u{\partial }_{x}-3{u}_{x}){\xi }_{i}=0,i\,=\,1,2.\end{array}\end{eqnarray}$
Theorem. The model (34) is Lax integrable with the Lax pair
$\begin{eqnarray}\begin{array}{l}{\psi }_{{xx}}-(u+\lambda )\psi +\left(\displaystyle \int {\xi }_{1}\psi {\rm{d}}x\right){\xi }_{2}-{\xi }_{1}\left(\displaystyle \int {\xi }_{2}\psi {\rm{d}}x\right)\\ \equiv \hat{L}\psi =0,\\ ({\partial }_{t}+4{\partial }_{x}^{3}-6u{\partial }_{x}-3{u}_{x})\psi \\ \equiv \hat{S}\psi =0.\end{array}\end{eqnarray}$

To complete the proof of the theorem, it suffices to prove that the compatibility condition

$\begin{eqnarray}[\hat{L},\hat{S}]f=(\hat{L}\hat{S}-\hat{S}\hat{L})f,\end{eqnarray}$
is valid for arbitrary f if (34) is satisfied.

Expanding the expression (36) with the operators $\hat{L}$ and $\hat{S}$ defined in (35),
$\begin{eqnarray}\begin{array}{l}\left(\displaystyle \int {\xi }_{1}f{\rm{d}}x\right)(6u{\xi }_{2x}+3{\xi }_{2}{u}_{x}-4{\xi }_{2{xxx}}-{\xi }_{2t})\\ +({\xi }_{1t}+4{\xi }_{1{xxx}}-6u{\xi }_{1x}-3{\xi }_{1}{u}_{x})\displaystyle \int {\xi }_{2}f{\rm{d}}x\\ +{\xi }_{1}\left[\displaystyle \int ({\xi }_{2t}f-4{\xi }_{2}{f}_{{xxx}}+6{\xi }_{2}{{uf}}_{x}+3{\xi }_{2}{u}_{x}f){\rm{d}}x-8{\xi }_{2{xx}}f-4{\xi }_{2x}{f}_{x}\right]\\ -\left[\displaystyle \int ({\xi }_{1t}f-4{\xi }_{1}{f}_{{xxx}}+6{\xi }_{1}{{uf}}_{x}+3{\xi }_{1}{u}_{x}f){\rm{d}}x\right.\\ \left.-8{\xi }_{1{xx}}f-4{\xi }_{1x}{f}_{x}\right]{\xi }_{2}\\ +({u}_{t}-6{{uu}}_{x}+{u}_{{xxx}})f\,=\,0,\end{array}\end{eqnarray}$
and simplifying the result with the formulae of integration by parts
$\begin{eqnarray}\begin{array}{rcl} & & \displaystyle \int {\xi }_{i}{f}_{{xxx}}{\rm{d}}x={\xi }_{i}{f}_{{xx}}-{\xi }_{{ix}}{f}_{x}+{\xi }_{{ixx}}f-\displaystyle \int {\xi }_{{ixxx}}f{\rm{d}}x,\\ & & \displaystyle \int {\xi }_{i}{{uf}}_{x}{\rm{d}}x={\xi }_{i}{uf}-\displaystyle \int f{\left(u{\xi }_{i}\right)}_{x}{\rm{d}}x,\end{array}\end{eqnarray}$
(37) is changed to
$\begin{eqnarray}\begin{array}{l}\displaystyle \int {\xi }_{1}f{\rm{d}}x\ (6u{\xi }_{2x}+3{\xi }_{2}{u}_{x}-4{\xi }_{2{xxx}}\\ -{\xi }_{2t})+({\xi }_{1t}+4{\xi }_{1{xxx}}\\ -6u{\xi }_{1x}-3{\xi }_{1}{u}_{x})\displaystyle \int {\xi }_{2}f{\rm{d}}x\\ +{\xi }_{1}\displaystyle \int ({\xi }_{2t}+4{\xi }_{2{xxx}}-6u{\xi }_{2x}-3{\xi }_{2}{u}_{x})f{\rm{d}}x-\left[\displaystyle \int ({\xi }_{1t}+4{\xi }_{1{xxx}}\right.\\ \left.-6u{\xi }_{1}-3{\xi }_{1}{u}_{x})f{\rm{d}}x\right]{\xi }_{2}\\ +({u}_{t}-6{{uu}}_{x}+{u}_{{xxx}}+12{\xi }_{1{xx}}{\xi }_{2}-12{\xi }_{1}{\xi }_{2{xx}})f\,=\,0.\end{array}\end{eqnarray}$
Because of the arbitrariness of f, (39) is correct only after joining it to equation (34). The theorem is proved.
Remark. From the proof procedure of the theorem, it is known that we have not used any commutation relation on ξ1 and ξ2. That means (34) is Lax integrable no matter whether the fields ξ1 and ξ2 are boson fields, fermion fields and/or ren-fields with arbitrary α.

