Welcome to visit Communications in Theoretical Physics,
Mathematical Physics

Nonlinear waves for a variable-coefficient modified Kadomtsev–Petviashvili system in plasma physics and electrodynamics

  • Guang-Mei Wei ,
  • Yu-Xin Song ,
  • Tian-Chi Xing ,
  • Shu Miao
Expand
  • School of Mathematical Sciences, Beihang University, 100191 Beijing, China

Received date: 2024-07-06

  Accepted date: 2024-09-09

  Online published: 2024-11-08

Copyright

© 2025 Institute of Theoretical Physics CAS, Chinese Physical Society and IOP Publishing. All rights, including for text and data mining, AI training, and similar technologies, are reserved.

Abstract

In this paper, a variable-coefficient modified Kadomtsev–Petviashvili (vcmKP) system is investigated by modeling the propagation of electromagnetic waves in an isotropic charge-free infinite ferromagnetic thin film and nonlinear waves in plasma physics and electrodynamics. Painlevé analysis is given out, and an auto-Bäcklund transformation is constructed via the truncated Painlevé expansion. Based on the auto-Bäcklund transformation, analytic solutions are given, including the solitonic, periodic and rational solutions. Using the Lie symmetry approach, infinitesimal generators and symmetry groups are presented. With the Lagrangian, the vcmKP equation is shown to be nonlinearly self-adjoint. Moreover, conservation laws for the vcmKP equation are derived by means of a general conservation theorem. Besides, the physical characteristics of the influences of the coefficient parameters on the solutions are discussed graphically. Those solutions have comprehensive implications for the propagation of solitary waves in nonuniform backgrounds.

Cite this article

Guang-Mei Wei , Yu-Xin Song , Tian-Chi Xing , Shu Miao . Nonlinear waves for a variable-coefficient modified Kadomtsev–Petviashvili system in plasma physics and electrodynamics[J]. Communications in Theoretical Physics, 2025 , 77(1) : 015003 . DOI: 10.1088/1572-9494/ad782d

1. Introduction

Nonlinear evolution equations (NLEEs) can model some important nonlinear phenomena in many fields, such as nonlinear optics, solid state physics, plasma physics, magnetic field, chemical physics, biophysics, quantum mechanics, fluid mechanics, nuclear physics and shallow water wave [17], etc.
Over the past few decades, various kinds of techniques have been successively proposed for investigating the solutions and properties of the NLEEs, including the bilinear method [8], Darboux transformation method [911], Bäcklund transformation method (BT) [12], Painlevé analysis method [13], inverse scattering transformation method (IST) [14, 15], the Exp-function method [16], the homogeneous balance method [17], the tanh and extended tanh methods [1820], Lax pair method [21] and Lie symmetry method [22, 23], etc.
As an important prototypical NLEE, the modified Korteweg–de Vries (mKdV) equation [24, 25]
$\begin{eqnarray}{u}_{t}-6{u}^{2}\,{u}_{x}+{u}_{{xxx}}=0\end{eqnarray}$
is one of the most fundamental modified versions of KdV equation, with the sign of the cubic nonlinearity negative, and in such condition there exists the Miura transformation connecting the mKdV equation with the KdV one [5].
The modified Kadomtsev–Petviashvili (mKP) equation [26] is a two-spatial dimensional analog of mKdV equation (1),
$\begin{eqnarray}\left\{\begin{array}{l}{u}_{t}-6{u}^{2}\,{u}_{x}+{u}_{{xxx}}-3\alpha (2v\,{u}_{x}-\alpha \,{v}_{y})=0,\\ {u}_{y}={v}_{x},\end{array}\right.\end{eqnarray}$
where x, y are space coordinates, t is a temporal coordinate and α is an arbitrary constant. Equation (2) can describe the propagation of electromagnetic waves in an isotropic charge-free infinite ferromagnetic thin film [3, 2628] and water wave in the xy plane when the nonlinearity is higher than the KP equation [29], general nonlinear wave phenomena exhibiting cubic nonlinearity, dispersion and small transversality in (2+1) dimensions [30], nonlinear wave in the plasma physics and electrodynamics [4, 31].
Many novel results in solutions of the mKP equation (2) have been constructed in recent years. The N-front wave solutions have been obtained by the perturbation expansion method [4]. Two graded symmetry Lie algebras for modified KP equations have been obtained [32]. Lie algebraic structures of the scalar mKP flows have been investigated [33]. Some special types of the multi-soliton solutions of equation (2) have been provided by using the standard truncated Painlevé analysis approach [34], and the interaction between kink solitons and line solitons have been investigated via the τ-function and the Binet–Cauchy formula [35]. For the variable-coefficient mKP equation, the Painlevé test has been used to find the necessary integrability conditions, Bäcklund transformation has been given to find kink solitary wave solution, and N-soliton solutions have been obtained for the vcmKP system [36]. The obtained integrability conditions from Compatible Riccati Expansion (CRE) solvability have shown a (3+1)-dimensional variable-coefficient mKP system and novel shock, solitary and periodic wave solutions have been obtained from both CRE and the direct reduction method [37].
When the media are inhomogeneous or the boundaries are nonuniform, the variable-coefficient models are able to describe various situations more realistically than their constant-coefficient counterparts [38]. In this paper, we will focus our attention on a variable-coefficient modified Kadomtsev–Petviashvili (vcmKP) equation [39], a generalized case of equation (2) from fluids and plasma [40],
$\begin{eqnarray}\left\{\begin{array}{l}{u}_{t}-6{u}^{2}\,{u}_{x}+{u}_{{xxx}}+{a}_{1}v\,{u}_{x}+{a}_{2}\,{v}_{y}+{b}_{1}(t){u}_{x}+{b}_{2}(t){u}_{y}=0,\\ {u}_{y}={v}_{x},\end{array}\right.\end{eqnarray}$
where a1, a2 are two arbitrary constants, b1(t) and b2(t) are two arbitrary functions of t, the real differentiable function u(x, y, t) standing for the first derivative of the angle made between the propagation direction for the electromagnetic wave and direction for the uniform magnetization of the medium with respect to x, v(x, y, t) meaning a real differentiable function, x representing the stretched wave variable with the assumption that the electromagnetic wave propagates along the x direction on the xy plane, y denoting the scaled stretched variable along the normal y direction, t indicating the scaled stretched time [36].
The structure of this paper is listed as follows. In section 2, the Painlevé test will be applied to equation (3) in order to obtain Painlevé integrable conditions, auto-Bäcklund transformation will be presented via the truncated Painlevé expansion, and analytic solutions will be provided, including the solitonic, periodic and rational solutions. In section 3, the infinitesimal generators and symmetry groups of equation (3) will be presented by the Lie group method. In section 4, the optimal system and similarity reductions to partial differential equations (PDEs) will be obtained, with some similarity solutions provided. In section 4, by virtue of symbolic computation, nonlinear self-adjointness for equation (3) will be presented. Based on the nonlinear self-adjointness, an infinite number of conservation laws will be derived with a general conservation. Conclusions and discussions are given in the last section.

2. Painlevé property, auto-Bäcklund transformation and analytic solutions

2.1. Painlevé property

Painlevé integrability plays a very important role in the structure of the solutions of a given NLEE [13, 4144].
We assume solutions of equation (3) have the form of the following generalized Laurent expansion [41, 42],
$\begin{eqnarray}\begin{array}{rcl}u(x,y,t) & = & {\phi }^{\,p}(x,y,t)\displaystyle \sum _{j=0}^{\infty }{u}_{j}(y,t){\phi }^{\,j}(x,y,t),\\ v(x,y,t) & = & {\phi }^{\,q}(x,y,t)\displaystyle \sum _{j=0}^{\infty }{v}_{j}(y,t){\phi }^{\,j}(x,y,t),\end{array}\end{eqnarray}$
with φ(x, y, t) = x + ψ(y, t),where ψ(y, t) is an arbitrary function of y and t, and uj(y, t), vj(y, t)(j = 0, 1, 2, ⋯ ) are all analytic functions of y and t, in the neighborhood of a noncharacteristic movable singularity manifold defined by φ(x, y, t) = 0.
By the leading-order analysis, one can get
$\begin{eqnarray}p=1,q=1,{u}_{0}=\pm 1,{v}_{0}=\mp {\psi }_{y}.\end{eqnarray}$
It is found that the resonances occur at j = − 1, 1, 3, 4, and equation (3) possesses the Painlevé property if and only if
$\begin{eqnarray}{a}_{2}=\displaystyle \frac{1}{12}{a}_{1}^{2},\end{eqnarray}$
while coefficient functions b1(t) and b2(t) are free.
Without losing generality, we set a1 = − 6α, a2 = 3α2 in equation (3) in the next investigation.