4. Ren-symmetric integrable systems

In Section 2 of this paper, we defined the ren-symmetric derivative ${ \mathcal R }$. By means of the ren-symmetric derivative, the usual bosonic integrable systems can be extended to ren-symmetric integrable ones. Before discussing ren-symmetric integrable systems, we list some special cases for α = 2, i.e., the super-symmetric integrable models.

4.1. Super-symmetric integrable KdV systems

The most general N = 1 symmetric form of the KdV equation (22) is generated by the fermionic super-field Φ with an arbitrary constant a,
$\begin{eqnarray}{{\rm{\Phi }}}_{t}+{{\rm{\Phi }}}_{{xxx}}+a({ \mathcal D }{{\rm{\Phi }}}_{x}){\rm{\Phi }}+(6-a)({ \mathcal D }{\rm{\Phi }}){{\rm{\Phi }}}_{x}=0.\end{eqnarray}$
Mathieu had proven that the super-symmetric KdV equation (40) is Painlevé integrable only for a = 0 and 3 [64]. Although the super-symmetric KdV system (40) is not Painlevé integrable for arbitrary a, it does possess multiple soliton solutions [65]. In (40), the super-field Φ ≡ ξ + θu is a fermionic super-field with a fermion field ξ and a boson field u.
For the coupled KdV equation, we have an interacting model between a super-symmetric boson field U and a super-symmetric fermion field Φ
$\begin{eqnarray}\begin{array}{rcl} & & {{\rm{\Phi }}}_{t}={\left(-{{\rm{\Phi }}}_{{xx}}+3{\rm{\Phi }}{ \mathcal D }{\rm{\Phi }}+6U{\rm{\Phi }}\right)}_{x},\\ & & {U}_{t}={\left(-{U}_{{xx}}+3{U}^{2}+3{\rm{\Phi }}{ \mathcal D }U\right)}_{x},\end{array}\end{eqnarray}$
which is Lax integrable. Incorporating U = 0, (41) readily reduces back to (40) with a = 3. For Φ = 0, (41) becomes a quite trivial extension of the original KdV equation (22) by uU.
The component form of (41) reads
$\begin{eqnarray}\begin{array}{rcl} & & {v}_{t}={\left(-{v}_{{xx}}+3{v}^{2}+3{\zeta }_{x}\zeta +6{uv}+6\xi \zeta \right)}_{x},\\ & & {u}_{t}={\left(-{u}_{{xx}}+3{u}^{2}+3\zeta \xi \right)}_{x},\\ & & {\xi }_{t}={\left(-{\xi }_{{xx}}+6u\xi +3v\xi +3{u}_{x}\zeta \right)}_{x},\\ & & {\zeta }_{t}={\left(-{\zeta }_{{xx}}+6u\zeta +3v\zeta \right)}_{x},\end{array}\end{eqnarray}$
with U = u + θξ and Φ = ζ + θv, where u and v are boson components and ξ and ζ are fermion components.
The Lax pair of (41) can be written as
$\begin{eqnarray}\begin{array}{rcl} & & {{\rm{\Psi }}}_{{xx}}={\rm{\Phi }}{ \mathcal D }{\rm{\Psi }}+(U+\lambda ){\rm{\Psi }},\\ & & {{\rm{\Psi }}}_{t}=-4{{\rm{\Psi }}}_{{xxx}}+6U{{\rm{\Psi }}}_{x}+3{U}_{x}{\rm{\Psi }}+6{\rm{\Phi }}{ \mathcal D }{{\rm{\Psi }}}_{x}+3{{\rm{\Phi }}}_{x}{ \mathcal D }{\rm{\Psi }}.\end{array}\end{eqnarray}$