2.2. Auto-Bäcklund transformation and analytic solutions

Bäcklund transformation connects the solutions of two differential equations, i.e. if the solution of one equation is known, the solution of the other equation can be obtained by this transformation. In particular, if both solutions of the transformation are of the same equation, it is called the auto-Bäcklund transformation of equation [45].
Taking the general form φ = φ(x, y, t) in equation (4) and u1 = 0, v1 = 0 as the seed solutions and truncating the Painlevé expansion at the constant-level term, one can get the following auto-Bäcklund transformation for the vcmKP equation (3):
$\begin{eqnarray}u={\left(\mathrm{ln}\,\phi \right)}_{x},v={\left(\mathrm{ln}\,\phi \right)}_{y},\end{eqnarray}$
where φ(x, y, t) satisfies the following equations,
$\begin{eqnarray}{\phi }_{{xx}}+\alpha {\phi }_{y}=0,\end{eqnarray}$
$\begin{eqnarray}{\phi }_{t}+4{\phi }_{{xxx}}+{b}_{1}(t){\phi }_{x}+{b}_{2}(t){\phi }_{y}=0.\end{eqnarray}$
We are going to find the solutions in the form
$\begin{eqnarray}\phi =1+H(\rho )\,{{\rm{e}}}^{\theta }=1+H\,[k\,x+m\,y+l(t)]\,\,{{\rm{e}}}^{p\,x+r\,y+s(t)},\end{eqnarray}$
where k, m, p and r are all constants, l(t) and s(t) are functions of t, whereas function H(ρ) may be sine, cosine, hyperbolic cosine, hyperbolic sine and so on. Now, we consider some special situations.
Case 1 H(ρ) = 1
In this case, the general solution reads
$\begin{eqnarray}\begin{array}{rcl}{\phi }_{1} & = & 1+\,{{\rm{e}}}^{\theta },\ \ \ \theta =p\,x+r\,y+s(t)=p\,x-\displaystyle \frac{{p}^{2}}{\alpha }y\\ & & +\displaystyle \int \left[\displaystyle \frac{{p}^{2}{b}_{2}(t)}{\alpha }-4{p}^{3}-{{pb}}_{1}(t)\right]{\rm{d}}t.\end{array}\end{eqnarray}$
Case 2 $H(\rho )=\cosh (\rho )$ or $H(\rho )=\sinh (\rho )$
After some calculation with symbolic computation, we obtain the solutions
$\begin{eqnarray}{\phi }_{2}=1+\cosh (\rho )\,{{\rm{e}}}^{\theta },\end{eqnarray}$
$\begin{eqnarray}{\phi }_{3}=1+\sinh (\rho )\,{{\rm{e}}}^{\theta },\end{eqnarray}$
where
$\begin{eqnarray*}\begin{array}{rcl}\rho & = & {kx}-\displaystyle \frac{2{kp}}{\alpha }y+\displaystyle \int \left[\displaystyle \frac{2{kp}}{\alpha }{b}_{2}(t)-{{kb}}_{1}(t)\right.\\ & & \left.-4{k}^{3}-12{{kp}}^{2}\Space{0ex}{2.85ex}{0ex}\right]{\rm{d}}t,\\ \theta & = & {px}-\displaystyle \frac{{k}^{2}\,+\,{p}^{2}}{\alpha }y+\displaystyle \int \left[\displaystyle \frac{{k}^{2}+{p}^{2}}{\alpha }{b}_{2}(t)\right.\\ & & \left.-{{pb}}_{1}(t)-4{p}^{3}-12{{pk}}^{2}\Space{0ex}{2.85ex}{0ex}\right]{\rm{d}}t.\end{array}\end{eqnarray*}$
Case 3 $H(\rho )=\cos (\rho )$ or $H(\rho )=\sin (\rho )$
Similarly, we get the solutions
$\begin{eqnarray}{\phi }_{4}=1+\cos (\rho )\,{{\rm{e}}}^{\theta },\end{eqnarray}$
$\begin{eqnarray}{\phi }_{5}=1+\sin (\rho )\,{{\rm{e}}}^{\theta },\end{eqnarray}$
where
$\begin{eqnarray*}\begin{array}{rcl}\rho & = & {kx}-\displaystyle \frac{2{kp}}{\alpha }y\\ & & +\ \displaystyle \int \left[\displaystyle \frac{2{kp}}{\alpha }{b}_{2}(t)-{{kb}}_{1}(t)+4{k}^{3}-12{{kp}}^{2}\right]{\rm{d}}t,\\ \theta & = & {px}+\displaystyle \frac{{k}^{2}-{p}^{2}}{\alpha }y\\ & & +\ \displaystyle \int \left[\displaystyle \frac{{p}^{2}-{k}^{2}}{\alpha }{b}_{2}(t)-{{pb}}_{1}(t)-4{p}^{3}+12{{pk}}^{2}\right]{\rm{d}}t.\end{array}\end{eqnarray*}$
Because equations (8) and (9) are linear, some kinds of solutions φ listed above may be combined appropriately, and different kinds of solutions φ can be combined to form some new kinds of analytic solutions,
$\begin{eqnarray}\begin{array}{rcl}{\phi }_{6} & = & 1+\displaystyle \sum _{i=0}^{{N}_{1}}{d}_{i}^{(1)}\,{{\rm{e}}}^{{\theta }_{i}^{{\prime} }}+\displaystyle \sum _{i=0}^{{N}_{2}}{d}_{i}^{(2)}\cosh ({\rho }_{i}^{{\prime\prime} })\,{{\rm{e}}}^{{\theta }_{i}^{{\prime\prime} }}\\ & & +\ \displaystyle \sum _{i=0}^{{N}_{3}}{d}_{i}^{(3)}\sinh ({\rho }_{i}^{{\prime\prime} })\,{{\rm{e}}}^{{\theta }_{i}^{{\prime\prime} }}\\ & & +\ \displaystyle \sum _{i=0}^{{N}_{4}}{d}_{i}^{(4)}\cos ({\rho }_{i}^{\prime\prime\prime })\,{{\rm{e}}}^{{\theta }_{i}^{\prime\prime\prime }}+\displaystyle \sum _{i=0}^{{N}_{5}}{d}_{i}^{(5)}\sin ({\rho }_{i}^{\prime\prime\prime })\,{{\rm{e}}}^{{\theta }_{i}^{\prime\prime\prime }},\end{array}\end{eqnarray}$
where
$\begin{eqnarray*}\begin{array}{rcl}{\theta }_{i}^{{\prime} } & = & {p}_{i}\,x-\displaystyle \frac{{p}_{i}^{2}}{\alpha }y+\displaystyle \int \left[\displaystyle \frac{{p}_{i}^{2}{b}_{2}(t)}{\alpha }-4{p}_{i}^{3}-{p}_{i}{b}_{1}(t)\right]{\rm{d}}t,\\ {\rho }_{i}^{{\prime\prime} } & = & {k}_{i}x-\displaystyle \frac{2{k}_{i}{p}_{i}}{\alpha }y\\ & & +\ \displaystyle \int \left[\displaystyle \frac{2{k}_{i}{p}_{i}}{\alpha }{b}_{2}(t)-{k}_{i}{b}_{1}(t)-4{k}_{i}^{3}-12{k}_{i}{p}_{i}^{2}\right]{\rm{d}}t,\\ {\theta }_{i}^{{\prime\prime} } & = & {p}_{i}x-\displaystyle \frac{{k}_{i}^{2}+{p}_{i}^{2}}{\alpha }y\\ & & +\ \displaystyle \int \left[\displaystyle \frac{{k}_{i}^{2}+{p}_{i}^{2}}{\alpha }{b}_{2}(t)-{p}_{i}{b}_{1}(t)-4{p}_{i}^{3}-12{p}_{i}{k}_{i}^{2}\right]{\rm{d}}t,\\ {\rho }_{i}^{\prime\prime\prime } & = & {k}_{i}x-\displaystyle \frac{2{k}_{i}{p}_{i}}{\alpha }y\\ & & +\ \displaystyle \int \left[\displaystyle \frac{2{k}_{i}{p}_{i}}{\alpha }{b}_{2}(t)-{k}_{i}{b}_{1}(t)+4{k}_{i}^{3}-12{k}_{i}{p}_{i}^{2}\right]{\rm{d}}t,\\ {\theta }_{i}^{\prime\prime\prime } & = & {p}_{i}x+\displaystyle \frac{{k}_{i}^{2}-{p}_{i}^{2}}{\alpha }y\\ & & +\ \displaystyle \int \left[\displaystyle \frac{{p}_{i}^{2}-{k}_{i}^{2}}{\alpha }{b}_{2}(t)-{p}_{i}{b}_{1}(t)-4{p}_{i}^{3}+12{p}_{i}{k}_{i}^{2}\right]{\rm{d}}t,\end{array}\end{eqnarray*}$
where the parameters ${d}_{i}^{(j)},{k}_{i},{p}_{i}\,(i=0,1,\ldots ,{N}_{j};\,{N}_{j}\geqslant 0,j=1,\cdots ,5)$ are all arbitrary constants.
Thus the corresponding analytic solutions of equation (3) read as
$\begin{eqnarray}{u}_{i}={\left(\mathrm{ln}\,{\phi }_{i}\right)}_{x},{v}_{i}={\left(\mathrm{ln}\,{\phi }_{i}\right)}_{y},\qquad i=1,2,\cdots ,6.\end{eqnarray}$
In addition, we here provide one family rational solution as bellow,
$\begin{eqnarray*}\begin{array}{rcl}u & = & {\left(\mathrm{ln}\,\phi \right)}_{x},v={\left(\mathrm{ln}\,\phi \right)}_{y},\\ {\phi }_{7} & = & {c}_{4}{x}^{3}+{f}_{2}(t){x}^{2}+{f}_{1}(t)x+{f}_{0}(t)+\left[-\displaystyle \frac{6{c}_{4}}{\alpha }x+{g}_{0}(t)\right]y,\end{array}\end{eqnarray*}$
where
$\begin{eqnarray*}\begin{array}{rcl}{f}_{2}(t) & = & {c}_{3}-3{c}_{4}\displaystyle \int {b}_{1}(t)\,{\rm{d}}t,\\ {f}_{1}(t) & = & {c}_{2}+\displaystyle \int \left[\displaystyle \frac{6{c}_{4}{b}_{2}(t)}{\alpha }-2{b}_{1}(t){f}_{2}(t)\right]\,{\rm{d}}t,\\ {f}_{0}(t) & = & {c}_{1}-24{c}_{4}t+\displaystyle \int \left[\displaystyle \frac{2{b}_{2}(t){f}_{2}(t)}{\alpha }-{b}_{1}(t){f}_{1}(t)\right]\,{\rm{d}}t,\\ {g}_{0}(t) & = & -\displaystyle \frac{2{f}_{2}(t)}{\alpha }.\end{array}\end{eqnarray*}$