4.2. Ren-symmetric integrable KdV systems

Analogous to (40), the general ren-symmetric KdV equation is expressible in the form
$\begin{eqnarray}\begin{array}{l}{{\rm{\Phi }}}_{t}+{{\rm{\Phi }}}_{{xxx}}+\displaystyle \sum _{i=0}^{\left[{\beta }_{1}\right]}{a}_{i}\left({{ \mathcal R }}^{i}{\rm{\Phi }}\right)\left({{ \mathcal R }}^{\alpha +\beta -i}{\rm{\Phi }}\right)=0,\\ \beta =0,1,2,\ldots ,\alpha -1,{\beta }_{1}\equiv \displaystyle \frac{\alpha +\beta }{2},\end{array}\end{eqnarray}$
where $\left[{\beta }_{1}\right]$ is the integer part of β1, ai, i = 0, 1, 2,…, [β1], are arbitrary bosonic constants and β is the degree of the ren-field Φ ≡ Φ(x, t, θ).
As in the super-symmetric (α = 2) case, one may find some possible integrable cases by fixing the constants ai of the ren-symmetric KdV equation (44). For instance, the Lax integrable systems,
$\begin{eqnarray}\begin{array}{l}{{\rm{\Phi }}}_{{jt}}+{{\rm{\Phi }}}_{{jxxx}}-3{{ \mathcal R }}^{\alpha -j}{\left({{ \mathcal R }}^{j}{{\rm{\Phi }}}_{j}\right)}^{2}+{\rho }_{j}=0,{{ \mathcal R }}^{j}{\rho }_{j}=0,\\ j=0,1,\ldots ,\alpha -1,\end{array}\end{eqnarray}$
with ρj = 0 possessing Lax pair of
$\begin{eqnarray}\begin{array}{l}{{\rm{\Psi }}}_{{xx}}-({{ \mathcal R }}^{j}{{\rm{\Phi }}}_{j}+\lambda ){\rm{\Psi }}=0,\\ {{\rm{\Psi }}}_{t}+4{{\rm{\Psi }}}_{{xxx}}-3\left({{ \mathcal R }}^{j}{{\rm{\Phi }}}_{{jx}}\right){\rm{\Psi }}-6\left({{ \mathcal R }}^{j}{{\rm{\Phi }}}_{j}\right){{\rm{\Psi }}}_{x}=0,\end{array}\end{eqnarray}$
are just the special cases of (44). The degrees of Φj and ρj in (45) are j.
For α = 3, the ren-symmetric KdV equation (44) becomes
$\begin{eqnarray}\begin{array}{l}{{\rm{\Phi }}}_{0t}+{{\rm{\Phi }}}_{0{xxx}}+a{{\rm{\Phi }}}_{0}{{\rm{\Phi }}}_{0x}+b({ \mathcal R }{{\rm{\Phi }}}_{0})({{ \mathcal R }}^{2}{{\rm{\Phi }}}_{0})=0,{ \mathcal R }\\ ={\partial }_{\theta }-q{\theta }^{2}{\partial }_{x},\end{array}\end{eqnarray}$
$\begin{eqnarray}\begin{array}{l}{{\rm{\Phi }}}_{1t}+{{\rm{\Phi }}}_{1{xxx}}+a{{\rm{\Phi }}}_{1}({ \mathcal R }{{\rm{\Phi }}}_{1x})+b({ \mathcal R }{{\rm{\Phi }}}_{1}){{\rm{\Phi }}}_{1x}\\ +c{\left({{ \mathcal R }}^{2}{{\rm{\Phi }}}_{1}\right)}^{2}=0,\end{array}\end{eqnarray}$
$\begin{eqnarray}\begin{array}{l}{{\rm{\Phi }}}_{2t}+{{\rm{\Phi }}}_{2{xxx}}+a{{\rm{\Phi }}}_{2}({{ \mathcal R }}^{2}{{\rm{\Phi }}}_{2x})+b({ \mathcal R }{{\rm{\Phi }}}_{2})({ \mathcal R }{{\rm{\Phi }}}_{2x})\\ +c({{ \mathcal R }}^{2}{{\rm{\Phi }}}_{2})({{\rm{\Phi }}}_{2x})=0,\end{array}\end{eqnarray}$
where a, b and c are arbitrary constants and Φ0, Φ1 and Φ2 are the ren-fields with degrees 0, 1 and 2, respectively.
The special integrable case (45) for {α = 3, j = 0} is related to (47) with b = 0 up to a re-scaling. (48) with {a = 0, c = b} is equivalent to the integrable case (45) for {α = 3, j = 1}. Taking {a = b = 0} in (49) leads to the equivalent special integrable ren-symmetric KdV equation (45) with {α = 3, j = 2}.
Incorporating the explicit forms for
$\begin{eqnarray*}{{\rm{\Phi }}}_{0}=u+\theta \zeta +{\theta }^{2}\xi ,{{\rm{\Phi }}}_{1}=\xi +\theta u+{\theta }^{2}\zeta ,{{\rm{\Phi }}}_{2}=\zeta +\theta \xi +{\theta }^{2}u,\end{eqnarray*}$
and the consistent commutation relations
$\begin{eqnarray}\xi \theta =q\theta \xi ,\zeta \theta ={q}^{2}\theta \zeta ,\xi \zeta ={q}^{2}\zeta \xi ,\zeta {\zeta }_{x}=q{\zeta }_{x}\zeta ,\zeta {\zeta }_{{xx}}=q{\zeta }_{{xx}}\zeta ,\end{eqnarray}$
leads to the coupled component forms of (47), (48) and (49)
$\begin{eqnarray}\begin{array}{l}{u}_{t}+{u}_{{xxx}}+{{auu}}_{x}-{q}^{2}b\zeta \cdot \xi =0,\\ {\zeta }_{t}+{\zeta }_{{xxx}}+a{\left(\zeta u\right)}_{x}+b\zeta {u}_{x}+{bq}{\xi }^{2}=0,\\ {\xi }_{t}+{\xi }_{{xxx}}+a{\left(u\xi \right)}_{x}+(a-b){\zeta }_{x}\cdot \zeta =0,\end{array}\end{eqnarray}$
$\begin{eqnarray}\begin{array}{l}{\xi }_{t}+{\xi }_{{xxx}}+a\xi {u}_{x}+{bu}{\xi }_{x}+{cq}{\zeta }^{2}=0,\\ {u}_{t}+{u}_{{xxx}}+(a+b){{uu}}_{x}-{{aq}}^{2}{\zeta }_{x}\cdot \xi -(2{{cq}}^{2}+b)\\ {\xi }_{x}\cdot \zeta =0,\\ {\zeta }_{t}+{\zeta }_{{xxx}}+(a-{bq}-{{cq}}^{2})\zeta {u}_{x}\\ +(b-{{aq}}^{2})u{\zeta }_{x}-{aq}{\xi }_{{xx}}\cdot \xi +q(c-b){\xi }_{x}^{2}=0,\end{array}\end{eqnarray}$
and
$\begin{eqnarray}\begin{array}{rcl} & & {\zeta }_{t}+{\zeta }_{{xxx}}-{{aq}}^{2}\zeta {u}_{x}+b\xi \cdot {\xi }_{x}-{{cq}}^{2}u{\zeta }_{x}=0,\\ & & {u}_{t}+{u}_{{xxx}}-q({aq}+{cq}-b){{uu}}_{x}+({aq}-b)\xi \cdot {\zeta }_{{xx}}-({{bq}}^{2}+{cq}-c){\xi }_{x}\cdot {\zeta }_{x}-{aq}{\xi }_{{xx}}\cdot \zeta =0,\\ & & {\xi }_{t}+{\xi }_{{xxx}}-({{aq}}^{2}+b)\xi {u}_{x}-(b+c){q}^{2}u{\xi }_{x}+a{\zeta }_{{xx}}\cdot \zeta +c{\zeta }_{x}^{2}=0,\end{array}\end{eqnarray}$
respectively. u in (51)–(53) is a bosonic field and ξ and ζ are ren-fields with degrees 1 and 2, respectively.
The known special integrable ren-symmetric KdV systems of (51) and (52) read
$\begin{eqnarray}\begin{array}{rcl} & & {u}_{t}+{u}_{{xxx}}-6{{uu}}_{x}=0,\\ & & {\xi }_{t}+{\xi }_{{xxx}}-6{\left(u\xi \right)}_{x}-6{\zeta }_{x}\cdot \zeta =0,\\ & & {\zeta }_{t}+{\zeta }_{{xxx}}-6{\left(\zeta u\right)}_{x}=0,\end{array}\end{eqnarray}$
and
$\begin{eqnarray}\begin{array}{rcl} & & {u}_{t}+{u}_{{xxx}}-6{{uu}}_{x}-6q(1-q){\xi }_{x}\cdot \zeta =0,\\ & & {\xi }_{t}+{\xi }_{{xxx}}-6u{\xi }_{x}-6q{\zeta }^{2}=0,\\ & & {\zeta }_{t}+{\zeta }_{{xxx}}-6{\left(\zeta u\right)}_{x}=0,\end{array}\end{eqnarray}$
respectively. The special integrable ren-symmetric KdV system of (53) is equivalent to that of (52) by the transformation ζxζ.
The choice $\alpha =4,q={\rm{i}},{ \mathcal R }={\partial }_{\theta }-\tfrac{1+q}{2}{\theta }^{3}{\partial }_{x}$ leads ren-symmetric KdV equation (44) straightforwardly to
$\begin{eqnarray}{{\rm{\Phi }}}_{0t}+{{\rm{\Phi }}}_{0{xxx}}+a{{\rm{\Phi }}}_{0}{{\rm{\Phi }}}_{0x}+b({ \mathcal R }{{\rm{\Phi }}}_{0})({{ \mathcal R }}^{3}{{\rm{\Phi }}}_{0})+c{\left({{ \mathcal R }}^{2}{{\rm{\Phi }}}_{0}\right)}^{2}=0,\end{eqnarray}$
$\begin{eqnarray}\begin{array}{l}{{\rm{\Phi }}}_{1t}+{{\rm{\Phi }}}_{1{xxx}}+a{{\rm{\Phi }}}_{1}{ \mathcal R }{{\rm{\Phi }}}_{1x}+b({ \mathcal R }{{\rm{\Phi }}}_{1}){{\rm{\Phi }}}_{1x}\\ +c({{ \mathcal R }}^{2}{{\rm{\Phi }}}_{1})({{ \mathcal R }}^{3}{{\rm{\Phi }}}_{1})=0,\end{array}\end{eqnarray}$
$\begin{eqnarray}\begin{array}{l}{{\rm{\Phi }}}_{2t}+{{\rm{\Phi }}}_{2{xxx}}+a{{\rm{\Phi }}}_{2}{{ \mathcal R }}^{2}{{\rm{\Phi }}}_{2x}+b({ \mathcal R }{{\rm{\Phi }}}_{2})({ \mathcal R }{{\rm{\Phi }}}_{2x})\\ +c({{ \mathcal R }}^{2}{{\rm{\Phi }}}_{2})({{\rm{\Phi }}}_{2x})+d{\left({{ \mathcal R }}^{3}{{\rm{\Phi }}}_{2}\right)}^{2}=0,\end{array}\end{eqnarray}$
$\begin{eqnarray}\begin{array}{l}{{\rm{\Phi }}}_{3t}+{{\rm{\Phi }}}_{3{xxx}}+a{{\rm{\Phi }}}_{3}{{ \mathcal R }}^{3}{{\rm{\Phi }}}_{3x}+b({ \mathcal R }{{\rm{\Phi }}}_{3})({{ \mathcal R }}^{2}{{\rm{\Phi }}}_{3x})\\ +c({{ \mathcal R }}^{2}{{\rm{\Phi }}}_{3})({ \mathcal R }{{\rm{\Phi }}}_{3x})+d{{\rm{\Phi }}}_{3x}{{ \mathcal R }}^{3}{{\rm{\Phi }}}_{3}=0,\end{array}\end{eqnarray}$
where Φ0, Φ1, Φ2 and Φ3 are the ren-fields with degrees 0, 1, 2 and 3, respectively.