3. Lie symmetry analysis

The Lie symmetry method is a fundamental and powerful approach for finding closed-form solutions of all types of differential equations via the Lie transformations, which can help to reduce one PDF into a new one with less number of independent variables [22, 23, 4650]. Based on infinitesimal generators from Lie transformations the conservation laws can be derived by employing the multiplier method [46]. The goal of this study is to provide the symmetry property, similarity reduction and conservation laws of equation (3). In this section, we will perform Lie symmetry analysis for equation (3).
If equation (3) is invariant under a one-parameter Lie group of point transformations [46]
$\begin{eqnarray}\left\{\begin{array}{l}{x}^{* }=x+\varepsilon {\xi }^{x}(x,y,t,u,v)+O({\varepsilon }^{2}),\\ {y}^{* }=y+\varepsilon {\xi }^{y}(x,y,t,u,v)+O({\varepsilon }^{2}),\\ {t}^{* }=t+\varepsilon \tau (x,y,t,u,v)+O({\varepsilon }^{2}),\\ {u}^{* }=u+\varepsilon \eta (x,y,t,u,v)+O({\varepsilon }^{2}),\\ {v}^{* }=v+\varepsilon \,\omega (x,y,t,u,v)+O({\varepsilon }^{2}),\end{array}\right.\end{eqnarray}$
where ϵ is a small parameter and functions τ, ξx, ξy and η, ω are the infinitesimals depending on x, y, t and u, v. The corresponding infinitesimal generator is expressed as
$\begin{eqnarray}\begin{array}{rcl}V & = & {\xi }^{x}(x,y,t,u,v)\displaystyle \frac{\partial }{\partial x}+{\xi }^{y}(x,y,t,u,v)\displaystyle \frac{\partial }{\partial y}\\ & & +\tau (x,y,t,u,v)\displaystyle \frac{\partial }{\partial t}+\eta (x,y,t,u,v)\displaystyle \frac{\partial }{\partial u}\\ & & +\omega (x,y,t,u,v)\displaystyle \frac{\partial }{\partial v},\end{array}\end{eqnarray}$
then the vector field (19) generates a symmetry of equation (3), and V must satisfy Lie symmetry condition
$\begin{eqnarray}{\mathrm{pr}}^{(3)}V({E}_{1}){| }_{{E}_{1}=0}=0,\ {\mathrm{pr}}^{(1)}V({E}_{2}){| }_{{E}_{2}=0}=0,\end{eqnarray}$
where
$\begin{eqnarray}\left\{\begin{array}{l}{E}_{1}={u}_{t}-6{u}^{2}\,{u}_{x}+{u}_{{xxx}}-3\alpha (2v\,{u}_{x}-\alpha \,{v}_{y})+{b}_{1}(t){u}_{x}+{b}_{2}(t){u}_{y},\\ {E}_{2}={u}_{y}-{v}_{x},\end{array}\right.\end{eqnarray}$
and pr(3)V, pr(1)V are the third and first prolongations of the infinitesimal generator V, respectively [46].
Without loss of generality, we assume that ηv = ωu = 0. Expanding equation (20) and splitting the derivatives of u, v lead us to the following system of determining equations via symbolic computation,
$\begin{eqnarray}\left\{\begin{array}{l}{\xi }_{x}^{y}={\xi }_{y}^{x}={\tau }_{x}={\tau }_{y}={\eta }_{{uu}}=0,\\ {\eta }_{{xu}}-{\xi }_{{xx}}^{x}=0,\\ -{\xi }_{t}^{y}+{b}_{2}(t)(3{\xi }_{x}^{x}-{\xi }_{y}^{y})+\tau \,{b}_{2}^{\prime} (t)=0,\\ 3{\xi }_{x}^{x}-{\tau }_{t}=0,\\ {\omega }_{v}-{\xi }_{y}^{y}={\eta }_{u}-3{\xi }_{x}^{x},\\ {\omega }_{v}-{\xi }_{x}^{x}={\eta }_{u}-{\xi }_{y}^{y},\\ -{\xi }_{t}^{x}-{\xi }_{{xxx}}^{x}+3{\eta }_{{xxu}}-12{\xi }_{x}^{x}\,\alpha \,v-12{\xi }_{x}^{x}\,{u}^{2}+2{b}_{1}(t){\xi }_{x}^{x}-12u\,\eta -6\alpha \,\omega +\tau \,{b}_{1}^{\prime} (t)=0,\\ {\eta }_{t}-6{u}^{2}{\eta }_{x}+{\eta }_{{xxx}}-6\alpha \,v\,{\eta }_{x}+3{\alpha }^{2}\,{\omega }_{y}+{b}_{2}(t){\eta }_{y}+{b}_{1}(t){\eta }_{x}=0,\\ {\eta }_{y}={\omega }_{x}.\end{array}\right.\end{eqnarray}$
Solving the above equations yields the following infinitesimals,
$\begin{eqnarray}\left\{\begin{array}{l}{\xi }^{x}={c}_{1}\,x-6\alpha \,f(t)+3{c}_{1}\,t\,{b}_{1}(t)-{c}_{1}\displaystyle \int {b}_{1}(t){\rm{d}}t+{c}_{2}\,{b}_{1}(t)+{c}_{3},\\ {\xi }^{y}=2{c}_{1}\,y+3{c}_{1}\,t\,{b}_{2}(t)-2{c}_{1}\displaystyle \int {b}_{2}(t){\rm{d}}t+{c}_{2}\,{b}_{2}(t)+{c}_{4},\\ \tau =3{c}_{1}\,t+{c}_{2},\\ \eta =-{c}_{1}\,u,\\ \omega =-2{c}_{1}\,v+f^{\prime} (t),\end{array}\right.\end{eqnarray}$
where c1, c2, c3 are all arbitrary constants and f(t) is an arbitrary differentiable function of t.
Thus, the Lie algebra of equation (3) is spanned via the following Lie symmetry generators
$\begin{eqnarray}\left\{\begin{array}{l}{V}_{1}=\displaystyle \frac{\partial }{\partial \,x},\\ {V}_{2}=\displaystyle \frac{\partial }{\partial \,y},\\ {V}_{3}={b}_{1}(t)\displaystyle \frac{\partial }{\partial \,x}+{b}_{2}(t)\displaystyle \frac{\partial }{\partial \,y}+\displaystyle \frac{\partial }{\partial \,t},\\ {V}_{4}=-6\alpha \,f(t)\displaystyle \frac{\partial }{\partial \,x}+f^{\prime} (t)\displaystyle \frac{\partial }{\partial \,v},\\ {V}_{5}=(x+3t\,{b}_{1}(t)-\displaystyle \int {b}_{1}(t)\,{\rm{d}}t)\displaystyle \frac{\partial }{\partial \,x}+(2y+3t\,{b}_{2}(t)-2\displaystyle \int {b}_{2}(t)\,{\rm{d}}t)\displaystyle \frac{\partial }{\partial \,y}+3t\,\displaystyle \frac{\partial }{\partial \,t}-u\,\displaystyle \frac{\partial }{\partial \,u}-2v\,\displaystyle \frac{\partial }{\partial \,v},\end{array}\right.\end{eqnarray}$
with f(t) being an arbitrary differentiable function.
Hence one-parameter Lie symmetry groups G(ϵ) generated by Vi(i = 1, 2, ⋯ ,5) are
$\begin{eqnarray}{G}_{1}:(x,y,t,u,v)\to (x+\varepsilon ,y,t,u,v),\end{eqnarray}$
$\begin{eqnarray}{G}_{2}:(x,y,t,u,v)\to (x,y+\varepsilon ,t,u,v),\end{eqnarray}$
$\begin{eqnarray}\begin{array}{l}{G}_{3}:(x,y,t,u,v)\to (x+\displaystyle \int {b}_{1}(t+\varepsilon )-{b}_{1}(t){\rm{d}}t,y\\ \quad +\displaystyle \int {b}_{2}(t+\varepsilon )-{b}_{2}(t){\rm{d}}t,t+\varepsilon ,u,v),\end{array}\end{eqnarray}$
$\begin{eqnarray}{G}_{4}:(x,y,t,u,v)\to (x-6\,\alpha \,f(t)\varepsilon ,y,t,u,v+f^{\prime} (t)\varepsilon )\end{eqnarray}$
$\begin{eqnarray}\begin{array}{l} {G}_{5}:(x,y,t,u,v)\to (\,{{\rm{e}}}^{\varepsilon }(x-\displaystyle \int {b}_{1}(t){\rm{d}}t)\\ \quad +\,{{\rm{e}}}^{3\varepsilon }\,\displaystyle \int {b}_{1}(\,{{\rm{e}}}^{3\varepsilon }t){\rm{d}}t,\\ \,{{\rm{e}}}^{2\varepsilon }(y-\displaystyle \int {b}_{2}(t){\rm{d}}t)+\,{{\rm{e}}}^{3\varepsilon }\,\displaystyle \int {b}_{2}(\,{{\rm{e}}}^{3\varepsilon }t){\rm{d}}t,\end{array}\end{eqnarray}$
$\begin{eqnarray}\,{{\rm{e}}}^{3\varepsilon }\,t,\,{{\rm{e}}}^{-\varepsilon }\,u,\,{{\rm{e}}}^{-2\varepsilon }\,v).\end{eqnarray}$
Since Gi(i = 1, 2, ⋯ ,5) are symmetry groups, we can get the following theorem.

If {$u={f}_{1}(x,y,t),v={f}_{2}(x,y,t)$} is a solution of equation (3), so are the functions

$\begin{eqnarray}({u}^{(1)},{v}^{(1)})=\left({f}_{1}(x-\varepsilon ,y,t),{f}_{2}(x-\varepsilon ,y,t)\right),\end{eqnarray}$
$\begin{eqnarray}({u}^{(2)},{v}^{(2)})=\left({f}_{1}(x,y-\varepsilon ,t),{f}_{2}(x,y-\varepsilon ,t)\right),\end{eqnarray}$
$\begin{eqnarray}\begin{array}{rcl}({u}^{(3)},{v}^{(3)}) & = & \left({f}_{1}(x-\displaystyle \int {b}_{1}(t)-{b}_{1}(t-\varepsilon ){\rm{d}}t,y\right.\\ & & -\displaystyle \int {b}_{2}(t)-{b}_{2}(t-\varepsilon ){\rm{d}}t,t-\varepsilon ),\end{array}\end{eqnarray}$
$\begin{eqnarray}\begin{array}{l}{f}_{2}(x-\displaystyle \int {b}_{1}(t)-{b}_{1}(t-\varepsilon ){\rm{d}}t,y\\ \quad \left.-\displaystyle \int {b}_{2}(t)-{b}_{2}(t-\varepsilon ){\rm{d}}t,t-\varepsilon )\right),\end{array}\end{eqnarray}$
$\begin{eqnarray}\begin{array}{l}({u}^{(4)},{v}^{(4)})=\left({f}_{1}(x+6\,\alpha \,f(t)\varepsilon ,y,t),{f}_{2}(x\right.\\ \quad \left.+6\,\alpha \,f(t)\varepsilon ,y,t)+f^{\prime} (t)\varepsilon \right),\end{array}\end{eqnarray}$
$\begin{eqnarray}\begin{array}{rcl}({u}^{(5)},{v}^{(5)}) & = & \left(\,{{\rm{e}}}^{-\varepsilon }\,{f}_{1}\left[\,{{\rm{e}}}^{-\varepsilon }(x-\displaystyle \int {b}_{1}(\,{{\rm{e}}}^{3\varepsilon }t){\rm{d}}(\,{{\rm{e}}}^{3\varepsilon }t))\right.\right.\\ & & +\displaystyle \int {b}_{1}(t){\rm{d}}t,\,{{\rm{e}}}^{-2\varepsilon }(y-\displaystyle \int {b}_{2}(\,{{\rm{e}}}^{3\varepsilon }t){\rm{d}}(\,{{\rm{e}}}^{3\varepsilon }t))\\ & & \left.+\displaystyle \int {b}_{2}(t){\rm{d}}t,\,{{\rm{e}}}^{-3\varepsilon }\,t\right],\end{array}\end{eqnarray}$
$\begin{eqnarray}\begin{array}{l}\,{{\rm{e}}}^{-2\varepsilon }\,{f}_{2}\left[\,{{\rm{e}}}^{-\varepsilon }(x-\displaystyle \int {b}_{1}(\,{{\rm{e}}}^{3\varepsilon }t){\rm{d}}(\,{{\rm{e}}}^{3\varepsilon }t))\right.\\ \quad +\displaystyle \int {b}_{1}(t){\rm{d}}t,\,{{\rm{e}}}^{-2\varepsilon }(y-\displaystyle \int {b}_{2}(\,{{\rm{e}}}^{3\varepsilon }t){\rm{d}}(\,{{\rm{e}}}^{3\varepsilon }t))\\ \quad \left.\left.+\displaystyle \int {b}_{2}(t){\rm{d}}t,\,{{\rm{e}}}^{-3\varepsilon }\,t\right]\right).\end{array}\end{eqnarray}$

The Lie algebra commutator table is shown in table 1, where Lie bracket [Vi, Vj] = ViVjVjVi.
Table 1. Commutator table of equation (3).
[Vi, Vj] V1 V2 V3 V4 V5
V1 0 0 0 0 V1
V2 0 0 0 0 2V2
V3 0 0 0 V4 3V3
V4 0 0 V4 0 V4
V5 V1 −2V2 −3V3 V4 0

4. Nonlinear self-adjointness and conservation laws

In this section, we will give an insight into the self-adjointness and conservation laws of the vcmKP equation (3). Conservation laws are of great significance in studying the integrability of nonlinear development equations [22, 4952].

4.1. Nonlinear self-adjointness

To investigate its self-adjointness [51, 52], let the vcmKP equation (3) be noted as
$\begin{eqnarray}\begin{array}{rcl}{E}_{1} & = & {u}_{t}-6{u}^{2}\,{u}_{x}+{u}_{{xxx}}-3\alpha (2v\,{u}_{x}-\alpha \,{v}_{y})\\ & & +{b}_{1}(t){u}_{x}+{b}_{2}(t){u}_{y},\end{array}\end{eqnarray}$
$\begin{eqnarray}{E}_{2}={u}_{y}-{v}_{x}.\end{eqnarray}$
Then we have the following formal Lagrangian for equation (3)
$\begin{eqnarray}\begin{array}{rcl}{ \mathcal L } & = & \overline{u}\,{E}_{1}+\overline{v}\,{E}_{2}=\overline{u}\,[{u}_{t}-6{u}^{2}\,{u}_{x}+{u}_{{xxx}}\\ & & -3\alpha (2v\,{u}_{x}-\alpha \,{v}_{y})\\ & & +{b}_{1}(t){u}_{x}+{b}_{2}(t){u}_{y}]+\overline{v}({u}_{y}-{v}_{x}).\end{array}\end{eqnarray}$
To compute the variational derivative of the formal Lagrangian (40)
$\begin{eqnarray}\begin{array}{rcl}{E}_{1}^{* } & = & \displaystyle \frac{\delta ({ \mathcal L })}{\delta \,u}\\ & = & \left(\displaystyle \frac{\partial }{\partial u}-{D}_{t}\,\displaystyle \frac{\partial }{\partial {u}_{t}}\right.\\ & & \left.-{D}_{x}\,\displaystyle \frac{\partial }{\partial {u}_{x}}-{D}_{x}^{3}\,\displaystyle \frac{\partial }{\partial {u}_{{xxx}}}-{D}_{y}\,\displaystyle \frac{\partial }{\partial {u}_{y}}\right){ \mathcal L }\\ & = & -{\overline{u}}_{t}-{\overline{u}}_{{xxx}}-{\overline{v}}_{y}+6{u}^{2}\,{\overline{u}}_{x}+6\alpha \,{v}_{x}\,\overline{u}\\ & & +6\alpha \,v\,{\overline{u}}_{x}-{b}_{1}(t){\overline{u}}_{x}-{b}_{2}(t){\overline{u}}_{y},\end{array}\end{eqnarray}$
$\begin{eqnarray}\begin{array}{rcl}{E}_{2}^{* } & = & \displaystyle \frac{\delta ({ \mathcal L })}{\delta \,v}=\left(\displaystyle \frac{\partial }{\partial v}-{D}_{x}\,\displaystyle \frac{\partial }{\partial {v}_{x}}-{D}_{y}\,\displaystyle \frac{\partial }{\partial {v}_{y}}\right){ \mathcal L }\\ & = & -6\alpha \,{u}_{x}\overline{u}-3{\alpha }^{2}\,{\overline{u}}_{y}+{\overline{v}}_{x},\end{array}\end{eqnarray}$
assume that
$\begin{eqnarray}{E}_{1}^{* }| {\,}_{\overline{u}=\varphi (x,y,t,u,v),\overline{v}=\psi (x,y,t,u,v)}={\lambda }_{11}\,{E}_{1}+{\lambda }_{12}\,{E}_{2},\end{eqnarray}$
$\begin{eqnarray}{E}_{2}^{* }| {\,}_{\overline{u}=\varphi (x,y,t,u,v),\overline{v}=\psi (x,y,t,u,v)}={\lambda }_{21}\,{E}_{1}+{\lambda }_{22}\,{E}_{2},\end{eqnarray}$
where λ11, λ12, λ21, λ22 are certain functions to be determined later and E1, E2 are given by equation (38) and (39). By comparing the coefficients of each term of (43-1) and (43-2) it is obtained that
$\begin{eqnarray}\left\{\begin{array}{l}{\lambda }_{11}=-{\varphi }_{u},\\ {\lambda }_{12}=-{\psi }_{u},\\ {\lambda }_{21}=0,\\ {\lambda }_{22}=-3{\alpha }^{2}\,{\varphi }_{u},\end{array}\right.\end{eqnarray}$
and the determining equations of φ, ψ are listed as follows,
$\begin{eqnarray}\left\{\begin{array}{l}{\varphi }_{v}=0,\\ {\varphi }_{{uu}}=0,\\ {\varphi }_{{xu}}=0,\\ {\psi }_{v}=3{\alpha }^{2}\,{\varphi }_{u},\\ {\psi }_{u}=6\alpha \,\varphi ,\\ {\psi }_{x}=3{\alpha }^{2}\,{\varphi }_{y},\\ -{\varphi }_{t}-{\psi }_{y}-{\varphi }_{{xxx}}+6{u}^{2}\,{\varphi }_{x}+6\alpha \,v\,{\varphi }_{x}-{b}_{1}(t){\varphi }_{x}-{b}_{2}(t){\varphi }_{y}=0.\end{array}\right.\end{eqnarray}$
Hence, we have demonstrated the following statement.

The adjoint equations (43-1) and (43-2) of equation (3) have the solutions given by equation (45) for any solution $(u,v)$ of equation (3). In other words, the vcmKP equation (3) is nonlinear self-adjoint with the substitution $\overline{u}=\varphi ,\overline{v}=\psi $ given by (45).