5. Summary and discussions

In retrospect, the usual Grassmann number and the super-symmetric derivative have been straightforwardly extended to more general forms, the R-number and the ren-symmetric derivatives, to be applicable to describe physically important quasi-particles, anyons. Applying the R-numbers and ren-symmetric derivatives to integrable theory, we have extended the super-integrable and super-symmetric integrable systems to ren-integrable and ren-symmetric integrable systems.
It is interesting that the ren-integrable KdV system (34) possesses completely the same form for arbitrary α even for the boson case (α = ∞ ) and fermion case (α = 2). The only difference is that the degrees of the ren-fields ξ1 and ξ2 should be complementary, say, β and αβ, such that ξ1ξ2 becomes a boson.
The ren-integrable system (34) can be further extended to
$\begin{eqnarray}\begin{array}{rcl} & & {u}_{t}={\left[3{u}^{2}-{u}_{{xx}}+\langle \phi | \phi \rangle +12\displaystyle \sum _{\alpha =2}^{\infty }\displaystyle \sum _{{\beta }_{\alpha }=0}^{\alpha -1}(\langle {\xi }_{\{\alpha ,{\beta }_{\alpha }\}}| {\zeta }_{\{\alpha ,\alpha -{\beta }_{\alpha }\},x}\rangle -\langle {\xi }_{\{\alpha ,{\beta }_{\alpha }\},x}| {\zeta }_{\{\alpha ,\alpha -{\beta }_{\alpha }\}}\rangle )\right]}_{x},\\ & & ({\partial }_{t}+4{\partial }_{x}^{3}-6u{\partial }_{x}-3{u}_{x})| \phi \rangle =0,\\ & & ({\partial }_{t}+4{\partial }_{x}^{3}-6u{\partial }_{x}-3{u}_{x})| {\xi }_{\{\alpha ,{\beta }_{\alpha }\}}\rangle =0,\\ & & ({\partial }_{t}+4{\partial }_{x}^{3}-6u{\partial }_{x}-3{u}_{x})| {\zeta }_{\{\alpha ,\alpha -{\beta }_{\alpha }\}}\rangle =0,\end{array}\end{eqnarray}$
where ∣φ⟩ is a boson vector field, $| {\xi }_{\{\alpha ,{\beta }_{\alpha }\}}\rangle $ is a βα order ren-vector field and $| {\zeta }_{\{\alpha ,\alpha -{\beta }_{\alpha }\}}\rangle $ is an αβα order ren-vector field. The general ren-integrable KdV-type system (60) is still a Lax integrable model.
Although the number of papers produced so far on the construction of solutions is incredibly large, it is necessary to develop some novel methods, one of which may be the so-called bosonization method [37], to construct special solutions of the ren-integrable KdV system (34) (or more generally (60)) and the ren-symmetric KdV system (44).
R-numbers may also be used to find other types of integrable models such as dark equations and integrable couplings [66, 67]. The concept of dark equations was first introduced by Kupershmidt in [6870] where many types of dark KdV systems are given. The modified dark KdV equations are studied in [71]. The bosonization procedure of the super-symmetric systems have offered some new types of dark integrable systems [37]. The super-symmetric dark systems have also been proposed in a preprint paper [72]. The bosonization of ren-symmetric integrable models may yield further dark integrable equations. In fact, applying the bosonization assumptions
$\begin{eqnarray}\xi =\eta p,\zeta ={\eta }^{2}q,\end{eqnarray}$
with the {x, t}-independent R-number η and the {x, t}-dependent boson fields p and q on the integrable systems (54) and/or (55) yields the same standard dark equation system,
$\begin{eqnarray}\begin{array}{rcl} & & {u}_{t}+{u}_{{xxx}}-6{{uu}}_{x}=0,\\ & & {p}_{t}+{p}_{{xxx}}-6{\left({up}\right)}_{x}=0,\\ & & {q}_{t}+{q}_{{xxx}}-6{\left({uq}\right)}_{x}=0,\end{array}\end{eqnarray}$
because η3 = 0. From (62), we know that the ren-integrable systems (54) and (55) possess special types of exact solutions with u being an arbitrary solution of the usual KdV equation and ξ and ζ being given by (61) while p and q are arbitrary symmetries of the usual KdV equation.
The dark systems can also be considered as some special type of integrable couplings [7274]. More about the ren-integrable, ren-symmetric integrable and dark integrable systems should be further studied later.