To investigate its strict self-adjointness [52], we rewrite equation (3) in an equivalent form
$\begin{eqnarray}\left\{\begin{array}{l}\beta (x,y,t,u,v)[{u}_{t}-6{u}^{2}\,{u}_{x}+{u}_{{xxx}}-3\alpha (2v\,{u}_{x}-\alpha \,{v}_{y})+{b}_{1}(t){u}_{x}+{b}_{2}(t){u}_{y}]=0,\\ \gamma (x,y,t,u,v)[{u}_{y}-{v}_{x}]=0,\end{array}\right.\end{eqnarray}$
with proper multipliers β(x, y, t, u, v) ≠ 0 and γ(x, y, t, u, v) ≠ 0. Rewrite the formal Lagrangian corresponding to equation (46) in the following form,
$\begin{eqnarray}\begin{array}{rcl}{ \mathcal L }^{\prime} & = & \overline{u}\,\beta (x,y,t,u,v)[{u}_{t}-6{u}^{2}\,{u}_{x}+{u}_{{xxx}}\\ & & -\ 3\alpha (2v\,{u}_{x}-\alpha \,{v}_{y})\\ & & +\ {b}_{1}(t){u}_{x}+{b}_{2}(t){u}_{y}]+\overline{v}\,\gamma (x,y,t,u,v)({u}_{y}-{v}_{x}),\end{array}\end{eqnarray}$
where $\overline{u},\overline{v}$ are two new dependent variables. For this Lagrangian, we can obtain the following adjoint equations of (46)
$\begin{eqnarray}\begin{array}{rcl}{F}_{1}^{* } & = & \displaystyle \frac{\delta ({ \mathcal L }^{\prime} )}{\delta \,u}\\ & = & \left(\displaystyle \frac{\partial }{\partial \,u}-{D}_{t}\,\displaystyle \frac{\partial }{\partial \,{u}_{t}}-{D}_{x}\,\displaystyle \frac{\partial }{\partial \,{u}_{x}}\right.\\ & & \left.-{D}_{x}^{3}\,\displaystyle \frac{\partial }{\partial \,{u}_{{xxx}}}-{D}_{y}\,\displaystyle \frac{\partial }{\partial \,{u}_{y}}\right){ \mathcal L }^{\prime} \\ & = & -{D}_{t}(\overline{u}\,\beta )+{D}_{x}(\overline{u}\,\beta )(6{u}^{2}+6\alpha \,v\\ & & +{b}_{1}(t))-{D}_{y}(\overline{u}\,\beta \,{b}_{2}(t)+\overline{v}\,\gamma )\\ & & -{D}_{x}^{3}(\overline{u}\,\beta )+6\alpha \,{v}_{x}(\overline{u}\,\beta ),\end{array}\end{eqnarray}$
$\begin{eqnarray}\begin{array}{rcl}{F}_{2}^{* } & = & \displaystyle \frac{\delta ({ \mathcal L }^{\prime} )}{\delta \,v}=\left(\displaystyle \frac{\partial }{\partial \,v}-{D}_{x}\,\displaystyle \frac{\partial }{\partial \,{v}_{x}}-{D}_{y}\,\displaystyle \frac{\partial }{\partial \,{v}_{y}}\right){ \mathcal L }^{\prime} \\ & = & -6\alpha \,{u}_{x}(\overline{u}\,\beta )-3{\alpha }^{2}\,{D}_{y}(\overline{u}\,\beta )+{D}_{x}(\overline{v}\,\gamma ).\end{array}\end{eqnarray}$
Then we write the conditions for the self-adjointness of equation (46) in the form
$\begin{eqnarray}{F}_{1}^{* }| {\,}_{\overline{u}={\rm{\Phi }}(x,y,t,u,v),\overline{v}={\rm{\Psi }}(x,y,t,u,v)}=\lambda {{\prime} }_{11}\,{E}_{1}+\lambda {{\prime} }_{12}\,{E}_{2},\end{eqnarray}$
$\begin{eqnarray}{F}_{2}^{* }| {\,}_{\overline{u}={\rm{\Phi }}(x,y,t,u,v),\overline{v}={\rm{\Psi }}(x,y,t,u,v)}=\lambda {{\prime} }_{21}\,{E}_{1}+\lambda {{\prime} }_{22}\,{E}_{2},\end{eqnarray}$
where $\lambda {{\prime} }_{11},\lambda {{\prime} }_{12},\lambda {{\prime} }_{21},\lambda {{\prime} }_{22}$ are certain functions undetermined.
Denote that $P=\overline{u}\,\beta $ and $Q=\overline{v}\,\gamma $. Next, conditions (50-1) and (50-2) can be solved just the same way as the calculations to foregoing part of the discussion about nonlinear self-adjointness to yield that P = φ, Q = ψ, where φ, ψ are defined by equation (45). Take $\beta =\tfrac{\varphi }{u},{\rm{\Phi }}=u$ and $\gamma =\tfrac{\psi }{v},{\rm{\Psi }}=v$. Therefore, we have just confirmed the following conclusion.

The equivalent form of equation (3)

$\begin{eqnarray}\left\{\begin{array}{l}\displaystyle \frac{\varphi (x,y,t,u,v)}{u}\,[{u}_{t}-6{u}^{2}\,{u}_{x}+{u}_{{xxx}}-3\alpha (2v\,{u}_{x}-\alpha \,{v}_{y})+{b}_{1}(t){u}_{x}+{b}_{2}(t){u}_{y}]=0,\\ \displaystyle \frac{\psi (x,y,t,u,v)}{v}\,[{u}_{y}-{v}_{x}]=0,\end{array}\right.\end{eqnarray}$
is strictly self-adjoint with the $\varphi ,\psi $ given by equation (45). In other words, the adjoint equations of equation (51) coincide with it upon the substitution ${\rm{\Phi }}=u,{\rm{\Psi }}=v$.

4.2. Conservation laws

A conservation law for equation (3) is defined by a vector field (Ct, Cx, Cy), where (Ct = Ct(x, y, t, u, v, ⋯ ), Cx = Cx(x, y, t, u, v, ⋯ ), Cy = Cy(x, y, t, u, v, ⋯ )) is called a conserved vector for equation (3) if it satisfies the conservation equation [22, 51, 52]
$\begin{eqnarray}{D}_{t}({C}^{t})+{D}_{x}({C}^{x})+{D}_{y}({C}^{y})=0\end{eqnarray}$
upon all solutions of equation (3).
We next consider the conservation laws of the vcmKP equation (3).
System (3) is nonlinearly self-adjoint, according to Ibragimov's theorem [51], then we next provide conserved vectors for system (3) via its symmetry operator in the form (24) and the formal Lagrangian (40).

The conserved vectors for system (3) can be constructed as

$\begin{eqnarray}{C}^{t}=\tau \,{ \mathcal L }+{W}^{1}\left(\displaystyle \frac{\partial \,{ \mathcal L }}{\partial \,{u}_{t}}\right),\end{eqnarray}$
$\begin{eqnarray}\begin{array}{rcl}{C}^{x} & = & {\xi }^{x}\,{ \mathcal L }+{W}^{1}\left[\displaystyle \frac{\partial \,{ \mathcal L }}{\partial \,{u}_{x}}+{D}_{x}^{2}\displaystyle \frac{\partial \,{ \mathcal L }}{\partial \,{u}_{{xxx}}}\right]\\ & & +{D}_{x}({W}^{1})\left[-{D}_{x}\displaystyle \frac{\partial \,{ \mathcal L }}{\partial \,{u}_{{xxx}}}\right]\\ & & +{D}_{x}^{2}({W}^{1})\left[\displaystyle \frac{\partial \,{ \mathcal L }}{\partial \,{u}_{{xxx}}}\right]+{W}^{2}\left(\displaystyle \frac{\partial \,{ \mathcal L }}{\partial \,{v}_{x}}\right),\end{array}\end{eqnarray}$
$\begin{eqnarray}{C}^{y}={\xi }^{y}\,{ \mathcal L }+{W}^{1}\left(\displaystyle \frac{\partial \,{ \mathcal L }}{\partial \,{u}_{y}}\right)+{W}^{2}\left(\displaystyle \frac{\partial \,{ \mathcal L }}{\partial \,{v}_{y}}\right),\end{eqnarray}$
where ${W}^{1}=\eta -(\tau {u}_{t}+{\xi }^{x}\,{u}_{x}+{\xi }^{y}\,{u}_{y}),{W}^{2}=\omega -(\tau {v}_{t}+{\xi }^{x}\,{v}_{x}+{\xi }^{y}\,{v}_{y})$, ${ \mathcal L }$ is defined by (40), and $\overline{u}=\varphi ,\overline{v}=\psi $ is given by equations (45).

System (3) is nonlinearly self-adjoint, so we next provide conserved vectors for system (3) via its symmetry operator in the form (24) and the formal Lagrangian (40).
$\begin{eqnarray}{C}^{t}=\tau \,{ \mathcal L }+{W}^{1}\left(\displaystyle \frac{\partial \,{ \mathcal L }}{\partial \,{u}_{t}}\right),\end{eqnarray}$
$\begin{eqnarray}\begin{array}{rcl}{C}^{x} & = & {\xi }^{x}\,{ \mathcal L }+{W}^{1}\left[\displaystyle \frac{\partial \,{ \mathcal L }}{\partial \,{u}_{x}}+{D}_{x}^{2}\displaystyle \frac{\partial \,{ \mathcal L }}{\partial \,{u}_{{xxx}}}\right]\\ & & +{D}_{x}({W}^{1})\left[-{D}_{x}\displaystyle \frac{\partial \,{ \mathcal L }}{\partial \,{u}_{{xxx}}}\right]\\ & & +{D}_{x}^{2}({W}^{1})\left[\displaystyle \frac{\partial \,{ \mathcal L }}{\partial \,{u}_{{xxx}}}\right]+{W}^{2}\left(\displaystyle \frac{\partial \,{ \mathcal L }}{\partial \,{v}_{x}}\right),\end{array}\end{eqnarray}$
$\begin{eqnarray}{C}^{y}={\xi }^{y}\,{ \mathcal L }+{W}^{1}\left(\displaystyle \frac{\partial \,{ \mathcal L }}{\partial \,{u}_{y}}\right)+{W}^{2}\left(\displaystyle \frac{\partial \,{ \mathcal L }}{\partial \,{v}_{y}}\right),\end{eqnarray}$
where W1 = η − ∑i ξi ui, W2 = ω − ∑j ξj vj, ${ \mathcal L }$ is defined by (40), and $\overline{u}=\varphi ,\overline{v}=\psi $ is given by equations (45).
In order to simplify the calculations, we take
$\begin{eqnarray}\varphi =u,\end{eqnarray}$
$\begin{eqnarray}\psi =3\alpha \,{u}^{2}+3{\alpha }^{2}\,v.\end{eqnarray}$
Next, in the light of (56)–(58), we derive four cases of the symmetry operator as below.
Case I ${V}_{1}=\tfrac{\partial }{\partial \,x}$
The corresponding infinitesimal generators and Lie characteristic functions are
$\begin{eqnarray}\tau ={\xi }^{y}=\eta =\omega =0,{\xi }^{x}=1,\end{eqnarray}$
$\begin{eqnarray}{W}^{1}=-{u}_{x},{W}^{2}=-{v}_{x}.\end{eqnarray}$
Then we obtain the conserved vector as below
$\begin{eqnarray}{C}^{t}=-{u}_{x}\overline{u},\end{eqnarray}$
$\begin{eqnarray}{C}^{x}=\overline{u}({u}_{t}+3{\alpha }^{2}\,{v}_{y}+{b}_{2}(t){u}_{y})-{u}_{x}\,{\overline{u}}_{{xx}}+{\overline{u}}_{x}\,{u}_{{xx}}+\overline{v}\,{u}_{y},\end{eqnarray}$
$\begin{eqnarray}{C}^{y}=-{u}_{x}\,\overline{v}-{b}_{2}(t){u}_{x}\,\overline{u}-3{\alpha }^{2}\,{v}_{x}\,\overline{u}.\end{eqnarray}$
Case II ${V}_{2}=\tfrac{\partial }{\partial \,y}$
The corresponding infinitesimal generators and Lie characteristic functions are
$\begin{eqnarray}\tau ={\xi }^{x}=\eta =\omega =0,{\xi }^{y}=1,\end{eqnarray}$
$\begin{eqnarray}{W}^{1}=-{u}_{y},{W}^{2}=-{v}_{y}.\end{eqnarray}$
Thus, it can yield the following conserved vector
$\begin{eqnarray}{C}^{t}=-{u}_{y}\overline{u},\end{eqnarray}$
$\begin{eqnarray}\begin{array}{rcl}{C}^{x} & = & {u}_{y}(6{u}^{2}\,\overline{u}+6\alpha \,v\,\overline{u}-{b}_{1}(t)\overline{u}\\ & & -{\overline{u}}_{{xx}})+{v}_{y}\,\overline{v}+{u}_{{xy}}\,{\overline{u}}_{x}-{u}_{{xxy}}\,\overline{u},\end{array}\end{eqnarray}$
$\begin{eqnarray}{C}^{y}=\overline{u}({u}_{t}-6{u}^{2}\,{u}_{x}+{u}_{{xxx}}-6\alpha \,v\,{u}_{x}+{b}_{1}(t){u}_{x})-\overline{v}\,{v}_{x}.\end{eqnarray}$
Case III ${V}_{3}={b}_{1}(t)\tfrac{\partial }{\partial \,x}+{b}_{2}(t)\tfrac{\partial }{\partial \,y}+\tfrac{\partial }{\partial \,t}$
The corresponding infinitesimal generators and Lie characteristic functions are
$\begin{eqnarray}\tau =1,{\xi }^{x}={b}_{1}(t),{\xi }^{y}={b}_{2}(t),\eta =\omega =0,\end{eqnarray}$
$\begin{eqnarray}\begin{array}{rcl}{W}^{1} & = & -{u}_{t}-{b}_{1}(t){u}_{x}-{b}_{2}(t){u}_{y},\\ {W}^{2} & = & -{v}_{t}-{b}_{1}(t){v}_{x}-{b}_{2}(t){v}_{y}.\end{array}\end{eqnarray}$
So the components of conserved vector are expressed by
$\begin{eqnarray}\begin{array}{rcl}{C}^{t} & = & \overline{u}\,[-6{u}^{2}\,{u}_{x}+{u}_{{xxx}}-6\alpha \,v\,{u}_{x}\\ & & +3{\alpha }^{2}\,{v}_{y}]+\overline{v}({u}_{y}-{v}_{x}),\end{array}\end{eqnarray}$
$\begin{eqnarray}\begin{array}{rcl}{C}^{x} & = & ({u}_{t}+{b}_{2}(t){u}_{y})(6{u}^{2}\,\overline{u}+6\alpha \overline{u}\,v-{\overline{u}}_{{xx}})\\ & & +\overline{v}({v}_{t}+{b}_{1}(t){u}_{y}+{b}_{2}(t){v}_{y})+3{\alpha }^{2}\,{b}_{1}(t)\overline{u}\,{v}_{y}\end{array}\end{eqnarray}$
$\begin{eqnarray}\begin{array}{l}+{\overline{u}}_{x}({u}_{{xt}}+{b}_{1}(t){u}_{{xx}}+{b}_{2}(t){u}_{{xy}})-{b}_{1}(t){u}_{x}\,{\overline{u}}_{{xx}}\\ \quad -\overline{u}({u}_{{xxt}}+{b}_{2}(t){u}_{{xxy}}),\end{array}\end{eqnarray}$
$\begin{eqnarray}\begin{array}{rcl}{C}^{y} & = & -\overline{u}\left(3{\alpha }^{2}\,{b}_{1}(t){v}_{x}+{b}_{2}(t)\left(6\,{u}^{2}\,{u}_{x}+6\alpha \,{u}_{x}\,v-{u}_{{xxx}}\right)\right.\\ & & \left.+3{\alpha }^{2}{v}_{t}\right)-\overline{v}\left({b}_{1}(t){u}_{x}+{b}_{2}(t){v}_{x}+{u}_{t}\right).\end{array}\end{eqnarray}$
Case IV ${V}_{4}=-6\alpha \,f(t)\tfrac{\partial }{\partial \,x}+f^{\prime} (t)\tfrac{\partial }{\partial \,v}$
The corresponding infinitesimal generators and Lie characteristic functions are
$\begin{eqnarray}\tau ={\xi }^{y}=\eta =0,{\xi }^{x}=-6\alpha \,f(t),\omega =f^{\prime} (t),\end{eqnarray}$
$\begin{eqnarray}{W}^{1}=6\alpha \,f(t){u}_{x},{W}^{2}=f^{\prime} (t)+6\alpha \,f(t){v}_{x}.\end{eqnarray}$
The components of the conserved vector are read by
$\begin{eqnarray}{C}^{t}=6\alpha \,f(t){u}_{x}\,\overline{u},\end{eqnarray}$
$\begin{eqnarray}\begin{array}{rcl}{C}^{x} & = & -\overline{v}\,[\,6\alpha \,f(t){u}_{y}+f^{\prime} (t)]-6\alpha \,f(t)[\overline{u}({u}_{t}\\ & & +{b}_{2}(t){u}_{y}+3{\alpha }^{2}\,{v}_{y}\,)\\ & & +{u}_{{xx}}\,\overline{u}-{u}_{x}\,{\overline{u}}_{{xx}}\,],\end{array}\end{eqnarray}$
$\begin{eqnarray}{C}^{y}=6\alpha \,f(t){u}_{x}\,[{b}_{2}(t)\overline{u}+\overline{v}]+3{\alpha }^{2}\,\overline{u}\,[\,f^{\prime} (t)+6\alpha \,f(t){v}_{x}].\end{eqnarray}$
Case V ${V}_{5}=(x+3t\,{b}_{1}(t)-\int {b}_{1}(t){\rm{d}}t)\tfrac{\partial }{\partial \,x}+(2y\,+3t\,{b}_{2}(t)-2\int {b}_{2}(t){\rm{d}}t)\tfrac{\partial }{\partial \,y}+3t\,\tfrac{\partial }{\partial \,t}-u\,\tfrac{\partial }{\partial \,u}-2v\,\tfrac{\partial }{\partial \,v}$
The corresponding infinitesimal generators and Lie characteristic functions are
$\begin{eqnarray}\begin{array}{rcl}{\xi }^{x} & = & x+3t\,{b}_{1}(t)-\int {b}_{1}(t){\rm{d}}t,{\xi }^{y}=2y+3t\,{b}_{2}(t)-2\\ & & \times \int {b}_{2}(t){\rm{d}}t,\tau =3t,\eta =-u,\omega =-2v,\end{array}\end{eqnarray}$
$\begin{eqnarray}\begin{array}{rcl}{W}^{1} & = & -u-(x+3t\,{b}_{1}(t)-\int {b}_{1}(t){\rm{d}}t){u}_{x}\\ & & -(2y+3t\,{b}_{2}(t)-2\int {b}_{2}(t){\rm{d}}t){u}_{y}-3t\,{u}_{t},\end{array}\end{eqnarray}$
$\begin{eqnarray}\begin{array}{rcl}{W}^{2} & = & -2v-(x+3t\,{b}_{1}(t)-\int {b}_{1}(t){\rm{d}}t){v}_{x}\\ & & -(2y+3t\,{b}_{2}(t)-2\int {b}_{2}(t){\rm{d}}t){v}_{y}-3t\,{v}_{t}.\end{array}\end{eqnarray}$
The related conservation laws are
$\begin{eqnarray}\begin{array}{rcl}{C}^{t} & = & \overline{u}\left[{u}_{x}\Space{0ex}{0.25ex}{0ex}(-18\alpha \,t\,v+\displaystyle \int {b}_{1}(t){\rm{d}}t-x\Space{0ex}{0.25ex}{0ex})\right.\\ & & +2\,{u}_{y}\left(\displaystyle \int {b}_{2}(t){\rm{d}}t-y\right)\\ & & \left.+3\,t\,{u}_{{xxx}}+9{\alpha }^{2}\,t\,{v}_{y}-18\,t\,{u}^{2}\,{u}_{x}-u\Space{0ex}{2.60ex}{0ex}\right]\\ & & +3t\,\overline{v}({u}_{y}-{v}_{x}),\end{array}\end{eqnarray}$
$\begin{eqnarray}\begin{array}{rcl}{C}^{x} & = & \Space{0ex}{0.25ex}{0ex}(3t\,{b}_{1}(t)-\displaystyle \int {b}_{1}(t){\rm{d}}t+x\Space{0ex}{0.25ex}{0ex})\left[\overline{u}({u}_{x}({b}_{1}(t)-6{u}^{2}-6\alpha \,v)\right.\\ & & \left.+{b}_{2}(t){u}_{y}+{u}_{t}+{u}_{{xxx}}+3{\alpha }^{2}\,{v}_{y})+\overline{v}({u}_{y}-{v}_{x})\right]\\ & & +(\overline{u}({b}_{1}(t)-6{u}^{2}-6\alpha \,v)+{\overline{u}}_{{xx}})\left[\Space{0ex}{2.25ex}{0ex}{u}_{x}(-3{{tb}}_{1}(t)\right.\\ & & +\displaystyle \int {b}_{1}(t){\rm{d}}t-x)+{u}_{y}(-3{{tb}}_{2}(t)\\ & & \left.+2\displaystyle \int {b}_{2}(t){\rm{d}}t-2y)\right]\\ & & -(\overline{u}({b}_{1}(t)-6{u}^{2}-6\alpha \,v)+{\overline{u}}_{{xx}})(3\,t\,{u}_{t}+u)\\ & & -{\overline{u}}_{x}\left[{u}_{{xx}}(-3{{tb}}_{1}(t)+\displaystyle \int {b}_{1}(t)\,{\rm{d}}t-x)\right.\\ & & +{u}_{{xy}}(-3{{tb}}_{2}(t)\\ & & \left.+2\displaystyle \int {b}_{2}(t)\,{\rm{d}}t-2y)-2{u}_{x}-3{{tu}}_{{xt}}\right]\\ & & +\overline{u}\left[{u}_{{xxx}}(-3{{tb}}_{1}(t)+\displaystyle \int {b}_{1}(t)\,{\rm{d}}t-x)\right.\\ & & +{u}_{{xxy}}(-3{{tb}}_{2}(t)\\ & & \left.+2\displaystyle \int {b}_{2}(t)\,{\rm{d}}t-2y)-3{u}_{{xx}}-3{{tu}}_{{xxt}}\right]\\ & & -\overline{v}\left[{v}_{x}(-3{{tb}}_{1}(t)+\displaystyle \int {b}_{1}(t)\,{\rm{d}}t-x)+{v}_{y}(-3{{tb}}_{2}(t)\right.\\ & & \left.+2\displaystyle \int {b}_{2}(t)\,{\rm{d}}t-2y)-3t\,{v}_{t}-2v\right],\end{array}\end{eqnarray}$
$\begin{eqnarray}\begin{array}{rcl}{C}^{y} & = & \Space{0ex}{0.25ex}{0ex}(3{{tb}}_{2}(t)-2\displaystyle \int {b}_{2}(t)\,{\rm{d}}t+2y\Space{0ex}{0.25ex}{0ex})\\ & & \times \left[\overline{u}({u}_{x}({b}_{1}(t)-6{u}^{2}-6\alpha \,v)\right.\\ & & \left.+{b}_{2}(t){u}_{y}+{u}_{t}+{u}_{{xxx}}+3{\alpha }^{2}{v}_{y})+\overline{v}({u}_{y}-{v}_{x})]\right]\\ & & +({b}_{2}(t)\overline{u}+\overline{v})\left[\Space{0ex}{2.25ex}{0ex}{u}_{x}(-3{{tb}}_{1}(t)\right.\\ & & +\displaystyle \int {b}_{1}(t)\,{\rm{d}}t-x)+{u}_{y}(-3{{tb}}_{2}(t)\\ & & \left.+2\displaystyle \int {b}_{2}(t)\,{\rm{d}}t-2y)-3{{tu}}_{t}-u\right]\\ & & +3{\alpha }^{2}\overline{u}\left[\Space{0ex}{2.25ex}{0ex}{v}_{x}(-3{{tb}}_{1}(t)\right.\\ & & +\displaystyle \int {b}_{1}(t)\,{\rm{d}}t-x)+{v}_{y}(-3\,t\,{b}_{2}(t)\\ & & \left.+2\displaystyle \int {b}_{2}(t)\,{\rm{d}}t-2y)-3\,t\,{v}_{t}-2v\right].\end{array}\end{eqnarray}$
It is important to note that all conservation laws obtained in this section are validated by symbolic computation. The components of the conserved vector contain $\overline{u}$ and $\overline{v}$, which are provided by theorem (4.1), and arbitrary functions f(t), so one can construct an infinite number of conservation laws by solving solutions for equation (45) and choosing different forms of f(t).