The work was sponsored by the National Natural Science Foundation of China (Nos. 12235007, 11 975 131). The author wishes to thank Profs. Q P Liu, B F Feng, X B Hu, R X Yao and M Jia and Drs. K Tian, X Z Hao and D D Zhang for their helpful discussions.

1
Abers E S Lee B W 1973 Gauge theories Phys. Rep. 9 1

DOI

2
Deser S 2022 Forks in the Road: A Life in Physics Singapore World Scientific

3
Lou S Y Feng B F 2023 Symmetries and integrable systems Fundam. Res. https://doi.org/10.1016/j.fmre.2023.11.008

4
Lou S Y Hu X B Liu Q P 2021 Duality of positive and negative integrable hierarchies via relativistically invariant fields J. High Energy Phys. 07 058

DOI

5
Jia M Lou S Y 2022 Integrable nonlinear Klein–Gordon systems with PT nonlocality and/or space-time exchange nonlocality Appl. Math. Lett. 130 108018

DOI

6
Hao X Z Lou S Y 2022 Special decompositions and linear superpositions of nonlinear systems: BKP and dispersionless BKP equations Math. Methods Appl. Sci. 45 5774

DOI

7
Lou S Y Hao X Z Jia M 2023 Deformation conjecture: deforming lower dimensional integrable systems to higher dimensional ones by using conservation laws J. High Energy Phys. 03 018

DOI

8
Lou S Y 2020 Full reversal symmetric multiple soliton solutions for integrable systems Acta Phys. Sin. 69 010503 in Chinese

DOI

9
Lou S Y 2020 Multi-place physics and multi-place nonlocal systems Commun. Theor. Phys. 72 057001

DOI

10
Gu C H Hu H S Zhou Z X 2005 Darboux Transformations in Integrable Systems: Theory and Their Applications to Geometry Berlin Springer 1-60

11
Li Y Q Chen J C Chen Y Lou S Y 2014 Darboux transformations via Lie point symmetries: KdV equation Chin. Phys. Lett. 31 010201

DOI

12
Liu S J Tang X Y Lou S Y 2018 Multiple Darboux–Bäcklund transformations via truncated Painlevé expansion and Lie point symmetry approach Chin. Phys. B 27 060201

DOI

13
Clarkson P A Kruskal M D 1989 New similarity reductions of the Boussinesq equation J. Math. Phys. 30 2201

DOI

14
Clarkson P A Mansfield E L 1994 Algorithms for the nonclassical method of symmetry reductions SIAM J. Appl. Math. 54 1693

DOI

15
Lou S Y 1990 Similarity solutions of the Kadomtsev–Petviashvili equation J. Phys. A: Math. Gen. 23 L649

DOI

16
Lou S Y Ruan H Y Chen D F Chen W Z 1991 Similarity reductions of the KP equation by a direct method J. Phys. A: Math. Gen. 24 1455