5. Conclusion and discussion

A variable-coefficient modified Kadomtsev–Petviashvili (vcmKP) equation is an important model that can describe the nonlinear wave phenomena in many fields, such as hydrodynamics, electromagnetics, plasma physics and electrodynamics. In this paper, with symbolic computation, a variable-coefficient modified Kadomtsev–Petviashvili system, the electromagnetic wave in an isotropic charge-free infinite ferromagnetic thin film and water wave in the xy plane has been investigated.
With u(x, y, t), e.g., the first derivative of the angle made between the propagation direction for the electromagnetic wave and direction for the uniform magnetization of the medium with respect to x, the Painlevé test has been applied to equation (3), which obtained Painlevé integrable condition ${a}_{2}=\displaystyle \frac{1}{12}{a}_{1}^{2}\,$, with coefficient functions b1(t) and b2(t) being free. Without losing generality, we set a1 = − 6α, a2 = 3α2. An auto-Bäcklund transformation has been presented via the truncated Painlevé expansion, and analytic solutions have been provided, including the solitonic, periodic and rational solutions. By means of the Lie group method, the infinitesimal generators, symmetry groups and invariant solutions of equation (3) have been presented. Then by virtue of symbolic computation, equation (3) has been shown to be nonlinear self-adjoint. Based on the nonlinear self-adjointness, an infinite number of conservation laws have been derived with a general conservation.
In order to help one comprehend some physical meaning and the the important role of variable coefficient functions for the description of various inhomogeneities of vcmKP equation (3), here the qualitative analysis and graphical illustrations are provided. As an example, we consider solution (17) with the following special case:
$\begin{eqnarray}\begin{array}{rcl}u & = & {\left(\mathrm{ln}\,\phi \right)}_{x},\\ \phi & = & 1+\displaystyle \sum _{i=0}^{N}{d}_{i}\,{{\rm{e}}}^{{\theta }_{i}},\\ {\theta }_{i} & = & {p}_{i}\,x-\displaystyle \frac{{p}_{i}^{2}}{\alpha }y+\displaystyle \int \left[\displaystyle \frac{{p}_{i}^{2}{b}_{2}(t)}{\alpha }-4{p}_{i}^{3}-{p}_{i}{b}_{1}(t)\right]{\rm{d}}t,\end{array}\end{eqnarray}$
When N = 1, d1 = 1, solution (88) reads
$\begin{eqnarray}u={p}_{1}\left[\tanh \displaystyle \frac{{\theta }_{1}}{2}+1\right],\end{eqnarray}$
while the corresponding amplitude of solitary waves is ∣p1∣ and the velocity can be given as
$\begin{eqnarray}\begin{array}{l}V=({V}_{x},{V}_{y})=\left(\displaystyle \frac{\alpha (\alpha {p}_{1}{b}_{1}(t)+4\alpha {p}_{i}^{3}-{p}_{1}^{2}{b}_{2}(t))}{{p}_{1}^{3}+{p}_{1}{\alpha }^{2}},\right.\\ \,\,\,\left.\displaystyle \frac{\alpha {p}_{1}{b}_{1}(t)+4\alpha {p}_{i}^{3}-{p}_{1}^{2}{b}_{2}(t)}{{p}_{1}^{2}+{\alpha }^{2}}\right).\end{array}\end{eqnarray}$
The following graphical illustrations give a good understanding of how those functions affect the propagation of solitary waves in nonuniform backgrounds by taking some special parameters and different choices of the coefficient functions b1(t), b2(t) by using Mathematica. Only consider taking α = 1 and plotting in the x, t plane. Figure 1 displays the standard shock waves in homogeneous backgrounds with b1(t) = 0, b2(t) = 0 and p1 = 0.6, p2 = 1.8, p3 = 1.1, d1 = 1, d2 = 1, d3 = 2, one shock wave in (a), interactions between two solitary waves in (b) and among three solitary waves in (c). Figure 2 displays the periodic shock waves in inhomogeneous backgrounds with ${b}_{1}(t)=4\sin t,{b}_{2}(t)=0$ and p1 = 0.6, p2 = 1.1, p3 = 1.6, d1 = 1, d2 = 1, d3 = 2, one shock wave in (a), interactions between two solitary waves in (b) and among three solitary waves in (c). Figure 3 displays the parabolic shock waves in inhomogeneous backgrounds with b1(t) = 0, b2(t) = t and p1 = 0.6, p2 = 1.1, p3 = 0.4, d1 = 1, d2 = 2, d3 = 1, one shock wave in (a), interactions between two solitary waves in (b) and among three solitary waves in (c). Figure 4 displays the mixed cases of periodic and parabolic shock waves in inhomogeneous backgrounds with ${b}_{1}(t)=4\sin t,{b}_{2}(t)=0.4t$ and p1 = 0.6, p2 = 1.1, p3 = 1.8, d1 = 1, d2 = 1.3, d3 = 1, one shock wave in (a), interactions between two solitary waves in (b) and among three solitary waves in (c). Figure 5 displays the mixed cases of periodic and shock waves in inhomogeneous backgrounds with p1 = 0.6, p2 = 1.1, p3 = 1.6, d1 = 1, d2 = 1, d3 = 2, one shock wave in (a), interactions between two solitary waves in (b) and among three solitary waves in (c). From those figures, it is easy to see that the influence of the coefficient functions b1(t), b2(t) on the waveform is very obvious, but does nothing about amplitude.
Figure 1. Standard shock waves in homogeneous backgrounds with b1(t) = 0, b2(t) = 0.
Figure 2. Periodic shock waves in inhomogeneous backgrounds with ${b}_{1}(t)=4\sin t,{b}_{2}(t)=0$.
Figure 3. Parabolic shock waves in inhomogeneous backgrounds with b1(t) = 0, b2(t) = t.
Figure 4. Mixed types of periodic and parabolic shock waves with ${b}_{1}(t)=4\sin t,{b}_{2}(t)=0.4t$.
Figure 5. Mixed types of periodic and shock waves with ${b}_{1}(t)=\sin t,{b}_{2}(t)=\arctan t$.