DOI

17
Yao R X Li Y Lou S Y 2021 A new set and new relations of multiple soliton solutions of (2+1)-dimensional Sawada–Kotera equation Commun. Nonlinear Sci. Numer. Simul. 99 105820

DOI

18
Wang W Yao R X Lou S Y 2020 Abundant traveling wave structures of (1+1)-dimensional Sawada–Kotera equation: few cycle solitons and soliton molecules Chin. Phys. Lett. 37 100501

DOI

19
Cao C W Geng X G 1990 C Neumann and Bargmann systems associated with the coupled KdV soliton hierarchy J. Phys. A: Math. Gen. 23 4117

DOI

20
Cheng Y Li Y S 1991 The constraint of the Kadomtsev–Petviashvili equation and its special solutions Phys. Lett.A 157 22

DOI

21
Konopelchenko B Sidorenko J Strampp W 1991 (1+1)-dimensional integrable systems as symmetry constraints of (2+1)-dimensional systems Phys. Lett. A 157 1723

DOI

22
Lou S Y Hu X B 1997 Infinitely many Lax pairs and symmetry constraints of the KP equation J. Math. Phys. 38 6401

DOI

23
Li Y Yao R X Xia Y R Lou S Y 2021 Plenty of novel interaction structures of soliton molecules and asymmetric solitons to (2+1)-dimensional Sawada–Kotera equation Commun. Nonlinear Sci. Numer. Simul. 100 105843

DOI

24
Lou S Y Yao R X 2017 Primary branch solutions of first order autonomous scalar partial differential equations via Lie symmetry approach J. Nonlinear Math. Phys. 24 379

DOI

25
Lou S Y Yao R X 2017 Commun. Theor. Phys. 68 21

DOI

26
Freedman D Z Schwarz J H 1978 N = 4 supergravity theory with local SU(2) × SU(2) invariance Nucl. Phys.B 137 333 N=4 supergravity theory with local SU(2)×SU(2) invariance

DOI

27
Angelantonj C Ferrara S Trigiante M 2003 New D = 4 gauged supergravities from N = 4 orientifolds with fluxes J. High Energy Phys. 10 015

DOI

28
Cooper F Khare A Sukhatme U 1995 Supersymmetry and quantum mechanics Phys. Rep. 251 267

DOI

29
Polchinski J 2007 String Theory, Vol. 2: Superstring Theory and Beyond Cambridge Cambridge University Press

30
Manin Y Radul A O 1985 A supersymmetric extension of the Kadomtsev–Petviashvili hierarchy Commun. Math. Phys. 98 65

DOI

31
Mathieu P 1988 Supersymmetric extension of the Korteweg–de Vries equation J. Math. Phys. 29 2499

DOI

32
Tian K Liu Q 2009 A supersymmetric Sawada–Kotera equation Phys. Lett.A 373 1807

DOI

33
Labelle P Mathieu P 1988 N = 2 superconformal algebra and integrable O(2) fermionic extensions of the Korteweg–de Vries equation Phys. Lett. B 215 718

DOI

34
Gao X N Lou S Y 2012 Bosonization of supersymmetric KdV equation Phys. Lett. B 707 209

DOI

35
Zhang M X Liu Q P Shen Y L Wu K 2009 Bilinear approach to N = 2 supersymmetric KdV equations Sci. ChinaA 52 1973

DOI

36
Krakowski D Regev A 1973 The polynomial identities of the Grassmann algebra Trans. Am. Math. Soc. 181 429

DOI

37
Gao X N Lou S Y Tang X Y 2013 Bosonization, singularity analysis, nonlocal symmetry reductions and exact solutions of supersymmetric KdV equation J. High Energy Phys. 5 029

DOI

38
Wilczek F 1982 Quantum mechanics of fractional-spin particles Phys. Rev. Lett. 49 957

DOI

39
Wilczek F 1990 Fractional Statistics and Anyon Superconductivity Singapore World Scientific

40
Nayak C Simon S H Stern A Freedman M Sarma S D 2008 Non-Abelian anyons and topological quantum computation Rev. Mod. Phys. 80 1083

DOI

41
Google Quantum AI and Collaborators 2023 Non-Abelian braiding of graph vertices in a superconducting processor Nature 618 264

DOI

42
Moore G Read N 1991 Nonabelions in the fractional quantum Hall effect Nucl. Phys. B 360 362

DOI

43
Ivanov D A 2001 Non-Abelian statistics of half-quantum vortices in P-wave superconductors Phys. Rev. Lett. 86 268

DOI

44
Lutchyn R M Sau J D Sarma S D 2010 Majorana fermions and a topological phase transition in semiconductor–superconductor heterostructures Phys. Rev. Lett. 105 077001