Conflict of interest

The author declares no competing interests.

1
Abdelwahed H G, El-Shewy E K, Abdelrahman M A E, El-Rahmanf A A 2021 Positron nonextensivity contributions on the rational solitonic, periodic, dissipative structures for VCMKP equation described critical plasmas Adv. Space Res. 67 3260 3266

DOI

2
Seadawy A R, El-Rashidy K 2018 Dispersive solitary wave solutions of Kadomtsev-Petviashvili and modified Kadomtsev-Petviashvili dynamical equations in unmagnetized dust plasma Results Phys. 8 1216 1222

DOI

3
Veerakumar V, Daniel M 2003 Modified Kadomtsev-Petviashvili (MKP) equation and electromagnetic soliton Math. Comput. Simulation 62 163 169

DOI

4
Sun Z Y, Gao Y T, Yu X, Meng X H, Liu Y 2009 Inelastic interactions of the multiple-front waves for the modified Kadomtsev-Petviashvili equation in fluid dynamics, plasma physics and electrodynamics Wave Motion 46 511 521

DOI

5
Grimshaw R, Pelinovsky D, Pelinovsky E, Talipova T 2001 Wave group dynamics in weakly nonlinear long-wave models Physica D 159 35 57

DOI

6
Han P F, Zhang Y 2024 Superposition behavior of the lump solutions and multiple mixed function solutions for the (3+1)-dimensional Sharma-Tasso-Olver-like equation Eur. Phys. J. Plus 139 157

DOI

7
Wang D S, Shi Y R, Feng W X, Wen L 2017 Dynamical and energetic instabilities of F = 2 spinor Bose-Einstein condensates in an optical lattice Physica D 351-352 30 41

DOI

8
Hirota R 1971 Exact solution of the Korteweg-de Vries equation for multiple collisions of solitons Phys. Rev. Lett. 27 1192 1193

DOI

9
Matveev V B, Salle M A 1986 Scattering of solitons in the formalism of the Darboux transform J. Math. Sci. 34 1983 1987

DOI

10
Matveev V B, Salle M A 1991 Darboux Transformations and Solitons Springer

11
Xu L, Wang D S, Wen X Y, Jiang Y L 2020 Exotic localized vector waves in a two-component nonlinear wave system J. Nonlinear. Sci. 30 537 564

DOI

12
Rogers C, Schief W K 2002 Bäcklund and Darboux Transformation Geometry and Modern Applications in Soliton Theory Cambridge University Press

13
Weiss J 1983 The Painlevé property for partial differential equations. II: Bäcklund transformation, Lax pairs, and the Schwarzian derivative J. Math. Phys. 24 1405 1413

DOI

14
Ma W X 2020 Inverse scattering and soliton solutions of nonlocal complex reverse-spacetime mKdV equations J. Geom. Phys. 157 103845

DOI

15
Wang D S, Deng S, Zhu X D 2022 Direct and inverse scattering problems of the modified Sawada-Kotera equation: Riemann-Hilbert approach Proc. R. Soc. A. 478 20220541

DOI

16
Aslan I 2011 Comment on: application of Exp-function method for (3+1)-dimensional nonlinear evolution equations Comput. Math. Appl. 61 1700 1703

DOI

17
Wang M L 1996 Exact solutions for a compound KdV-Burgers equation Phys. Lett. A 213 279 287

DOI

18
Shukri S, Al-Khaled K 2010 The extended tanh method for solving systems of nonlinear wave equations Appl. Math. Comput. 217 1997 2006

DOI

19
Adem A R 2017 Symbolic computation on exact solutions of a coupled Kadomtsev-Petviashvili equation: lie symmetry analysis and extended tanh method Comput. Math. Appl. 74 1897 1902

DOI

20
Wazwaz A M 2005 The tanh method: exact solutions of the sine-Gordon and the sinh-Gordon equations Appl. Math. Comput. 167 1196 1210

DOI

21
Han P F, Zhang Y 2024 Investigation of shallow water waves near the coast or in lake environments via the KdV-Calogero-Bogoyavlenskii-Schiff equation Chaos. Soliton. Fract. 184 115008

DOI

22
Olver P J 1993 Application of Lie Groups to Differential Equations Springer

23
Bluman G W, Cheviakov A F, Anco S C 2000 Applications of Symmetry Methods to Partial Differential Equations Springer

24
Kametaka Y 1983 On rational similarity solutions of KdV and mKdV equations Proc. Jpn. Acad. 59 407 409

DOI

25
Kevrekidis P G, Khare A, Saxena A, Herring G 2004 On some classes of mKdV periodic solutions J. Phys. A 37 10959 10965

DOI

26
Konopelchenko B G 1982 On the gauge-invariant description of the evolution equations integrable by Gelfand-Dikij spectral problems Phys. Lett. A 92 323 327

DOI

27
Jimbo M, Miwa T 1983 Solitons and infinite-dimensional Lie algebras Publ. Res. Inst. Math. Sci. 19 943 1001

DOI

28
Konopelchenko B G, Dubrovsky V G 1992 Inverse spectral transform for the modified Kadomtsev-Petviashvili equation Stud. Appl. Math. 86 219 268

DOI

29
Ren B 2015 Interaction solutions for mKP equation with nonlocal symmetry reductions and CTE method Phys. Scr. 90 065206

DOI

30
Anco S C 2020 Conservation laws and line soliton solutions of a family of modified KP equations Discrete Contin. Dyn. Syst. Ser. S 13 2655 2665

DOI

31
Zhao Z L 2019 Bäcklund transformations, rational solutions and soliton-cnoidal wave solutions of the modified Kadomtsev-Petviashvili equation Appl. Math. Lett. 89 103 110

DOI

32
Ma W X, Bullough R K, Caudrey P J 1997 Graded symmetry algebras of time-dependent evolution equations and application to the modified KP equations J. Nonlinear Math. Phys. 4 293 309

DOI

33
Deng X, Chen K, Zhang D J 2017 Lax triad approach to symmetries of scalar modified Kadomtsev-Petviashvili hierarchy Commun. Theor. Phys. 67 131 136

DOI

34
Huang W H, Yu D J, Jin M Z 2003 Some special types of multisoliton solutions of the modified Kadomtsev-Petviashvili equation Commun. Theor. Phys. 40 262 264

DOI

35
Chang J H 2019 Soliton interaction in the modified Kadomtse-Petviashvili-(II) equation Appl. Anal. 98 2589 2603

DOI

36
Gao X Y, Guo Y J, Shan W R 2022 Reflecting upon some electromagnetic waves in a ferromagnetic film via a variable-coefficient modified Kadomtsev-Petviashvili system Appl. Math. Lett. 132 108189

DOI

37
El-Shiekh R M, Gaballah M 2022 Integrability, similarity reductions and solutions for a (3+1)-dimensional modified Kadomtsev-Petviashvili system with variable coefficients Partial. Differ. Equ. Appl. Math. 6 100408

DOI

38
Zhang Y P, Wang J Y, Wei G M 2015 The Painlevé property, Bäcklund transformation, Lax pair and new analytic solutions of a variable-coefficient KdV equation from fluids and plasmas Phys. Scr. 90 065203

DOI

39
Luo X Y, Chen Y 2016 Darboux transformation and N-soliton solution for extended form of modified Kadomtsev-Petviashvili equation with variable-coefficient Commun. Theor. Phys. 66 179 188

DOI

40
Ur Rehman H, Tehseen M, Ashraf H, Awan A U, Ali M R 2024 Unveiling dynamic solitons in the (2+1)-dimensional Kadomtsev-Petviashvili equation: insights from fluids and plasma Partial. Differ. Equ. Appl. Math. 9 100633

DOI

41
Weiss J, Tabor M, Carnevale G 1983 The Painlevé property for partial differential equations J. Math. Phys. 24 522 526

DOI

42
Xu G Q 2009 A note on the Painlevé test for nonlinear variable-coefficient PDEs Comput. Phys. Commun. 180 1137 1144

DOI

43
Li X N, Wei G M, Liang Y Q 2010 Painlevé analysis and new analytic solutions for variable-coefficient Kadomtsev-Petviashvili equation with symbolic computation Appl. Math. Comput. 216 3568 3577

DOI

44
Liang Y Q, Wei G M, Li X N 2010 Painlevé integrability, similarity reductions, new soliton and soliton-like similarity solutions for the (2+1)-dimensional BKP equation Nonlinear Dyn. 62 195 202

DOI

45
Zhou T Y, Tian B 2022 Auto-Bäcklund transformations, Lax pair, bilinear forms and bright solitons for an extended (3+1)-dimensional nonlinear Schrödinger equation in an optical Fiber Appl. Math. Lett. 133 108280

DOI

46
Olver P J 1995 Equivalence, Invariants and Symmetry Cambridge University Press

47
Ovsiannikov L V 1982 Analysis of Differential Equations Academic Press

48
Bluman G W, Kumei S 1989 Symmetries and Differential Equations Springer

49
Wei G M, Lu Y L, Xie Y Q, Zheng W X 2018 Lie symmetry analysis and conservation law of variable-coefficient Davey-Stewartson equation Comput. Math. Appl. 75 3420 3430

DOI

50
Guan S N, Wei G M, Li Q 2021 Lie symmetry analysis, optimal system and conservation law of a generalized (2+1)-dimensional Hirota-Satsuma-Ito equation Mod. Phys. Lett. B 35 2150515

DOI

51
Ibragimov N H 2007 A new conservation theorem J. Math. Anal. Appl. 333 311 328

DOI

52
Ibragimov N H 2011 Nonlinear self-adjointness and conservation laws J. Phys. A. Math. Theor. 44 432002

DOI

Outlines

/