DOI

45
Kupershmidt B A 1984 A super Korteweg–de Vries equation: an integrable system Phys. Lett.A 102 213

DOI

46
Kupershmidt B A 1984 Super-integrable systems Proc. Natl.Acad. Sci. USA 81 6562

DOI

47
Kupershmidt B A 1984 Bosons and fermions interacting integrably with the Korteweg–de Vries field J. Phys. A: Math. Gen. 17 L869

DOI

48
Kupershmidt B A 1987 Elements of Superintegrable: Systems Basic Techniques and Results Berlin Springer Mathematics and Its Applications (MAIA) 34 1

DOI

49
Ren B Lou S Y 2018 A super mKdV equation: bosonization, Painlevé property and exact solutions Commun. Theor. Phys. 69 343

DOI

50
Ma W X He J S Qin Z Y 2008 A supertrace identity and its applications to superintegrable systems J. Math. Phys. 49 033511

DOI

51
Wang H F He B Y 2023 2+1 dimensional nonisospectral super integrable hierarchies associated with a class of extended Lie superalgebras Chaos Solitons Fractals 171 113443

DOI

52
Majid S Rodríguez-Plaza M J 1994 Random walk and the heat equation on superspace and anyspace J. Math. Phys. 35 3753

DOI

53
Berezin F 1987 Introduction to Superanalysis Dordrecht Reidel 1st ed

54
Kieburg M Kohler H Guhr T 2009 Integration of Grassmann variables over invariant functions on flat superspaces J. Math. Phys. 50 013528

DOI

55
Melnikov V K 1983 On equations for wave interactions Lett. Math. Phys. 7 129

DOI

56
Melnikov V K 1987 A direct method for deriving a multi-soliton solution for the problem of interaction of waves on the x, y plane Commun. Math. Phys. 112 639

DOI

57
Melnikov V K 1989 Interaction of solitary waves in the system described by the Kadomtsev–Petviashvili equation with a self-consistent source Commun. Math. Phys. 126 201

DOI

58
Zeng Y B Ma W X Lin R L 2000 Integration of the soliton hierarchy with self-consistent sources J. Math. Phys. 41 5453

DOI

59
Hu X B Wang H Y 2006 Construction of dKP and BKP equations with self-consistent sources Inverse Problems 22 1903

DOI

60
Hu X B Wang H Y 2007 New type of Kadomtsev–Petviashvili equation with self-consistent sources and its bilinear Bäcklund transformation Inverse Problems 23 1433

DOI

61
Wang H Y Hu X B 2011 A hybrid type of soliton equations with self-consistent sources: KP and Toda cases J. Math. Anal. Appl. 376 393

DOI

62
Zhang D J 2003 The soliton solutions of some soliton equations with self-consistent sources Chaos Solitons Fractals 18 31

DOI

63
Tian H J Zhang D J 2020 Cauchy matrix approach to integrable equations with self-consistent sources and the Yajima–Oikawa system Appl. Math. Lett. 103 106165

DOI

64
Mathieu P 1988 The Painlevé property for fermionic extensions of the Korteweg–de Vries equation J. Math. Phys. 29 2499

DOI

65
Gao X N Yang X D Lou S Y 2012 Exact solutions of supersymmetric KdV-a system via bosonization approach Commun. Theor. Phys. 58 617

DOI

66
Lou S Y 2011 Dark parameterizations, equivalent partner fields and integrable systems Commun. Theor. Phys. 55 743

DOI

67
Peng L Yang X D Lou S Y 2012 Integrable KP coupling and its exact solution Commun. Theor. Phys. 58 1

DOI

68
Kupershmidt B A 2001 Dark equations J. Nonlinear Math. Phys. 8 363

DOI

69
Prykarpatsky Y A Urbaniak I Kycia R A Prykarpatski A K 2022 Dark type dynamical systems: the integrability algorithm and applications Algorithms 15 266

DOI

70
Prykarpatski A K Pukach P Y Vovk M I 2023 Symplectic geometry aspects of the parametrically-dependent Kardar–Parisi–Zhang equation of spin glasses theory, its integrability and related thermodynamic stability Entropy 25 308

DOI

71
Xiong N Lou S Y Li B Chen Y 2017 Classification of dark modified KdV equation Commun. Theor. Phys. 68 13

DOI

72
Lou S Y 2023 Extensions of dark KdV equations: nonhomogeneous classifications, bosonizations of fermionic systems and supersymmetric dark systems arXiv:2312.14538v1 [nonl.SI]

73
Ma W X Fuchssteiner B 1996 The bi-Hamiltonian structure of the perturbation equations of the KdV hierarchy Phys. Lett.A 213 49

DOI

74
Ma W X 2005 Integrable couplings of vector AKNS soliton equations J. Math. Phys. 46 033507

DOI

Outlines

/